Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

Exploration of Physicochemical Parameters of Natural Origin Polymers

Author(s): Chaitrali M. Bidikar and Poonam R Inamdar*

Volume 4, Issue 3, 2021

Published on: 28 September, 2021

Page: [210 - 216] Pages: 7

DOI: 10.2174/2452271604666210928120716

Price: $65

Abstract

Background: Natural polymers are fascinating category of small chain molecules originating from natural resources, and few examples include Sodium Alginate and Xanthan Gum which are water-soluble in nature; used for mainly food packaging, biomedical and pharmaceutical applications. In the proposed research work, an effort was made to overcome the polymer challenges emerging from the development of polymer blends, as the miscibility between polymers is a vital aspect.

Objective: This work focuses on the miscibility studies of natural origin polymers. In regards to that, Sodium Alginate/ Xanthan Gum blends were prepared in variable concentrations in aqueous medium and it was utilized for viscosity analysis, FTIR, Ultraviolet spectroscopic studies at variable temperatures.

Methods: It was observed that the developed Sodium Alginate / Xanthan Gum blends are miscible with each other at most of the temperatures (at 20°C, 40°C and 60°C) considering their viscosity parameters, FTIR and UV spectral data.

Results: Viscosity studies revealed that the miscibility windows of polymeric ratio increases as the temperature increases whereas FTIR spectral patterns exhibited that the composition having 60:40 ratio of polymers exhibits high intensity stretches and represented to be miscible when compared to other combinations.

Conclusion: The present study has reported the simple and efficient method in exploration of the miscibility windows of Sodium alginate and Xanthan gum blend.

Keywords: Natural polymers, miscibility, sodium alginate, xanthan sodium, polymers, bacterium.

Graphical Abstract

[1]
Jagur-Grodzinski J. Biomedical application of functional polymers. React Funct Polym 1999; 39(2): 99-138.
[http://dx.doi.org/10.1016/S1381-5148(98)00054-6]
[2]
Fambri L, Migliaresi C, Kesenci K, Piskin E. Biodegradable polymers. In: Barbucci R, Ed. Integrated biomaterials science. Boston, MA: Springer 2002.
[http://dx.doi.org/10.1007/0-306-47583-9_4]
[3]
Cascone MG. Dynamic–mechanical properties of bioartificial polymeric materials. Polym Int 1997; 43(1): 55-69.
[http://dx.doi.org/10.1002/(SICI)1097-0126(199705)43:1<55::AID-PI762>3.0.CO;2-#]
[4]
Fukae R, Yamamoto T, Sangen O, Saso T, Kako T, Kamachi M. Dynamic mechanical behaviors of poly (vinyl alcohol) film with high syndiotacticity. Polym J 1990; 22(7): 636-7.
[http://dx.doi.org/10.1295/polymj.22.636]
[5]
Shafeeq VH, Unnikrishnan G. Experimental and theoretical evaluation of mechanical, thermal and morphological features of EVA-millable polyurethane blends. J Polym Res 2020; 27(3): 53.
[http://dx.doi.org/10.1007/s10965-020-2027-7]
[6]
Ratto JA, Chen CC, Blumstein RB. Phase behavior study of chitosan/polyamide blends. J Appl Polym Sci 1996; 59(9): 1451-61.
[7]
Mucha M, Piekielna J, Wieczorek A. Characterisation and morphology of biodegradable chitosan/synthetic polymer blends. Macromol 2011; 144(1): 391-412.
[http://dx.doi.org/10.1002/masy.19991440137]
[8]
Sanchez IC. Bulk and interface thermodynamics of polymer alloys. Annu Rev Mater Sci 1983; 13: 387-412.
[http://dx.doi.org/10.1146/annurev.ms.13.080183.002131]
[9]
Utracki LA. Polymer alloys and blends, thermodynamic and rheology. Munich: Carl Hanser-Verlag 1989.
[10]
Paladhi R, Singh RP. Miscibility and interaction studies on some aqueous polymer blend solution by ultrasonics and rheological techniques. J Appl Polym Sci 1994; 51(9): 1559-65.
[http://dx.doi.org/10.1016/0014-3057(94)90168-6]
[11]
Paladhi R, Singh RP. Ultrasonic and rheological investigation on interacting blend solutions of poly(acrylic acid) with poly(vinyl pyrrolidone) or poly(vinyl alcohol). Eur Polym J 1994; 30(2): 251-7.
[http://dx.doi.org/10.1002/app.1994.070510905]
[12]
Kang KS, Cottrell IW. Microbial technology: microbial processes. NewYork: Academic 1979; 1.
[13]
Lachke A. Xanthan—a versatile gum. Resonance 2004; 9(10): 25-33.
[http://dx.doi.org/10.1007/BF02834866]
[14]
Sandvick EI, Merker JM. Application of Xanthan gum for enhanced oil recovery, extra cellular microbial polysaccharides. In: Sandford P, Laskin A, Eds. ACS Symp Series. 45: 242-64.
[http://dx.doi.org/10.1021/bk-1977-0045.ch019#:~:text=10.1021/bk-1977-0045.ch019]
[15]
Ungeheuer S, Bewersdorff H-W, Singh RP. Turbulent drag effectiveness and shear stability of xanthan-gum-based graft copolymers. J Appl Polym Sci 1989; 37(10): 2933-48.
[http://dx.doi.org/10.1002/app.1989.070371012]
[16]
Bercea M, Darie RN, Morariu S. Rheological investigation of xanthan/pluronic F127 hydrogels. Rev Roum Chim 2013; 58(2-3): 189-96.
[17]
Kennedy JF, Bradshaw IJ. Production, properties and applications of xanthan. Prog Ind Microbiol 1984; 19: 319-71.
[18]
Margaritis A, Zajic JE. Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnol Bioeng 1978; 20(7): 939-1001.
[http://dx.doi.org/10.1002/bit.260200702]
[19]
Rinado M, Milas M. Polyelectroyte behavior of a bacterial polysaccharide from Xanthomonas campestris: Comparison with carboxymethylcellulose. Biopolymers 1978; 17: 2663.
[http://dx.doi.org/10.1002/bip.1978.360171113]
[20]
Takhulee A, Takahashi Y, Vao-soongnern V. Molecular simulation and experimental studies of the miscibility of PLA/PLA x-PEG y-PLA x blends. J Polym Res 2017; 24(11): 178.
[21]
Kumar A, Rao KM, Han SS. Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem Eng J 2017; 1(317): 119-31.
[http://dx.doi.org/10.1016/j.cej.2017.02.065]
[22]
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006; 6(8): 623-33.
[http://dx.doi.org/10.1002/mabi.200600069] [PMID: 16881042]
[23]
Gerecht-Nir S, Cohen S, Ziskind A, Itskovitz-Eldor J. Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol Bioeng 2004; 88(3): 313-20.
[http://dx.doi.org/10.1002/bit.20248] [PMID: 15486935]
[24]
Kumar A, Lee Y, Kim D, et al. Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. Int J Biol Macromol 2017; 95: 962-73.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.10.085] [PMID: 27793679]
[25]
Lai SM, Liu YH, Huang CT, Don TM. Miscibility and toughness improvement of poly (lactic acid)/poly (3-Hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res 2017; 24(7): 102.
[http://dx.doi.org/10.1007/s10965-017-1253-0]
[26]
Varnell DF, Coleman MM. FT ir studies of polymer blends: V. Further observations on polyester-poly (vinyl chloride) blends. Polymer 1981; 22(10): 1324-8.
[27]
Varnell DF, Runt JP, Coleman MM. FT ir and thermal analysis studies of blends of poly (ε-caprolactone) with homo-and copolymers of poly (vinylidene chloride). Polymer 1983; 24(1): 37-42.
[http://dx.doi.org/10.1016/0032-3861(83)90077-0]
[28]
Woo EM, Barlow JW, Paul DR. Phase behavior of blends of aliphatic polyesters with a vinylidene chloride/vinyl chloride copolymer. J Appl Polym Sci 1986; 32(3): 3889-97.https://ur.booksc.eu/book/516132/7e0d67#:~:text=10.1002/app.1986.070320308
[29]
Basavaraju KC, Jayaraju J, Rai SK, Damappa T. Miscibility studies of xanthan gum with gelatin in dilute solution. J Appl Polym Sci 2008; 109(4): 2491-5.
[http://dx.doi.org/10.1002/app.27992]
[30]
Feizhou L, Lu ZL, Wang XS, Xi YT. A combined experimental and molecular dynamics simulation study on the miscibility of Eucommia ulmoides gum with butadiene rubber. J Polym Res 2017; 24(7): 100.
[http://dx.doi.org/10.1007/s10965-017-1245-0]
[31]
Ebrahimpour M, Safekordi AA, Mousavi SM, Heydarinasab A. A miscibility study on biodegradable poly butylene succinate/polydioxanone blends. J Polym Res 2018; 25(2): 35.
[32]
Holler S, Porcelli C, Ieropoulos IA, Hanczyc MM. Transport of live cells under sterile conditions using a chemotactic droplet. Sci Rep 2018; 8(1): 8408.
[http://dx.doi.org/10.1038/s41598-018-26703-y] [PMID: 29849066]
[33]
Moon JH, Lee JB, Lee SH. Dynamic behavior of non-newtonian droplets impinging on solid surfaces. Mater Trans 2013; 54(2): 260-5.
[http://dx.doi.org/10.2320/matertrans.M2012215]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy