Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

In Vitro Antifungal Activity of Green Synthesized Silver Nanoparticles in Comparison to Conventional Antifungal Drugs Against Trichophyton Interdigitale, Trichophyton Rubrum and Epidermophyton Floccosum

Author(s): Shahram Mahmoudi, Mahmoud Vahidi, Ebadollah Shiri Malekabad, Alireza Izadi, Mehrdad Khatami and Alireza Dadashi*

Volume 21, Issue 3, 2021

Published on: 15 July, 2020

Page: [370 - 374] Pages: 5

DOI: 10.2174/1871526520666200715095744

Price: $65

Abstract

Background: Dermatophytosis is a globally distributed fungal infection. Treatment failure and relapse is common in this disease. Silver nanoparticles are known for their promising antimicrobial activity. The aim of this study was to determine the antifungal activity of these nanoparticles against common dermatophyte species.

Methods: A set of 30 molecularly identified dermatophytes including Trichophyton interdigitale (n=10), Trichophyton rubrum (n=10), and Epidermophyton floccosum (n=10) were used in this study. Green synthesized silver nanoparticles using chicory (Cichorium intybus) were tested for their antifungal activity in comparison to fluconazole, itraconazole and terbinafine. Interspecies differences in minimum inhibitory concentrations of antifungal drugs and silver nanoparticles were tested using Kruskal–Wallis test in SPSS software version 21.

Results: The highest minimum inhibitory concentrations (MICs) among antifungal drugs were observed for fluconazole [range: 4–64 μg/mL, geometric mean (GM) =17.959 μg/mL], followed by itraconazole (range: 0.008–0.5, GM= 0.066) and terbinafine (range: 0.004–0.25 μg/mL, GM=0.027 μg/mL). Silver nanoparticles showed potent antifungal activity against all dermatophyte isolates with MICs (range: 0.25–32 μg/mL, GM=4.812 μg/mL) higher than those of itraconazole and terbinafine, but lower than fluconazole.

MIC values of silver nanoparticles demonstrated significant differences between species (P=0.044), with E. floccosum having the highest MICs (GM=9.849 μg/mL) compared to T. interdigitale (GM=3.732 μg/mL) and T. rubrum (GM=3.031 μg/mL).

Conclusion: Silver nanoparticles demonstrated promising anti-dermatophyte activity against the studied dermatophytes. Due to their wide-spectrum activity against other fungal and bacterial pathogens, they could be a potential choice, at least in the case of cutaneous and superficial infections.

Keywords: Antifungal agents, Epidermophyton, Trichophyton, nanoparticles, tinea, Rubrum.

Graphical Abstract

[1]
Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses, 2008, 51(Suppl. 4), 2-15.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01606.x] [PMID: 18783559]
[2]
Degreef, H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia, 2008, 166(5-6), 257-265.
[http://dx.doi.org/10.1007/s11046-008-9101-8] [PMID: 18478364]
[3]
Rashidian, S.; Falahati, M.; Kordbacheh, P.; Mahmoudi, M.; Safara, M.; Sadeghi Tafti, H.; Mahmoudi, S.; Zaini, F. A study on etiologic agents and clinical manifestations of dermatophytosis in Yazd, Iran. Curr Med Mycol, 2015, 1(4), 20-25.
[http://dx.doi.org/10.18869/acadpub.cmm.1.4.20] [PMID: 28681000]
[4]
de Hoog, G.S.; Dukik, K.; Monod, M.; Packeu, A.; Stubbe, D.; Hendrickx, M.; Kupsch, C.; Stielow, J.B.; Freeke, J.; Göker, M.; Rezaei-Matehkolaei, A.; Mirhendi, H.; Gräser, Y. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia, 2017, 182(1-2), 5-31.
[http://dx.doi.org/10.1007/s11046-016-0073-9] [PMID: 27783317]
[5]
Ansari, S.; Hedayati, M.T.; Zomorodian, K.; Pakshir, K.; Badali, H.; Rafiei, A.; Ravandeh, M.; Seyedmousavi, S. Molecular characterization and in vitro antifungal susceptibility of 316 clinical isolates of dermatophytes in Iran. Mycopathologia, 2016, 181(1-2), 89-95.
[http://dx.doi.org/10.1007/s11046-015-9941-y] [PMID: 26369643]
[6]
Naseri, A.; Fata, A.; Najafzadeh, M.J.; Shokri, H. Surveillance of dermatophytosis in northeast of Iran (Mashhad) and review of published studies. Mycopathologia, 2013, 176(3-4), 247-253.
[http://dx.doi.org/10.1007/s11046-013-9688-2] [PMID: 23943426]
[7]
Zhan, P.; Liu, W. The changing face of dermatophytic infections worldwide. Mycopathologia, 2017, 182(1-2), 77-86.
[http://dx.doi.org/10.1007/s11046-016-0082-8] [PMID: 27783316]
[8]
Kaul, S.; Yadav, S.; Dogra, S. Treatment of dermatophytosis in elderly, children, and pregnant women. Indian Dermatol. Online J., 2017, 8(5), 310-318.
[http://dx.doi.org/10.4103/idoj.IDOJ_169_17] [PMID: 28979861]
[9]
Rand, S. Overview: The treatment of dermatophytosis. J. Am. Acad. Dermatol., 2000, 43(5)(Suppl.), S104-S112.
[http://dx.doi.org/10.1067/mjd.2000.110380] [PMID: 11044285]
[10]
Gupta, A.K.; Ryder, J.E.; Chow, M.; Cooper, E.A. Dermatophytosis: the management of fungal infections. Skinmed, 2005, 4(5), 305-310.
[http://dx.doi.org/10.1111/j.1540-9740.2005.03435.x]
[11]
Salehi, Z.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Antifungal drug susceptibility profile of clinically important dermatophytes and determination of point mutations in terbinafine-resistant isolates. Eur. J. Clin. Microbiol. Infect. Dis., 2018, 37(10), 1841-1846.
[http://dx.doi.org/10.1007/s10096-018-3317-4] [PMID: 29980898]
[12]
Singh, A.; Masih, A.; Khurana, A.; Singh, P.K.; Gupta, M.; Hagen, F.; Meis, J.F.; Chowdhary, A. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses, 2018, 61(7), 477-484.
[http://dx.doi.org/10.1111/myc.12772] [PMID: 29577447]
[13]
Rudramurthy, S.M.; Shankarnarayan, S.A.; Dogra, S.; Shaw, D.; Mushtaq, K.; Paul, R.A.; Narang, T.; Chakrabarti, A. Mutation in the squalene epoxidase gene of Trichophyton interdigitale and Trichophyton rubrum associated with allylamine resistance. Antimicrob. Agents Chemother., 2018, 62(5), e02522-e02517.
[http://dx.doi.org/10.1128/AAC.02522-17] [PMID: 29530857]
[14]
Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnology, 2018, 16(1), 14.
[http://dx.doi.org/10.1186/s12951-018-0334-5] [PMID: 29452593]
[15]
Galdiero, S.; Falanga, A.; Vitiello, M.; Cantisani, M.; Marra, V.; Galdiero, M. Silver nanoparticles as potential antiviral agents. Molecules, 2011, 16(10), 8894-8918.
[http://dx.doi.org/10.3390/molecules16108894] [PMID: 22024958]
[16]
Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver nanoparticles as potential antibacterial agents. Molecules, 2015, 20(5), 8856-8874.
[http://dx.doi.org/10.3390/molecules20058856] [PMID: 25993417]
[17]
Haider, A.; Kang, I.K. Preparation of silver nanoparticles and their industrial and biomedical applications: a comprehensive review Adv Mater Sci Eng, 2015.
[http://dx.doi.org/10.1155/2015/165257]
[18]
Khatami, M.; Zafarnia, N.; Heydarpoor Bami, M.; Sharifi, I.; Singh, H. Antifungal and antibacterial activity of densely dispersed silver nanospheres with homogeneity size which synthesized using chicory: An in vitro study. J. Mycol. Med., 2018, 28(4), 637-644.
[http://dx.doi.org/10.1016/j.mycmed.2018.07.007]
[19]
CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard-Second Edition CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute , 2008.
[20]
Kamali Sarwestani, Z.; Hashemi, S.J.; Rezaie, S.; Gerami Shoar, M.; Mahmoudi, S.; Elahi, M.; Bahardoost, M.; Tajdini, A.; Abutalebian, S.; Daie Ghazvini, R. Species identification and in vitro antifungal susceptibility testing of Aspergillus section Nigri strains isolated from otomycosis patients. J. Mycol. Med., 2018, 28(2), 279-284.
[http://dx.doi.org/10.1016/j.mycmed.2018.02.003] [PMID: 29540288]
[21]
Mahmoudi, S.; Zaini, F.; Kordbacheh, P.; Safara, M.; Heidari, M. Sporothrix schenckii complex in Iran: Molecular identification and antifungal susceptibility. Med. Mycol., 2016, 54(6), 593-599.
[http://dx.doi.org/10.1093/mmy/myw006] [PMID: 26933207]
[22]
Achterman, R.R.; White, T.C. A foot in the door for dermatophyte research. PLoS Pathog., 2012, 8(3), e1002564.
[http://dx.doi.org/10.1371/journal.ppat.1002564] [PMID: 22479177]
[23]
Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci., 2009, 145(1-2), 83-96.
[http://dx.doi.org/10.1016/j.cis.2008.09.002] [PMID: 18945421]
[24]
Panácek, A.; Kolár, M.; Vecerová, R.; Prucek, R.; Soukupová, J.; Kryštof, V.; Hamal, P.; Zbořil, R.; Kvítek, L. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials, 2009, 30(31), 6333-6340.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.065]
[25]
Ishida, K.; Cipriano, T.F.; Rocha, G.M.; Weissmüller, G.; Gomes, F.; Miranda, K.; Rozental, S. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem. Inst. Oswaldo Cruz, 2014, 109(2), 220-228.
[http://dx.doi.org/10.1590/0074-0276130269] [PMID: 24714966]
[26]
George, C.; Kuriakose, S.; George, S.; Mathew, T. Antifungal activity of silver nanoparticle-encapsulated β-cyclodextrin against human opportunistic pathogens. Supramol. Chem., 2011, 23(8), 593-597.
[http://dx.doi.org/10.1080/10610278.2011.575471]
[27]
Noorbakhsh, F.; Rezaie, S.; Shahverdi, A.R. Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. International conference on bioscience, biochemistry and bioinformatics, 2011, , pp. 364-367.
[28]
Pereira, L.; Dias, N.; Carvalho, J.; Fernandes, S.; Santos, C.; Lima, N. Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum. J. Appl. Microbiol., 2014, 117(6), 1601-1613.
[http://dx.doi.org/10.1111/jam.12652] [PMID: 25234047]
[29]
Ouf, S.A.; El-Adly, A.A.; Mohamed, A.H. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J. Med. Microbiol., 2015, 64(10), 1151-1161.
[http://dx.doi.org/10.1099/jmm.0.000133] [PMID: 26296782]
[30]
Silva, E.; Saraiva, S.M.; Miguel, S.P.; Correia, I.J. PVP-coated silver nanoparticles showing antifungal improved activity against dermatophytes. J. Nanopart. Res., 2014, 16(11), 2726.
[http://dx.doi.org/10.1007/s11051-014-2726-2]
[31]
Kim, K-J.; Sung, W.S.; Moon, S-K.; Choi, J-S.; Kim, J.G.; Lee, D.G. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol., 2008, 18(8), 1482-1484.
[PMID: 18756112]
[32]
Ayatollahi Mousavi, S.A.; Salari, S.; Hadizadeh, S. Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum. Iranian J. Biotechnol., 2015, 13(4), 38-42.
[http://dx.doi.org/10.15171/ijb.1302] [PMID: 28959308]
[33]
Santhoshkumar, J.; Sowmya, B.; Kumar, S.V.; Rajeshkumar, S. Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. S Afr J Chem Eng, 2019, 29, 17-23.
[http://dx.doi.org/10.1016/j.sajce.2019.04.001]
[34]
Radetić, M. Functionalization of textile materials with silver nanoparticles. J. Mater. Sci., 2013, 48(1), 95-107.
[http://dx.doi.org/10.1007/s10853-012-6677-7]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy