Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Review Article Section: Analytical Chemistry

Metal Nanoparticles: Ligand-Free Approach Towards Coupling Reactions

Author(s): Sharwari K. Mengane, Ronghui Wu, Liyun Ma, Chhaya S. Panse, Shailesh N. Vajekar and Aniruddha B. Patil*

Volume 2, Issue 1, 2022

Page: [7 - 37] Pages: 31

DOI: 10.2174/2210298101666210922144232

Price: $65

Abstract

Catalysis is a multidisciplinary field involving areas of organometallic chemistry, material science and engineering. It finds use in the synthesis of various industrially applicable compounds, such as fuels and fine chemicals. The activity and selectivity are fundamental issues to be dealt with in catalysis, which are associated with the high surface area. Current research activities primarily deal with homogeneous and heterogeneous catalysis. Although homogeneous and heterogeneous catalysis have been well researched, they have certain drawbacks that need to be overthrown for their wider applications. Therefore, it is imperative to find a catalytic protocol that would lead to higher selectivity and exemplary product yield with quick and easy retrieval. Along with being an alternative to conventional bulk materials, nanomaterials have further established their caliber into various industrial and scientific applications. Nanocatalysis has emerged as an advanced substitute for conventional homogeneous and heterogeneous catalysis. The nanomaterials are accountable for intensifying the surface area of a catalyst, ultimately resulting in an increase in the catalyst reactants' contacts. Furthermore, it enacts as a robust component providing high surface area like a heterogeneous catalyst. Nanoparticles can be yielded out of a reaction medium due to their insoluble behaviour, and thus, as catalysts, they can be retracted easily from the product. Hence, it has been proven that nanocatalysts enact as both homogeneous and heterogeneous catalysts, functioning as a bridge between the conventional catalytic systems. Considering these merits, researchers have tried to intensively study the applications of nanocatalysts in numerous organic reactions. This review article focuses on the catalytic applications of metal nanoparticles (MNPs), such as Pd, Ag, Au, Cu, Pt, in ligand-free coupling reactions. Also, it covers the applications of bimetallic and multimetallic nanoparticles in ligand-free coupling reactions.

Keywords: Metal nanoparticles, coupling reactions, catalysis, multimetallic nanoparticles, ligand-free reaction, nanocatalyst.

Graphical Abstract

[1]
Feynman, R.P. There’s plenty of room at the bottom an invitation to enter a new field of physics. Eng. Sci., 1960, 23, 22-36.
[2]
Li, H.; He, Z.; Ouyang, Z.; Palchoudhury, S.; Ingram, C.W.; Harruna, I.I.; Li, D. Modifying electrical and magnetic properties of single-walled carbon nanotubes by decorating with iron oxide nanoparticles. J. Nanosci. Nanotechnol., 2020, 20(4), 2611-2616.
[http://dx.doi.org/10.1166/jnn.2020.17215] [PMID: 31492284]
[3]
He, Z.; Zhang, Z.; Bi, S. Nanoparticles for organic electronics applications. Mater. Res. Express, 2020, 7012004
[http://dx.doi.org/10.1088/2053-1591/ab636f]
[4]
He, Z.; Xiao, K.; Durant, W.; Hensley, D.K.; Anthony, J.E.; Hong, K.; Kilbey Ii, S.M.; Chen, J.; Li, D. Enhanced performance consistency in nanoparticle/tips pentacene-based organic thin film transistors. Adv. Funct. Mater., 2011, 21, 3617-3623.
[http://dx.doi.org/10.1002/adfm.201002656]
[5]
He, Z.; Zhang, Z.; Bi, S.; Chen, J. Tuning charge transport in organic semiconductors with nanoparticles and hexamethyldisilazane. J. Nanopart. Res., 2021, 23, 5.
[http://dx.doi.org/10.1007/s11051-021-05151-2]
[6]
Ma, L.; Zhou, M.; Wu, R.; Patil, A.; Gong, H.; Zhu, S.; Wang, T.; Zhang, Y.; Shen, S.; Dong, K.; Yang, L.; Wang, J.; Guo, W.; Wang, Z.L. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano, 2020, 14(4), 4716-4726.
[http://dx.doi.org/10.1021/acsnano.0c00524] [PMID: 32255615]
[7]
Wu, R.; Ma, L.; Liu, S.; Patil, A.B.; Hou, C.; Zhang, Y.; Zhang, W.; Yu, R.; Yu, W.; Guo, W.; Liu, X.Y. Fibrous inductance strain sensors for passive inductance textile sensing. Materials Today Physics, 2020, 100243.
[8]
Ma, L.; Liu, Q.; Wu, R.; Meng, Z.; Patil, A.; Yu, R.; Yang, Y.; Zhu, S.; Fan, X.; Hou, C.; Li, Y.; Qiu, W.; Huang, L.; Wang, J.; Lin, N.; Wan, Y.; Hu, J.; Liu, X.Y. From molecular reconstruction of mesoscopic functional conductive silk fibrous materials to remote respiration monitoring. Small, 2020, 16(26)e2000203
[http://dx.doi.org/10.1002/smll.202000203] [PMID: 32452630]
[9]
Ma, L.; Wu, R.; Patil, A.; Zhu, S.; Meng, Z.; Meng, H.; Hou, C.; Zhang, Y.; Liu, Q.; Yu, R.; Wang, J.; Lin, N.; Liu, X.Y. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater., 2019, 291904549
[http://dx.doi.org/10.1002/adfm.201904549]
[10]
Patil, A.B.; Patil, D.S.; Bhanage, B.M. Selective and efficient synthesis of decahedral palladium nanoparticles and its catalytic performance for Suzuki coupling reaction. J. Mol. Catal. Chem., 2012, 365, 146-153.
[http://dx.doi.org/10.1016/j.molcata.2012.08.023]
[11]
Patil, A.B.; Bhanage, B.M. Solar energy assisted synthesis of palladium nanoplates and its application in 2-phenoxy-1,1¢-biphenyls and N,N-dimethyl-[1,1¢-biphenyl] derivatives synthesis. J. Mol. Catal. Chem., 2013, 379, 30-37.
[http://dx.doi.org/10.1016/j.molcata.2013.07.012]
[12]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[13]
Patil, A.B.; Bhanage, B.M. Novel and green approach for the nanocrystalline magnesium oxide synthesis and its catalytic performance in Claisen–Schmidt condensation. Catal. Commun., 2013, 36, 79-83.
[http://dx.doi.org/10.1016/j.catcom.2013.03.012]
[14]
Wu, R.; Ma, L.; Patil, A.; Meng, Z.; Liu, S.; Hou, C.; Zhang, Y.; Yu, W.; Guo, W.; Liu, X.Y. Graphene decorated carbonized cellulose fabric for physiological signal monitoring and energy harvesting. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 12665-12673.
[http://dx.doi.org/10.1039/D0TA02221G]
[15]
Patil, A.B.; Huang, Y.; Ma, L.; Wu, R.; Meng, Z.; Kong, L.; Zhang, Y.; Zhang, W.; Liu, Q.; Liu, X.Y. An efficient disposable and flexible electrochemical sensor based on a novel and stable metal carbon composite derived from cocoon silk. Biosens. Bioelectron., 2019, 142111595
[http://dx.doi.org/10.1016/j.bios.2019.111595] [PMID: 31425973]
[16]
Alessandro, B.; Silvia, T.; Lorenzo, T.; Pedro, C.; Giancarlo, C. Pd-catalyzed reactions promoted by ultrasound and/or microwave Irradiation. Curr. Org. Chem., 2008, 12, 1588-1612.
[http://dx.doi.org/10.2174/138527208786786327]
[17]
Bahsis, L.; Ben El Ayouchia, H.; Anane, H.; Pascual-Álvarez, A.; De Munno, G.; Julve, M.; Stiriba, S-E. A reusable polymer-supported copper(I) catalyst for triazole click reaction on water: An experimental and computational study. Appl. Organomet. Chem., 2019, 33e4669
[http://dx.doi.org/10.1002/aoc.4669]
[18]
Astruc, D. Introduction: Nanoparticles in catalysis. Chem. Rev., 2020, 120(2), 461-463.
[http://dx.doi.org/10.1021/acs.chemrev.8b00696] [PMID: 31964144]
[19]
Christian, P.; Von der Kammer, F.; Baalousha, M.; Hofmann, T. Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology, 2008, 17(5), 326-343.
[http://dx.doi.org/10.1007/s10646-008-0213-1] [PMID: 18459043]
[20]
Wang, H.; Qiao, X.; Chen, J.; Ding, S. Preparation of silver nanoparticles by chemical reduction method. Colloids Surf. A Physicochem. Eng. Asp., 2005, 256, 111-115.
[http://dx.doi.org/10.1016/j.colsurfa.2004.12.058]
[21]
Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M.F.; Kostopoulou, A.; Oh, E.; Susumu, K.; Stewart, M.H.; Medintz, I.L.; Stratakis, E.; Parak, W.J.; Kanaras, A.G. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev., 2019, 119(8), 4819-4880.
[http://dx.doi.org/10.1021/acs.chemrev.8b00733] [PMID: 30920815]
[22]
Patil, A.B.; Bhanage, B.M. Solar energy assisted starch-stabilized palladium nanoparticles and their application in C-C coupling reactions. J. Nanosci. Nanotechnol., 2013, 13(7), 5061-5068.
[http://dx.doi.org/10.1166/jnn.2013.7583] [PMID: 23901531]
[23]
Patil, A.B.; Bhanage, B.M. Sonochemistry: A greener protocol for nanoparticles synthesis. Handbook of Nanoparticles; Aliofkhazraei, M., Ed.; Springer International Publishing: Cham, 2016, pp. 143-166.
[http://dx.doi.org/10.1007/978-3-319-15338-4_4]
[24]
Roucoux, A.; Schulz, J.; Patin, H. Reduced transition metal colloids: a novel family of reusable catalysts? Chem. Rev., 2002, 102(10), 3757-3778.
[http://dx.doi.org/10.1021/cr010350j] [PMID: 12371901]
[25]
Koo, W.T.; Kim, S.J.; Jang, J.S.; Kim, D.H.; Kim, I.D. Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors: highly active and conductive porous materials. Adv. Sci. (Weinh.), 2019, 6(21)1900250
[http://dx.doi.org/10.1002/advs.201900250] [PMID: 31728270]
[26]
Bhaduri, K.; Das, B.D.; Kumar, R.; Mondal, S.; Chatterjee, S.; Shah, S.; Bravo-Suárez, J.J.; Chowdhury, B. Recyclable Au/SiO2-Shell/Fe3O4-Core catalyst for the reduction of nitro aromatic compounds in aqueous solution. ACS Omega, 2019, 4(2), 4071-4081.
[http://dx.doi.org/10.1021/acsomega.8b03655] [PMID: 31459616]
[27]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20, 3437-3440.
[http://dx.doi.org/10.1016/S0040-4039(01)95429-2]
[28]
Balanta, A.; Godard, C.; Claver, C. Pd nanoparticles for C-C coupling reactions. Chem. Soc. Rev., 2011, 40(10), 4973-4985.
[http://dx.doi.org/10.1039/c1cs15195a] [PMID: 21879073]
[29]
Bendre, A.D.; Patil, V.P.; Terdale, S.S.; Kodam, K.M.; Waghmode, S.B. A simple, efficient and green approach for the synthesis of palladium nanoparticles using Oxytocin: Application for ligand free Suzuki reaction and total synthesis of aspongpyrazine A. J. Organomet. Chem., 2020, 909121093
[http://dx.doi.org/10.1016/j.jorganchem.2019.121093]
[30]
Das, S.K.; Parandhaman, T.; Pentela, N.; Maidul Islam, A.K.M.; Mandal, A.B.; Mukherjee, M. Understanding the biosynthesis and catalytic activity of Pd, Pt, and Ag nanoparticles in hydrogenation and suzuki coupling reactions at the nano-bio Interface. The J. Phy. Chem. C, 2014, 118, 24623-24632.
[http://dx.doi.org/10.1021/jp508211t]
[31]
De Cattelle, A.; Billen, A.; Brullot, W.; Verbiest, T.; Koeckelberghs, G. Magnetically induced Suzuki and Sonogashira reaction performed using recyclable, palladium-functionalized magnetite nanoparticles. J. Organomet. Chem., 2019, 899120905
[http://dx.doi.org/10.1016/j.jorganchem.2019.120905]
[32]
De Cattelle, A.; Billen, A.; O’Rourke, G.; Brullot, W.; Verbiest, T.; Koeckelberghs, G. Ligand-free, recyclable palladium-functionalized magnetite nanoparticles as a catalyst in the Suzuki-, Sonogashira, and Stille reaction. J. Organomet. Chem., 2019, 904121005
[http://dx.doi.org/10.1016/j.jorganchem.2019.121005]
[33]
Hosseini-Sarvari, M.; Khanivar, A.; Moeini, F. Palladium immobilized on Fe3O4/ZnO nanoparticles: a novel magnetically recyclable catalyst for Suzuki–Miyaura and heck reactions under ligand-free conditions. J. Indian Chem. Soc., 2016, 13, 45-53.
[34]
Jang, S.; Hira, S.A.; Annas, D.; Song, S.; Yusuf, M.; Park, J.C.; Park, S.; Park, K.H. Recent novel hybrid Pd–Fe3O4 nanoparticles as catalysts for various C–C coupling reactions. Processes (Basel), 2019, 7.
[http://dx.doi.org/10.3390/pr7070422]
[35]
Kumar, A.; Rao, G.K.; Kumar, S.; Singh, A.K. Formation and role of palladium chalcogenide and other species in suzuki–miyaura and heck c–c coupling reactions catalyzed with palladium (ii) complexes of organochalcogen ligands: Realities and Speculations. Organometallics, 2014, 33, 2921-2943.
[http://dx.doi.org/10.1021/om4007196]
[36]
Lebaschi, S.; Hekmati, M.; Veisi, H. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions. J. Colloid Interface Sci., 2017, 485, 223-231.
[http://dx.doi.org/10.1016/j.jcis.2016.09.027] [PMID: 27665075]
[37]
Mallikarjuna, K.; Bathula, C.; Buruga, K.; Shrestha, N.K.; Noh, Y-Y.; Kim, H. Green synthesis of palladium nanoparticles using fenugreek tea and their catalytic applications in organic reactions. Mater. Lett., 2017, 205, 138-141.
[http://dx.doi.org/10.1016/j.matlet.2017.06.081]
[38]
Nasrollahzadeh, M.; Sajjadi, M.; Dadashi, J.; Ghafuri, H. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci., 2020, 276102103
[http://dx.doi.org/10.1016/j.cis.2020.102103] [PMID: 31978638]
[39]
Pérez-Lorenzo, M. Palladium nanoparticles as efficient catalysts for Suzuki cross-coupling reactions. J. Phys. Chem. Lett., 2012, 3, 167-174.
[http://dx.doi.org/10.1021/jz2013984]
[40]
Trzeciak, A.M.; Augustyniak, A.W. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord. Chem. Rev., 2019, 384, 1-20.
[http://dx.doi.org/10.1016/j.ccr.2019.01.008]
[41]
Veisi, H.; Rashtiani, A.; Barjasteh, V. Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki–Miyaura coupling reactions in water. Appl. Organomet. Chem., 2016, 30, 231-235.
[http://dx.doi.org/10.1002/aoc.3421]
[42]
Xia, J.; Fu, Y.; He, G.; Sun, X.; Wang, X. Core-shell-like Ni-Pd nanoparticles supported on carbon black as a magnetically separable catalyst for green Suzuki-Miyaura coupling reactions. Appl. Catal. B, 2017, 200, 39-46.
[http://dx.doi.org/10.1016/j.apcatb.2016.06.066]
[43]
Yılmaz Baran, N.; Baran, T.; Menteş, A. Production of novel palladium nanocatalyst stabilized with sustainable chitosan/cellulose composite and its catalytic performance in Suzuki-Miyaura coupling reactions. Carbohydr. Polym., 2018, 181, 596-604.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.107] [PMID: 29254012]
[44]
Phan, N.T.S.; Van Der Sluys, M.; Jones, C.W. On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings – homogeneous or heterogeneous catalysis, A critical review. Adv. Synth. Catal., 2006, 348, 609-679.
[http://dx.doi.org/10.1002/adsc.200505473]
[45]
Kevin, H.S.; Rebecca, B.D. Palladium-catalyzed cross-coupling in aqueous media: Recent progress and current applications. Curr. Org. Chem., 2005, 9, 585-604.
[http://dx.doi.org/10.2174/1385272053765042]
[46]
Han, W.; Liu, C.; Jin, Z. Aerobic ligand-free suzuki coupling reaction of aryl chlorides catalyzed by in situ generated palladium nanoparticles at room temperature. Adv. Synth. Catal., 2008, 350, 501-508.
[http://dx.doi.org/10.1002/adsc.200700475]
[47]
Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Champagne, B.; Fort, Y.; Schneider, R. Naphthidine di(radical cation)s-stabilized palladium nanoparticles for efficient catalytic Suzuki–Miyaura cross-coupling reactions. Tetrahedron, 2008, 64, 372-381.
[http://dx.doi.org/10.1016/j.tet.2007.10.091]
[48]
Diallo, A.K.; Ornelas, C.; Salmon, L.; Ruiz Aranzaes, J.; Astruc, D. “Homeopathic” catalytic activity and atom-leaching mechanism in Miyaura-Suzuki reactions under ambient conditions with precise dendrimer-stabilized Pd nanoparticles. Angew. Chem. Int. Ed. Engl., 2007, 46(45), 8644-8648.
[http://dx.doi.org/10.1002/anie.200703067] [PMID: 17929338]
[49]
Gallon, B.J.; Kojima, R.W.; Kaner, R.B.; Diaconescu, P.L. Palladium nanoparticles supported on polyaniline nanofibers as a semi-heterogeneous catalyst in water. Angew. Chem. Int. Ed., 2007, 46(38), 7251-7254.
[http://dx.doi.org/10.1002/anie.200701389] [PMID: 17657750]
[50]
Evangelisti, C.; Panziera, N.; D’Alessio, A.; Bertinetti, L.; Botavina, M.; Vitulli, G. New monodispersed palladium nanoparticles stabilized by poly-(N-vinyl-2-pyrrolidone): Preparation, structural study and catalytic properties. J. Catal., 2010, 272, 246-252.
[http://dx.doi.org/10.1016/j.jcat.2010.04.006]
[51]
Li, Y.; Hong, X.M.; Collard, D.M.; El-Sayed, M.A. Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Org. Lett., 2000, 2(15), 2385-2388.
[http://dx.doi.org/10.1021/ol0061687] [PMID: 10930290]
[52]
Patil, A.B.; Lanke, S.R.; Deshmukh, K.M.; Pandit, A.B.; Bhanage, B.M. Solar energy assisted palladium nanoparticles synthesis in aqueous medium. Mater. Lett., 2012, 79, 1-3.
[http://dx.doi.org/10.1016/j.matlet.2012.03.069]
[53]
Deraedt, C.; Salmon, L.; Ruiz, J.; Astruc, D. Efficient click-polymer-stabilized palladium nanoparticle catalysts for Suzuki–Miyaura reactions of bromoarenes and reduction of 4-nitrophenol in aqueous solvents. Adv. Synth. Catal., 2013, 355, 2992-3001.
[http://dx.doi.org/10.1002/adsc.201300633]
[54]
Samanta, S.; Layek, R.; Nandi, A. Active immobilized palladium catalyst based on multiporous amphiphilic graft copolymer. Reactive & Functional Polymers -. React. Funct. Polym., 2011, 71, 1045-1054.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2011.07.006]
[55]
Li, Y.; Xu, L.; Xu, B.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Wang, B.; Sui, X. Cellulose sponge supported palladium nanoparticles as recyclable cross-coupling catalysts. ACS Appl. Mater. Interfaces, 2017, 9(20), 17155-17162.
[http://dx.doi.org/10.1021/acsami.7b03600] [PMID: 28471160]
[56]
Camacho, A.S.; Martín-García, I.; Contreras-Celedón, C.; Chacón-García, L.; Alonso, F. DNA-supported palladium nanoparticles as a reusable catalyst for the copper- and ligand-free Sonogashira reaction. Catal. Sci. Technol., 2017, 7, 2262-2273.
[http://dx.doi.org/10.1039/C7CY00001D]
[57]
Elhage, A.; Lanterna, A.E.; Scaiano, J.C. Light-Induced sonogashira C–C coupling under mild conditions using supported palladium nanoparticles. ACS Sustain. Chem.& Eng., 2018, 6, 1717-1722.
[http://dx.doi.org/10.1021/acssuschemeng.7b02992]
[58]
Revathy, T.A.; Dhanavel, S.; Sivaranjani, T.; Narayanan, V.; Maiyalagan, T.; Stephen, A. Highly active graphene-supported palladium-nickel alloy nanoparticles for catalytic reduction of 4-nitrophenol. Appl. Surf. Sci., 2018, 449, 764-771.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.280]
[59]
Lu, C.; Wang, M.; Feng, Z.; Qi, Y.; Feng, F.; Ma, L.; Zhang, Q.; Li, X. A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of para-chloronitrobenzene. Catal. Sci. Technol., 2017, 7, 1581-1589.
[http://dx.doi.org/10.1039/C7CY00157F]
[60]
Zhang, Q.; Mao, Z.; Wang, K.; Phan, N.T.S.; Zhang, F. Microwave-assisted aqueous carbon–carbon cross-coupling reactions of aryl chlorides catalysed by reduced graphene oxide supported palladium nanoparticles. Green Chem., 2020, 22, 3239-3247.
[http://dx.doi.org/10.1039/D0GC00833H]
[61]
Fusini, G.; Rizzo, F.; Angelici, G.; Pitzalis, E.; Evangelisti, C.; Carpita, A. Polyvinylpyridine-supported palladium nanoparticles: An efficient catalyst for Suzuki–Miyaura coupling reactions. Catalysts, 2020. 10. 10(3): 330
[http://dx.doi.org/10.3390/catal10030330]
[62]
Chen, S.; Wang, G.; Sui, W.; Parvez, A.M.; Dai, L.; Si, C. Novel lignin-based phenolic nanosphere supported palladium nanoparticles with highly efficient catalytic performance and good reusability. Ind. Crops Prod., 2020, 145112164
[http://dx.doi.org/10.1016/j.indcrop.2020.112164]
[63]
Albano, G.; Interlandi, S.; Evangelisti, C.; Aronica, L.A. Polyvinylpyridine-supported palladium nanoparticles: a valuable catalyst for the synthesis of alkynyl ketones via acyl sonogashira reactions. Catal. Lett., 2020, 150, 652-659.
[http://dx.doi.org/10.1007/s10562-019-02959-5]
[64]
Kalay, E.; Cetin, S.; Kolemen, S.; Metin, Ö. A facile synthesis of mesoporous graphitic carbon nitride supported palladium nanoparticles as highly effective and reusable catalysts for Stille coupling reactions under mild conditions. New J. Chem., 2020, 44, 6714-6723.
[http://dx.doi.org/10.1039/D0NJ00546K]
[65]
Baran, T.; Nasrollahzadeh, M. Cyanation of aryl halides and Suzuki-Miyaura coupling reaction using palladium nanoparticles anchored on developed biodegradable microbeads. Int. J. Biol. Macromol., 2020, 148, 565-573.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.157] [PMID: 31958557]
[66]
Hong, K.; Sajjadi, M.; Suh, J.M.; Zhang, K.; Nasrollahzadeh, M.; Jang, H.W.; Varma, R.S.; Shokouhimehr, M. Palladium nanoparticles on assorted nanostructured supports: Applications for Suzuki, heck, and sonogashira cross-coupling reactions. ACS Appl. Nano Mater., 2020, 3, 2070-2103.
[http://dx.doi.org/10.1021/acsanm.9b02017]
[67]
Kempasiddaiah, M.; Kandathil, V.; Dateer, R.B.; Sasidhar, B.S.; Patil, S.A.; Patil, S.A. Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction. Cellulose, 2020, 27, 3335-3357.
[http://dx.doi.org/10.1007/s10570-020-03001-3]
[68]
Das, D.D.; Sayari, A. Applications of pore-expanded mesoporous silica 6. Novel synthesis of monodispersed supported palladium nanoparticles and their catalytic activity for Suzuki reaction. J. Catal., 2007, 246, 60-65.
[http://dx.doi.org/10.1016/j.jcat.2006.11.020]
[69]
Cao, Y.M. Catalytic Activity of SWNTs/Pd Catalyst in Suzuki Reaction. Adv. Mat. Res., 2011, 284-286, 2404-2408.
[70]
Yoon, B.; Wai, C.M. Microemulsion-templated synthesis of carbon nanotube-supported Pd and rh nanoparticles for catalytic applications. J. Am. Chem. Soc., 2005, 127(49), 17174-17175.
[http://dx.doi.org/10.1021/ja055530f] [PMID: 16332051]
[71]
Wei, Y.; Zhang, X.; Luo, Z.; Tang, D.; Chen, C.; Zhang, T.; Xie, Z. Nitrogen-doped carbon nanotube-supported Pd catalyst for improved electrocatalytic performance toward ethanol electrooxidation. Nano-Micro Lett., 2017, 9(3), 28.
[http://dx.doi.org/10.1007/s40820-017-0129-5] [PMID: 30393723]
[72]
Islam, M.S.; Mia, M.A.S. Synthesis of dendrimer assisted cobalt nanoparticles and catalytic application in Heck coupling reactions in ionic liquid. SN Applied Sciences, 2020, 2, 679.
[http://dx.doi.org/10.1007/s42452-020-2448-2]
[73]
Pachón, L.D.; Rothenberg, G. Transition-metal nanoparticles: synthesis, stability and the leaching issue. Appl. Organomet. Chem., 2008, 22, 288-299.
[http://dx.doi.org/10.1002/aoc.1382]
[74]
Lemo, J.; Heuze, K.; Astruc, D. Synthesis and catalytic activity of DAB-dendrimer encapsulated Pd nanoparticles for the Suzuki coupling reaction. Inorg. Chim. Acta, 2006, 359, 4909-4911.
[http://dx.doi.org/10.1016/j.ica.2005.12.070]
[75]
Li, Y.; El-Sayed, M.A. The Effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution†. J. Phys. Chem. B, 2001, 105, 8938-8943.
[http://dx.doi.org/10.1021/jp010904m]
[76]
Yeung, L.K.; Crooks, R.M. Heck Heterocoupling within a Dendritic Nanoreactor. Nano Lett., 2001, 1, 14-17.
[http://dx.doi.org/10.1021/nl0001860]
[77]
Rahim, E.H.; Kamounah, F.S.; Frederiksen, J.; Christensen, J.B. Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd(0) nanoparticles. Nano Lett., 2001, 1, 499-501.
[http://dx.doi.org/10.1021/nl015574w]
[78]
Reetz, M.T.; Lohmer, G.; Schwickardi, R. Systhesis and catalytic activity of dendritic diphosphane metal complexes. Angew. Chem. Int. Ed. Engl., 1997, 36, 1526-1529.
[http://dx.doi.org/10.1002/anie.199715261]
[79]
Hawker, C.J.; Frechet, J.M.J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112, 7638-7647.
[http://dx.doi.org/10.1021/ja00177a027]
[80]
Borah, B.J.; Borah, S.J.; Saikia, K.; Dutta, D.K. Efficient Suzuki–Miyaura coupling reaction in water: Stabilized Pdo-Montmorillonite clay composites catalyzed reaction. Appl. Catal. A Gen., 2014, 469, 350-356.
[http://dx.doi.org/10.1016/j.apcata.2013.10.018]
[81]
Crocker, M.; Buglass, J.G.; Herold, R.H.M. Synthesis and characterization of palladium crystallites intercalated in montmorillonite. Chem. Mater., 1993, 5, 105-109.
[http://dx.doi.org/10.1021/cm00025a020]
[82]
Scheuermann, G.M.; Thomann, R.; Mülhaupt, R. Catalysts based upon organoclay with tunable polarity and dispersion behavior: New catalysts for hydrogenation, C–C coupling reactions and fluorous biphase catalysis. Catal. Lett., 2009, 132, 355.
[http://dx.doi.org/10.1007/s10562-009-0122-9]
[83]
Tristany, M.; Courmarcel, J.; Dieudonné, P.; Moreno-Mañas, M.; Pleixats, R.; Rimola, A.; Sodupe, M.; Villarroya, S. Palladium nanoparticles entrapped in heavily fluorinated compounds. Chem. Mater., 2006, 18, 716-722.
[http://dx.doi.org/10.1021/cm051967a]
[84]
Hajjami, M.; Shirvandi, Z. Pd–ninhydrin immobilized on magnetic nanoparticles: synthesis, characterization, and application as a highly efficient and recoverable catalyst for Suzuki–Miyaura and Heck–Mizoroki C–C coupling reactions. J. Indian Chem. Soc., 2020, 17, 1059-1072.
[85]
Tamoradi, T.; Daraie, M.; Heravi, M.M. Synthesis of palladated magnetic nanoparticle (Pd@Fe3O4/AMOCAA) as an efficient and heterogeneous catalyst for promoting Suzuki and Sonogashira cross-coupling reactions. Appl. Organomet. Chem., 2020, 34e5538
[http://dx.doi.org/10.1002/aoc.5538]
[86]
Hemmati, S.; Yousefi, M.; Salehi, M.H.; Amiri, M.; Hekmati, M. Palladium nanoparticles immobilized over Strawberry fruit extract coated Fe3O4 NPs: A magnetic reusable nanocatalyst for Suzuki-Miyaura coupling reactions. Appl. Organomet. Chem., 2020, 34e5653
[http://dx.doi.org/10.1002/aoc.5653]
[87]
Kazemi, M. Based on magnetic nanoparticles: Gold reusable nanomagnetic catalysts in organic synthesis. Synth. Commun., 2020, 50, 2079-2094.
[http://dx.doi.org/10.1080/00397911.2020.1725058]
[88]
Sonei, S.; Taghavi, F.; Khojastehnezhad, A.; Gholizadeh, M. Copper-functionalized silica-coated magnetic nanoparticles for an efficient Suzuki cross-coupling reaction. ChemistrySelect, 2021, 6, 359-368.
[http://dx.doi.org/10.1002/slct.202004148]
[89]
Vibhute, S.P.; Mhaldar, P.M.; Shejwal, R.V.; Pore, D.M. Magnetic nanoparticles-supported palladium catalyzed Suzuki-Miyaura cross coupling. Tetrahedron Lett., 2020, 61151594
[http://dx.doi.org/10.1016/j.tetlet.2020.151594]
[90]
Veisi, H.; Ozturk, T.; Karmakar, B.; Tamoradi, T.; Hemmati, S. In situ decorated Pd NPs on chitosan-encapsulated Fe3O4/SiO2-NH2 as magnetic catalyst in Suzuki-Miyaura coupling and 4-nitrophenol reduction. Carbohydr. Polym., 2020, 235115966
[http://dx.doi.org/10.1016/j.carbpol.2020.115966] [PMID: 32122500]
[91]
Shukla, A.; Singha, R.K.; Sasaki, T.; Prasad, V.V.D.N.; Bal, R. Synthesis of highly active Pd nanoparticles supported iron oxide catalyst for selective hydrogenation and cross-coupling reactions in aqueous medium. ChemistrySelect, 2019, 4, 5019-5032.
[http://dx.doi.org/10.1002/slct.201900358]
[92]
Pashaei, M.; Mehdipour, E.; Azaroon, M. Engineered mesoporous ionic-modified γ-Fe2O3@hydroxyapatite decorated with palladium nanoparticles and its catalytic properties in water. Appl. Organomet. Chem., 2019, 33e4622
[http://dx.doi.org/10.1002/aoc.4622]
[93]
Sadjadi, S.; Heravi, M.M.; Malmir, M. Pd(0) nanoparticle immobilized on cyclodextrin-nanosponge-decorated Fe2O3@SiO2 core-shell hollow sphere: An efficient catalyst for CC coupling reactions. J. Taiwan Inst. Chem. Eng., 2018, 86, 240-251.
[http://dx.doi.org/10.1016/j.jtice.2018.02.033]
[94]
Shukla, A.; Singha, R.K.; Sasaki, T.; Prasad, V.V.D.N.; Bal, R. Preparation of nanostructured Pd-Fe2O3 catalyst for C–C coupling reaction. ChemistrySelect, 2019, 4, 10566-10575.
[http://dx.doi.org/10.1002/slct.201902557]
[95]
Wang, D.; Deraedt, C.; Salmon, L.; Labrugère, C.; Etienne, L.; Ruiz, J.; Astruc, D. Efficient and magnetically recoverable “click” PEGylated γ-Fe2O3-Pd nanoparticle catalysts for Suzuki-Miyaura, Sonogashira, and Heck reactions with positive dendritic effects. Chemistry, 2015, 21(4), 1508-1519.
[http://dx.doi.org/10.1002/chem.201404590] [PMID: 25428118]
[96]
Hu, J.; Wang, Y.; Han, M.; Zhou, Y.; Jiang, X.; Sun, P. A facile preparation of palladium nanoparticles supported on magnetite/s-graphene and their catalytic application in Suzuki–Miyaura reaction. Catal. Sci. Technol., 2012, 2, 2332-2340.
[http://dx.doi.org/10.1039/c2cy20263h]
[97]
Senapati, K.K.; Roy, S.; Borgohain, C.; Phukan, P. Palladium nanoparticle supported on cobalt ferrite: An efficient magnetically separable catalyst for ligand free Suzuki coupling. J. Mol. Catal. Chem., 2012, 352, 128-134.
[http://dx.doi.org/10.1016/j.molcata.2011.10.022]
[98]
Singh, A.S.; Patil, U.B.; Nagarkar, J.M. Corrigendum to “Palladium supported on zinc ferrite: A highly active, magnetically separable catalyst for ligand free Suzuki and Heck coupling”. [Catal. Commun. 35 (2013) 11–16] Catal. Commun., 2013, 36, 109-112.
[http://dx.doi.org/10.1016/j.catcom.2013.03.008]
[99]
Singh, A.S.; Shendage, S.S.; Nagarkar, J.M. Palladium supported on zinc ferrite: an efficient catalyst for ligand free C–C and C–O cross coupling reactions. Tetrahedron Lett., 2013, 54, 6319-6323.
[http://dx.doi.org/10.1016/j.tetlet.2013.09.027]
[100]
Laska, U.; Frost, C.G.; Price, G.J.; Plucinski, P.K. Easy-separable magnetic nanoparticle-supported Pd catalysts: Kinetics, stability and catalyst re-use. J. Catal., 2009, 268, 318-328.
[http://dx.doi.org/10.1016/j.jcat.2009.10.001]
[101]
Arkhipova, D.; Ermolaev, V.; Miluykov, V.; Gaynanova, G.; Zakharova, L.; Wagner, G.; Oeckler, O.; Hey-Hawkins, E. Effect of phosphonium ionic liquid/Pd ratio on the catalytic activity of palladium nanoparticles in Suzuki cross-coupling reaction. J. Organomet. Chem., 2020, 923121454
[http://dx.doi.org/10.1016/j.jorganchem.2020.121454]
[102]
Mangaiyarkarasi, R.; Priyanga, M.; Santhiya, N.; Umadevi, S. In situ preparation of palladium nanoparticles in ionic liquid crystal microemulsion and their application in Heck reaction. J. Mol. Liq., 2020, 310113241
[http://dx.doi.org/10.1016/j.molliq.2020.113241]
[103]
Li, X.; Sun, Y.; Wang, S.; Jia, X. Ru-Pd Thermoresponsive Nanocatalyst Based on a poly(ionic liquid) for highly efficient and selectively catalyzed Suzuki coupling and asymmetric transfer hydrogenation in the aqueous phase. ACS Appl. Mater. Interfaces, 2020, 12(39), 44094-44102.
[http://dx.doi.org/10.1021/acsami.0c07811] [PMID: 32886476]
[104]
Kargar, S.; Elhamifar, D.; Elhamifar, D. Ionic liquid-containing polyethylene supported palladium: a green, highly efficient and stable catalyst for Suzuki reaction. Mater. Today Chem., 2020, 17100318
[http://dx.doi.org/10.1016/j.mtchem.2020.100318]
[105]
Silva, V.L.M.; Soengas, R.G.; Silva, A.M.S. Ionic liquids and ohmic heating in combination for Pd-catalyzed cross-coupling reactions: sustainable synthesis of flavonoids. Molecules, 2020, 25(7), 25.
[http://dx.doi.org/10.3390/molecules25071564] [PMID: 32235317]
[106]
Shaker, M.; Elhamifar, D. Magnetic methylene-based mesoporous organosilica composite-supported IL/Pd: a powerful and highly recoverable catalyst for oxidative coupling of phenols and naphthols. Mater. Today Chem., 2020, 18100377
[http://dx.doi.org/10.1016/j.mtchem.2020.100377]
[107]
Doherty, S.; Knight, J.G.; Backhouse, T.; Abood, E.; Al-shaikh, H.; Clemmet, A.R.; Ellison, J.R.; Bourne, R.A.; Chamberlain, T.W.; Stones, R.; Warren, N.J.; Fairlamb, I.J.S.; Lovelock, K.R.J. Heteroatom donor-decorated polymer-immobilized ionic liquid stabilized palladium nanoparticles: Efficient catalysts for room-temperature Suzuki-Miyaura cross-coupling in aqueous media. Adv. Synth. Catal., 2018, 360, 3716-3731.
[http://dx.doi.org/10.1002/adsc.201800561]
[108]
Veisi, H.; Pirhayati, M.; Kakanejadifard, A. Immobilization of palladium nanoparticles on ionic liquid-triethylammonium chloride functionalized magnetic nanoparticles: As a magnetically separable, stable and recyclable catalyst for Suzuki-Miyaura cross-coupling reactions. Tetrahedron Lett., 2017, 58, 4269-4276.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.078]
[109]
Boruah, P.R.; Gehlot, P.S.; Kumar, A.; Sarma, D. Palladium immobilized on the surface of MMT K 10 with the aid of [BMIM][BF4]: An efficient catalyst for Suzuki-Miyaura cross-coupling reactions. Molecular Catalysis, 2018, 461, 54-59.
[http://dx.doi.org/10.1016/j.mcat.2018.10.004]
[110]
Dong, Y.; Wu, X.; Chen, X.; Wei, Y. N-Methylimidazole functionalized carboxymethycellulose-supported Pd catalyst and its applications in Suzuki cross-coupling reaction. Carbohydr. Polym., 2017, 160, 106-114.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.044] [PMID: 28115084]
[111]
Shi, X.; Cai, C. Imidazolium-based ionic liquid functionalized reduced graphene oxide supported palladium as a reusable catalyst for Suzuki–Miyaura reactions. New J. Chem., 2018, 42, 2364-2367.
[http://dx.doi.org/10.1039/C7NJ04312K]
[112]
Forsyth, S.; Gunaratne, H.; Hardacre, C.; McKeown, A.; Rooney, D.; Seddon, K. Utilisation of ionic liquid solvents for the synthesis of Lily-of-the-Valley fragrance {beta-Lilial (R); 3-(4-t-butylphenyl)-2-methylpropanal}. J. Mol. Catal. Chem., 2005, 231, 61-66.
[http://dx.doi.org/10.1016/j.molcata.2004.12.022]
[113]
Calò, V.; Nacci, A.; Monopoli, A.; Montingelli, F. Pd nanoparticles as efficient catalysts for Suzuki and Stille coupling reactions of aryl halides in ionic liquids. J. Org. Chem., 2005, 70(15), 6040-6044.
[http://dx.doi.org/10.1021/jo050801q] [PMID: 16018701]
[114]
Chiappe, C.; Pieraccini, D.; Zhao, D.; Fei, Z.; Dyson, P.J. Remarkable anion and cation effects on stille reactions in functionalised ionic liquids. Adv. Synth. Catal., 2006, 348, 68-74.
[http://dx.doi.org/10.1002/adsc.200505271]
[115]
Corma, A.; García, H.; Leyva, A. Comparison between polyethylenglycol and imidazolium ionic liquids as solvents for developing a homogeneous and reusable palladium catalytic system for the Suzuki and Sonogashira coupling. Tetrahedron, 2005, 61, 9848-9854.
[http://dx.doi.org/10.1016/j.tet.2005.06.119]
[116]
Gu, Y.; Li, G. Ionic liquids-based catalysis with solids: State of the Art. Adv. Synth. Catal., 2009, 351, 817-847.
[http://dx.doi.org/10.1002/adsc.200900043]
[117]
Calò, V.; Nacci, A.; Monopoli, A. Effects of ionic liquids on Pd-catalysed carbon–carbon bond formation. Eur. J. Org. Chem., 2006, 2006, 3791-3802.
[http://dx.doi.org/10.1002/ejoc.200600045]
[118]
Lin, L.; Li, Y.; Zhang, S.; Li, S. Enhancing activity of Suzuki reactions in water by using guanidinium ionic liquid stabilized palladium micelle catalyst. Synlett, 2011, 2011, 1779-1783.
[http://dx.doi.org/10.1055/s-0030-1260810]
[119]
Huang, J.; Jiang, T.; Gao, H.; Han, B.; Liu, Z.; Wu, W.; Chang, Y.; Zhao, G. Pd nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation. Angew. Chem. Int. Ed., 2004, 43(11), 1397-1399.
[http://dx.doi.org/10.1002/anie.200352682] [PMID: 15368416]
[120]
Kume, Y.; Qiao, K.; Tomida, D.; Yokoyama, C. Selective hydrogenation of cinnamaldehyde catalyzed by palladium nanoparticles immobilized on ionic liquids modified-silica gel. Catal. Commun., 2008, 9, 369-375.
[http://dx.doi.org/10.1016/j.catcom.2007.07.012]
[121]
Trilla, M.; Borja, G.; Pleixats, R.; Man, M.W.C.; Bied, C.; Moreau, J.J.E. Recoverable palladium catalysts for Suzuki–Miyaura cross- coupling reactions based on organic-inorganic hybrid silica materials containing imidazolium and dihydroimidazolium salts. Adv. Synth. Catal., 2008, 350, 2566-2574.
[http://dx.doi.org/10.1002/adsc.200800455]
[122]
Hagiwara, H.; Ko, K.H.; Hoshi, T.; Suzuki, T. Supported ionic liquid catalyst (Pd-SILC) for highly efficient and recyclable Suzuki-Miyaura reaction. Chem. Commun. (Camb.), 2007, (27), 2838-2840.
[http://dx.doi.org/10.1039/B704098A] [PMID: 17609793]
[123]
Han, P.; Zhang, H.; Qiu, X.; Ji, X.; Gao, L. Palladium within ionic liquid functionalized mesoporous silica SBA-15 and its catalytic application in room-temperature Suzuki coupling reaction. J. Mol. Catal. Chem., 2008, 295, 57-67.
[http://dx.doi.org/10.1016/j.molcata.2008.08.016]
[124]
Das, P.; Sharma, D.; Shil, A.K.; Kumari, A. Solid-supported palladium nano and microparticles: an efficient heterogeneous catalyst for ligand-free Suzuki–Miyaura cross coupling reaction. Tetrahedron Lett., 2011, 52, 1176-1178.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.009]
[125]
Heck, R.F. Acylation, methylation, and carboxyalkylation of olefins by Group VIII metal derivatives. J. Am. Chem. Soc., 1968, 90, 5518-5526.
[http://dx.doi.org/10.1021/ja01022a034]
[126]
Dieck, H.A.; Heck, R.F. Organophosphinepalladium complexes as catalysts for vinylic hydrogen substitution reactions. J. Am. Chem. Soc., 1974, 96, 1133-1136.
[http://dx.doi.org/10.1021/ja00811a029]
[127]
Heck, R.F. Palladium-catalyzed vinylation of organic halides. Org. React., 2005, 345-390.
[128]
Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn., 1971, 44, 581-581.
[http://dx.doi.org/10.1246/bcsj.44.581]
[129]
Heck, R.F.; Nolley, J.P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37, 2320-2322.
[http://dx.doi.org/10.1021/jo00979a024]
[130]
Maruya, K-i.; Mizoroki, T.; Ozaki, A. Dimerization of ethylene catalyzed by σ-aryl nickel compound in the presence of trifluoro boron etherate. Bull. Chem. Soc. Jpn., 1972, 45, 2255-2259.
[http://dx.doi.org/10.1246/bcsj.45.2255]
[131]
Maleki, A.; Taheri-Ledari, R.; Ghalavand, R. Design and fabrication of a magnetite-based polymer-supported hybrid nanocomposite: A promising heterogeneous catalytic system utilized in known palladium-assisted coupling reactions. Comb. Chem. High Throughput Screen., 2020, 23(2), 119-125.
[http://dx.doi.org/10.2174/1386207323666200128152136] [PMID: 32003667]
[132]
Yadav, C.; Maka, V.K.; Payra, S.; Moorthy, J.N. Multifunctional porous organic polymers (POPs): Inverse adsorption of hydrogen over nitrogen, stabilization of Pd(0) nanoparticles, and catalytic cross-coupling reactions and reductions. J. Catal., 2020, 384, 61-71.
[http://dx.doi.org/10.1016/j.jcat.2020.02.002]
[133]
Lei, Y.; Zhu, W.; Wan, Y.; Wang, R.; Liu, H. Pd nanoparticles supported on amphiphilic porous organic polymer as an efficient catalyst for aqueous hydrodechlorination and Suzuki-Miyaura coupling reactions. Appl. Organomet. Chem., 2020, 34e5364
[http://dx.doi.org/10.1002/aoc.5364]
[134]
Zhan, K.; Lu, P.; Dong, J.; Hou, X. Polymer hydrogel confined palladium nanoparticles as recyclable catalysts for Suzuki and Heck cross-coupling reactions. Chin. Chem. Lett., 2020, 31, 1630-1634.
[http://dx.doi.org/10.1016/j.cclet.2019.09.006]
[135]
Ohno, A.; Sato, T.; Mase, T.; Uozumi, Y.; Yamada, Y.M.A. A convoluted polyvinylpyridine-palladium catalyst for Suzuki-Miyaura coupling and C−H arylation. Adv. Synth. Catal., 2020, 362, 4687-4698.
[http://dx.doi.org/10.1002/adsc.202000742]
[136]
Gao, P.; Xiao, Y.; Dong, Z.; Pan, H.; Wang, W. Facile synthesis of palladium nanoparticles supported on urea-based porous organic polymers and its catalytic properties in Suzuki-Miyaura coupling. J. Saudi Chem. Soc., 2020, 24, 282-287.
[http://dx.doi.org/10.1016/j.jscs.2019.11.002]
[137]
Zhang, Y.; Zhang, X.; Gao, J.; Du, C.; Xie, M.; Au, C.; Chen, J.; Wan, L. Photocatalytic Suzuki–Miyaura coupling reactions over palladium anchored on 8-hydroxyquinoline-based polymers. Macromol. Chem. Phys., 2020, 2212000076
[http://dx.doi.org/10.1002/macp.202000076]
[138]
Khajone, V.B.; Balinge, K.R.; Bhagat, P.R. Polymer-supported fe-phthalocyanine derived heterogeneous photo-catalyst for the synthesis of tetrazoles under visible light irradiation. Catal. Lett., 2020.
[139]
Wang, K.; Liu, J.; Zhang, F.; Zhang, Q.; Jiang, H.; Tong, M.; Xiao, Y.; Son Phan, N.T.; Zhang, F. Primary amine-functionalized mesoporous phenolic resin-supported palladium nanoparticles as an effective and stable catalyst for water-medium Suzuki-Miyaura coupling reactions. ACS Appl. Mater. Interfaces, 2019, 11(44), 41238-41244.
[http://dx.doi.org/10.1021/acsami.9b11459] [PMID: 31609577]
[140]
Sadhasivam, V.; Balasaravanan, R.; Chithiraikumar, C.; Siva, A. palladium nanoparticles supported on nitrogen-rich containing melamine-based microporous covalent triazine polymers as efficient heterogeneous catalyst for C−Se coupling reactions. ChemCatChem, 2018, 10, 3833-3844.
[http://dx.doi.org/10.1002/cctc.201800400]
[141]
Yılmaz Baran, N. Palladium nanoparticles decorated on a novel polyazomethine as a highly productive and recyclable catalyst for Suzuki coupling reactions and 4-nitrophenol reduction. J. Organomet. Chem., 2019, 899120886
[http://dx.doi.org/10.1016/j.jorganchem.2019.120886]
[142]
Targhan, H.; Hassanpour, A.; Sohrabnezhad, S.; Bahrami, K. Palladium nanoparticles immobilized with polymer containing nitrogen-based ligand: A highly efficient catalyst for Suzuki–Miyaura and Mizoroki–Heck coupling reactions. Catal. Lett., 2020, 150, 660-673.
[http://dx.doi.org/10.1007/s10562-019-02981-7]
[143]
Qin, M.; Wang, Q.; Du, Y.; Shao, L.; Qi, C.; Tao, H. Encapsulating palladium nanoparticles inside ethylenediamine functionalized and crosslinked chlorinated poly(vinyl chloride) nanofibers as an efficient and stable heterogeneous catalyst for coupling reactions. J. Phys. Chem. Solids, 2020, 147109674
[http://dx.doi.org/10.1016/j.jpcs.2020.109674]
[144]
Gaikwad, D.S.; Pore, D.M. Palladium-nanoparticle-catalyzed Matsuda–Heck reaction in water. Synlett, 2012, 23, 2631-2634.
[http://dx.doi.org/10.1055/s-0032-1317477]
[145]
Caló, V.; Nacci, A.; Monopoli, A.; Detomaso, A.; Iliade, P. Pd nanoparticle catalyzed Heck arylation of 1,1-disubstituted alkenes in ionic liquids. Study on factors affecting the regioselectivity of the coupling process. Organometallics, 2003, 22, 4193-4197.
[http://dx.doi.org/10.1021/om034020w]
[146]
Zhang, Y.H.; Ji, E.Y.; Chen, S.T.; Tian, D.M. Ligand-free and regioselectivity of the Heck reaction catalyzed by Pd(0) nanoparticles at ambient conditions under ultrasonic irradiation. Adv. Mat. Res., 2010, 113-116, 1675-1678.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.113-116.1675]
[147]
Gniewek, A.; Trzeciak, A.M.; Ziółkowski, J.J.; Kępiński, L.; Wrzyszcz, J.; Tylus, W. Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies. J. Catal., 2005, 229, 332-343.
[http://dx.doi.org/10.1016/j.jcat.2004.11.003]
[148]
Vitulli, G.; Evangelisti, C.; Maria Caporusso, A.; Pertici, P.; Panziera, N.; Bertozzi, S.; Salvadori, P. CHAPTER 32 - Metal vapor-derived nanostructured catalysts in fine chemistry: The role played by particle size in the catalytic activity and selectivity. Metal Nanoclusters in Catalysis and Materials Science; Corain, B.; Schmid, G; Toshima, N., Ed.; Elsevier: Amsterdam, 2008, pp. 437-451.
[http://dx.doi.org/10.1016/B978-044453057-8.50034-9]
[149]
Noh, J-H.; Meijboom, R. Dendrimer-templated Pd nanoparticles and Pd nanoparticles synthesized by reverse microemulsions as efficient nanocatalysts for the Heck reaction: A comparative study. J. Colloid Interface Sci., 2014, 415, 57-69.
[http://dx.doi.org/10.1016/j.jcis.2013.10.004] [PMID: 24267330]
[150]
Firouzabadi, H.; Iranpoor, N.; Kazemi, F.; Gholinejad, M. Palladium nano-particles supported on agarose as efficient catalyst and bioorganic ligand for CC bond formation via solventless Mizoroki–Heck reaction and Sonogashira–Hagihara reaction in polyethylene glycol (PEG 400). J. Mol. Catal. Chem., 2012, 357, 154-161.
[http://dx.doi.org/10.1016/j.molcata.2012.02.006]
[151]
Ma, X.; Zhou, Y.; Zhang, J.; Zhu, A.; Jiang, T.; Han, B. Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem., 2008, 10, 59-66.
[http://dx.doi.org/10.1039/B712627A]
[152]
Tao, R.; Miao, S.; Liu, Z.; Xie, Y.; Han, B.; An, G.; Ding, K. Pd nanoparticles immobilized on sepiolite by ionic liquids: efficient catalysts for hydrogenation of alkenes and Heck reactions. Green Chem., 2009, 11, 96-101.
[http://dx.doi.org/10.1039/B811587G]
[153]
Karimi, B.; Enders, D. New N-heterocyclic carbene palladium complex/ionic liquid matrix immobilized on silica: application as recoverable catalyst for the Heck reaction. Org. Lett., 2006, 8(6), 1237-1240.
[http://dx.doi.org/10.1021/ol060129z] [PMID: 16524312]
[154]
Sharma, D.; Kumar, S.; Shil, A.K.; Guha, N.R. Bandna; Das, P., Solid supported palladium(0) nano/microparticle: a ligand-free efficient recyclable heterogeneous catalyst for mono- and β,β-double-Heck reaction. Tetrahedron Lett., 2012, 53, 7044-7051.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.062]
[155]
Zhang, G.; Zhou, H.; Hu, J.; Liu, M.; Kuang, Y. Pd nanoparticles catalyzed ligand-free Heck reaction in ionic liquid microemulsion. Green Chem., 2009, 11, 1428-1432.
[http://dx.doi.org/10.1039/b822521d]
[156]
Pachón, L.D.; Elsevier, C.J.; Rothenberg, G. Electroreductive Palladium-Catalysed Ullmann Reactions in Ionic Liquids: Scope and Mechanism. Adv. Synth. Catal., 2006, 348, 1705-1710.
[http://dx.doi.org/10.1002/adsc.200606132]
[157]
Baruah, D.; Das, R.N.; Hazarika, S.; Konwar, D. Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb - A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun., 2015, 72, 73-80.
[http://dx.doi.org/10.1016/j.catcom.2015.09.011]
[158]
Jiang, J-Z.; Wei, Y-A.; Cai, C. Copper- and ligand-free Sonogashira reaction catalyzed by palladium in microemulsion: effects of surfactant and alcohol. J. Colloid Interface Sci., 2007, 312(2), 439-443.
[http://dx.doi.org/10.1016/j.jcis.2007.03.017] [PMID: 17451733]
[159]
Jana, S.; Haldar, S.; Koner, S. Heterogeneous Suzuki and Stille coupling reactions using highly efficient palladium(0) immobilized MCM-41 catalyst. Tetrahedron Lett., 2009, 50, 4820-4823.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.098]
[160]
Moreno-Mañas, M.; Pleixats, R.; Villarroya, S. Fluorous phase soluble palladium nanoparticles as recoverable catalysts for Suzuki cross-coupling and Heck reactions. Organometallics, 2001, 20, 4524-4528.
[http://dx.doi.org/10.1021/om010442z]
[161]
Zhu, J.; Zhou, J.; Zhao, T.; Zhou, X.; Chen, D.; Yuan, W. Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction. Appl. Catal. A Gen., 2009, 352, 243-250.
[http://dx.doi.org/10.1016/j.apcata.2008.10.012]
[162]
Firouzabadi, H.; Iranpoor, N.; Ghaderi, A. Solvent-free Mizoroki–Heck reaction catalyzed by palladium nano-particles deposited on gelatin as the reductant, ligand and the non-toxic and degradable natural product support. J. Mol. Catal. Chem., 2011, 347, 38-45.
[http://dx.doi.org/10.1016/j.molcata.2011.07.008]
[163]
Basu, B.; Das, S.; Das, P.; Mandal, B.; Banerjee, D.; Almqvist, F. Palladium supported on a polyionic resin as an efficient, ligand-free, and recyclable catalyst for Heck, Suzuki-Miyaura, and Sonogashira reactions. Synthesis, 2009, 2009, 1137-1146.
[http://dx.doi.org/10.1055/s-0028-1088003]
[164]
Choudary, B.M.; Madhi, S.; Chowdari, N.S.; Kantam, M.L.; Sreedhar, B. Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes. J. Am. Chem. Soc., 2002, 124(47), 14127-14136.
[http://dx.doi.org/10.1021/ja026975w] [PMID: 12440911]
[165]
Leyva-Pérez, A.; Oliver-Meseguer, J.; Rubio-Marqués, P.; Corma, A. Water-stabilized three- and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross-coupling reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(44), 11554-11559.
[http://dx.doi.org/10.1002/anie.201303188] [PMID: 24038914]
[166]
Søbjerg, L.S.; Gauthier, D.; Lindhardt, A.T.; Bunge, M.; Finster, K.; Meyer, R.L.; Skrydstrup, T. Bio-supported palladium nanoparticles as a catalyst for Suzuki–Miyaura and Mizoroki–Heck reactions. Green Chem., 2009, 11, 2041-2046.
[http://dx.doi.org/10.1039/b918351p]
[167]
Ahmed, A.; Nuree, Y.; Ray, J.K. Aerobic ligand-free domino Suzuki coupling-Michael addition reaction catalyzed by in situ generated palladium nanoparticles in water: a general method for the synthesis of benzo[c]chromene derivatives. Tetrahedron Lett., 2013, 54, 665-668.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.005]
[168]
Bandna; Guha, N. R.; Shil, A. K.; Sharma, D.; Das, P. Ligand-free solid supported palladium(0) nano/microparticles promoted C–O, C–S, and C–N cross coupling reaction. Tetrahedron Lett., 2012, 53, 5318-5322.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.096]
[169]
Chen, Y-H.; Hung, H-H.; Huang, M.H. Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable Suzuki coupling reaction catalysts. J. Am. Chem. Soc., 2009, 131(25), 9114-9121.
[http://dx.doi.org/10.1021/ja903305d] [PMID: 19507854]
[170]
Piao, Y.; Jang, Y.; Shokouhimehr, M.; Lee, I.S.; Hyeon, T. Facile aqueous-phase synthesis of uniform palladium nanoparticles of various shapes and sizes. Small, 2007, 3(2), 255-260.
[http://dx.doi.org/10.1002/smll.200600402] [PMID: 17230590]
[171]
Singh, P.; Katyal, A.; Kalra, R.; Chandra, R. Copper nanoparticles in an ionic liquid: an efficient catalyst for the synthesis of bis-(4-hydroxy-2-oxothiazolyl)methanes. Tetrahedron Lett., 2008, 49, 727-730.
[http://dx.doi.org/10.1016/j.tetlet.2007.11.106]
[172]
Singh, P.; Katyal, A.; Kalra, R.; Chandra, R. Copper nanoparticles in ionic liquid: An easy and efficient catalyst for the coupling of thiazolidine-2,4-dione, aromatic aldehyde and ammonium acetate. Catal. Commun., 2008, 9, 1618-1623.
[http://dx.doi.org/10.1016/j.catcom.2008.01.010]
[173]
Singh, P.; Kumari, K.; Katyal, A.; Kalra, R.; Chandra, R. Copper nanoparticles in ionic liquid: An easy and efficient catalyst for selective carba-michael addition reaction. Catal. Lett., 2009, 127, 119-125.
[http://dx.doi.org/10.1007/s10562-008-9654-7]
[174]
Orgueira, H.A.; Fokas, D.; Isome, Y.; Chan, P.C.M.; Baldino, C.M. Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Lett., 2005, 46, 2911-2914.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.127]
[175]
Kantam, M.L.; Jaya, V.S.; Sreedhar, B.; Rao, M.M.; Choudary, B.M. Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles. J. Mol. Catal. Chem., 2006, 256, 273-277.
[http://dx.doi.org/10.1016/j.molcata.2006.04.054]
[176]
Raut, D.; Wankhede, K.; Vaidya, V.; Bhilare, S.; Darwatkar, N.; Deorukhkar, A.; Trivedi, G.; Salunkhe, M. Copper nanoparticles in ionic liquids: Recyclable and efficient catalytic system for 1,3-dipolar cycloaddition reaction. Catal. Commun., 2009, 10, 1240-1243.
[http://dx.doi.org/10.1016/j.catcom.2009.01.027]
[177]
Sarkar, A.; Mukherjee, T.; Kapoor, S. PVP-stabilized copper nanoparticles: a reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents. J. Phys. Chem. C, 2008, 112, 3334-3340.
[http://dx.doi.org/10.1021/jp077603i]
[178]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent synthesis of 1,2,3-triazoles in water catalyzed by copper nanoparticles on activated carbon. Adv. Synth. Catal., 2010, 352, 3208-3214.
[http://dx.doi.org/10.1002/adsc.201000637]
[179]
Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Unsupported copper nanoparticles in the 1,3-dipolar cycloaddition of terminal alkynes and azides. Eur. J. Org. Chem., 2010, 2010, 5913-5913.
[http://dx.doi.org/10.1002/ejoc.201001172]
[180]
Pachón, L.D.; van Maarseveen, J.H.; Rothenberg, G. Click chemistry: copper clusters catalyse the cycloaddition of azides with terminal alkynes. Adv. Synth. Catal., 2005, 347, 811-815.
[http://dx.doi.org/10.1002/adsc.200404383]
[181]
Verma, A.K.; Kumar, R.; Chaudhary, P.; Saxena, A.; Shankar, R.; Mozumdar, S.; Chandra, R. Cu-nanoparticles: a chemoselective catalyst for the aza-Michael reactions of N-alkyl- and N-arylpiperazines with acrylonitrile. Tetrahedron Lett., 2005, 46, 5229-5232.
[http://dx.doi.org/10.1016/j.tetlet.2005.05.108]
[182]
Uk Son, S.; Kyu Park, I.; Park, J.; Hyeon, T. Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. (Camb.), 2004, (7), 778-779.
[http://dx.doi.org/10.1039/b316147a] [PMID: 15045059]
[183]
Ranu, B.C.; Saha, A.; Jana, R. Microwave-assisted simple and efficient ligand free copper nanoparticle catalyzed aryl-sulfur bond formation. Adv. Synth. Catal., 2007, 349, 2690-2696.
[http://dx.doi.org/10.1002/adsc.200700289]
[184]
Thathagar, M.B.; Beckers, J.; Rothenberg, G. Palladium-free and ligand-free Sonogashira cross-coupling. Green Chem., 2004, 6, 215-218.
[http://dx.doi.org/10.1039/b401586j]
[185]
Iyer, S.; Thakur, V.V. The novel use of Ni, Co, Cu and Mn heterogeneous catalysts for the Heck reaction. J. Mol. Catal. Chem., 2000, 157, 275-278.
[http://dx.doi.org/10.1016/S1381-1169(00)00190-4]
[186]
Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Oxidant-free alcohol dehydrogenation using a reusable hydrotalcite-supported silver nanoparticle catalyst. Angew. Chem. Int. Ed. Engl., 2008, 47(1), 138-141.
[http://dx.doi.org/10.1002/anie.200703161] [PMID: 18038437]
[187]
Shimizu, K.; Sugino, K.; Sawabe, K.; Satsuma, A. Oxidant-free dehydrogenation of alcohols heterogeneously catalyzed by cooperation of silver clusters and acid-base sites on alumina. Chemistry, 2009, 15(10), 2341-2351.
[http://dx.doi.org/10.1002/chem.200802222] [PMID: 19160439]
[188]
Shin, K.; Choi, J-Y.; Park, C.S.; Jang, H.; Kim, K. Facile synthesis and catalytic application of silver-deposited magnetic nanoparticles. Catal. Lett., 2009, 133, 1-7.
[http://dx.doi.org/10.1007/s10562-009-0124-7]
[189]
Brandt, K.; Chiu, M.E.; Watson, D.J.; Tikhov, M.S.; Lambert, R.M. Chemoselective catalytic hydrogenation of acrolein on Ag(111): effect of molecular orientation on reaction selectivity. J. Am. Chem. Soc., 2009, 131(47), 17286-17290.
[http://dx.doi.org/10.1021/ja9063469] [PMID: 19888721]
[190]
Pradhan, N.; Pal, A.; Pal, T. Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 2001, 17, 1800-1802.
[http://dx.doi.org/10.1021/la000862d]
[191]
Li, Z.; Wei, C.; Chen, L.; Varma, R.S.; Li, C-J. Three-component coupling of aldehyde, alkyne, and amine catalyzed by silver in ionic liquid. Tetrahedron Lett., 2004, 45, 2443-2446.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.044]
[192]
Yan, W.; Wang, R.; Xu, Z.; Xu, J.; Lin, L.; Shen, Z.; Zhou, Y. A novel, practical and green synthesis of Ag nanoparticles catalyst and its application in three-component coupling of aldehyde, alkyne, and amine. J. Mol. Catal. Chem., 2006, 255, 81-85.
[http://dx.doi.org/10.1016/j.molcata.2006.03.055]
[193]
Wang, S.; He, X.; Song, L.; Wang, Z. Silver nanoparticles supported by novel nickel metal-organic frameworks: an efficient heterogeneous catalyst for an a3 coupling reaction. Synlett, 2009, 2009, 447-450.
[http://dx.doi.org/10.1055/s-0028-1087540]
[194]
Yong, G-P.; Tian, D.; Tong, H-W.; Liu, S-M. Mesoporous SBA-15 supported silver nanoparticles as environmentally friendly catalysts for three-component reaction of aldehydes, alkynes and amines with glycol as a “green” solvent. J. Mol. Catal. Chem., 2010, 323, 40-44.
[http://dx.doi.org/10.1016/j.molcata.2010.03.007]
[195]
Murugadoss, A.; Goswami, P.; Paul, A.; Chattopadhyay, A. ‘Green’ chitosan bound silver nanoparticles for selective C–C bond formation viain situ iodination of phenols. J. Mol. Catal. Chem., 2009, 304, 153-158.
[http://dx.doi.org/10.1016/j.molcata.2009.02.006]
[196]
Kim, S.; Bae, S.W.; Lee, J.S.; Park, J. Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C–C bond forming reaction between primary alcohols and ketones under ambient conditions. Tetrahedron, 2009, 65, 1461-1466.
[http://dx.doi.org/10.1016/j.tet.2008.12.005]
[197]
de Souza, R.O.M.A.; Bittar, M.S.; Mendes, L.V.P.; da Silva, C.M.F.; da Silva, V.T.; Antunes, O.A.C. Copper-free sonogashira reaction using gold nanoparticles supported on ce2o3, nb2o5 and sio2 under microwave irradiation. Synlett, 2008, 2008, 1777-1780.
[http://dx.doi.org/10.1055/s-2008-1078565]
[198]
Xiao, C-x.; Wang, H-z.; Mu, X-d.; Kou, Y. Ionic-liquid-like copolymer stabilized nanocatalysts in ionic liquids I. Platinum catalyzed selective hydrogenation of o-chloronitrobenzene. J. Catal., 2007, 250, 25-32.
[http://dx.doi.org/10.1016/j.jcat.2007.05.009]
[199]
Abu-Reziq, R.; Wang, D.; Post, M.; Alper, H. Platinum nanoparticles supported on ionic liquid-modified magnetic nanoparticles: selective hydrogenation catalysts. Adv. Synth. Catal., 2007, 349, 2145-2150.
[http://dx.doi.org/10.1002/adsc.200700129]
[200]
Ahmadi, T.S.; Wang, Z.L.; Green, T.C.; Henglein, A.; El-Sayed, M.A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272(5270), 1924-1926.
[http://dx.doi.org/10.1126/science.272.5270.1924] [PMID: 8662492]
[201]
Ahmadi, T.S.; Wang, Z.L.; Henglein, A.; El-Sayed, M.A. “Cubic” colloidal platinum nanoparticles. Chem. Mater., 1996, 8, 1161-1163.
[http://dx.doi.org/10.1021/cm9601190]
[202]
Wang, Z.L.; Ahmad, T.S.; El-Sayed, M.A. Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf. Sci., 1997, 380, 302-310.
[http://dx.doi.org/10.1016/S0039-6028(97)05180-7]
[203]
Narayanan, R.; El-Sayed, M.A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett., 2004, 4, 1343-1348.
[http://dx.doi.org/10.1021/nl0495256]
[204]
Narayanan, R.; El-Sayed, M.A. Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J. Am. Chem. Soc., 2004, 126(23), 7194-7195.
[http://dx.doi.org/10.1021/ja0486061] [PMID: 15186154]
[205]
Narayanan, R.; El-Sayed, M.A. Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle shape: electron-transfer reaction catalyzed by platinum nanoparticles. J. Phys. Chem. B, 2004, 108, 5726-5733.
[http://dx.doi.org/10.1021/jp0493780]
[206]
Colacot, T.J.; Qian, H.; Cea-Olivares, R.; Hernandez-Ortega, S. Synthesis, X-ray, spectroscopic and a preliminary Suzuki coupling screening studies of a complete series of dppfMX2 (M=Pt, Pd; X=Cl, Br, I). J. Organomet. Chem., 2001, 637-639, 691-697.
[http://dx.doi.org/10.1016/S0022-328X(01)00981-0]
[207]
Thathagar, M.B.; Beckers, J.; Rothenberg, G. Copper-catalyzed Suzuki cross-coupling using mixed nanocluster catalysts. J. Am. Chem. Soc., 2002, 124(40), 11858-11859.
[http://dx.doi.org/10.1021/ja027716+] [PMID: 12358523]
[208]
Narayanan, R.; El-Sayed, M.A. Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction. Langmuir, 2005, 21(5), 2027-2033.
[http://dx.doi.org/10.1021/la047600m] [PMID: 15723506]
[209]
Lee, E-K.; Park, S-A.; Woo, H.; Hyun Park, K.; Kang, D.W.; Lim, H.; Kim, Y-T. Platinum single atoms dispersed on carbon nanotubes as reusable catalyst for Suzuki coupling reaction. J. Catal., 2017, 352, 388-393.
[http://dx.doi.org/10.1016/j.jcat.2017.05.005]
[210]
Fernández, E.; Rivero-Crespo, M.A.; Domínguez, I.; Rubio-Marqués, P.; Oliver-Meseguer, J.; Liu, L.; Cabrero-Antonino, M.; Gavara, R.; Hernández-Garrido, J.C.; Boronat, M.; Leyva-Pérez, A.; Corma, A. Base-controlled heck, suzuki, and sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J. Am. Chem. Soc., 2019, 141(5), 1928-1940.
[http://dx.doi.org/10.1021/jacs.8b07884] [PMID: 30640461]
[211]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[212]
Ghanbari, N.; Hoseini, S.J.; Bahrami, M. Ultrasonic assisted synthesis of palladium-nickel/iron oxide core-shell nanoalloys as effective catalyst for Suzuki-Miyaura and p-nitrophenol reduction reactions. Ultrason. Sonochem., 2017, 39, 467-477.
[http://dx.doi.org/10.1016/j.ultsonch.2017.05.015] [PMID: 28732970]
[213]
Elumalai, P.; Mamlouk, H.; Yiming, W.; Feng, L.; Yuan, S.; Zhou, H-C.; Madrahimov, S.T. Recyclable and reusable heteroleptic nickel catalyst immobilized on metal-organic framework for suzuki-miyaura coupling. ACS Appl. Mater. Interfaces, 2018, 10(48), 41431-41438.
[http://dx.doi.org/10.1021/acsami.8b16136] [PMID: 30398346]
[214]
Balcells, D.; Nova, A. Designing Pd and Ni catalysts for cross-coupling reactions by minimizing off-cycle species. ACS Catal., 2018, 8, 3499-3515.
[http://dx.doi.org/10.1021/acscatal.8b00230]
[215]
Lu, X.; Wang, Y.; Zhang, B.; Pi, J-J.; Wang, X-X.; Gong, T-J.; Xiao, B.; Fu, Y. Nickel-catalyzed defluorinative reductive cross-coupling of gem-difluoroalkenes with unactivated secondary and tertiary alkyl halides. J. Am. Chem. Soc., 2017, 139(36), 12632-12637.
[http://dx.doi.org/10.1021/jacs.7b06469] [PMID: 28849923]
[216]
Yakovlev, V.; Terskikh, V.; Simagina, V.; Likholobov, V. Liquid phase catalytic hydrodechlorination of chlorobenzene over supported nickel and palladium catalysts: An NMR insight into solvent function. J. Mol. Catal. Chem., 2000, 153, 231-236.
[http://dx.doi.org/10.1016/S1381-1169(99)00352-0]
[217]
Styring, P.; Grindon, C.; Fisher, C.M. A polymer-supported nickel(ii) catalyst for room temperature tamao–kumada–corriu coupling reactions. Catal. Lett., 2001, 77, 219-225.
[http://dx.doi.org/10.1023/A:1013209202418]
[218]
Lipshutz, B.H.; Blomgren, P.A. Nickel on Charcoal (“Ni/C”): An expedient and inexpensive heterogeneous catalyst for cross-couplings between aryl chlorides and organometallics. i. functionalized organozinc reagents. J. Am. Chem. Soc., 1999, 121, 5819-5820.
[http://dx.doi.org/10.1021/ja990432d]
[219]
Lipshutz, B.H.; Sclafani, J.A.; Blomgren, P.A. Biaryls via Suzuki cross-couplings catalyzed by nickel on charcoal. Tetrahedron, 2000, 56, 2139-2144.
[http://dx.doi.org/10.1016/S0040-4020(99)01096-0]
[220]
Lipshutz, B.H.; Tasler, S.; Chrisman, W.; Spliethoff, B.; Tesche, B. On the nature of the ‘heterogeneous’ catalyst: nickel-on-charcoal. J. Org. Chem., 2003, 68(4), 1177-1189.
[http://dx.doi.org/10.1021/jo020296m] [PMID: 12585854]
[221]
Reshetnyak, V. XXII conference on liquid crystals (chemistry, physics and applications). Liquid Crystals Today 2018, 27, 109-112.
[222]
Saito, S.; Oh-Tani, S.; Miyaura, N. Synthesis of biaryls via a nickel(0)-catalyzed cross-coupling reaction of chloroarenes with arylboronic acids. J. Org. Chem., 1997, 62(23), 8024-8030.
[http://dx.doi.org/10.1021/jo9707848] [PMID: 11671907]
[223]
Toshima, N.; Yonezawa, T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J. Chem., 1998, 22, 1179-1201.
[http://dx.doi.org/10.1039/a805753b]
[224]
Hansgen, D.A.; Vlachos, D.G.; Chen, J.G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem., 2010, 2(6), 484-489.
[http://dx.doi.org/10.1038/nchem.626] [PMID: 20489718]
[225]
Ji, X.; Lee, K.T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G.A.; Couillard, M.; Nazar, L.F. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat. Chem., 2010, 2(4), 286-293.
[http://dx.doi.org/10.1038/nchem.553] [PMID: 21124509]
[226]
Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M. Atomic-level Pd-Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J. Am. Chem. Soc., 2010, 132(16), 5576-5577.
[http://dx.doi.org/10.1021/ja1013163] [PMID: 20361727]
[227]
Ferrando, R.; Jellinek, J.; Johnston, R.L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev., 2008, 108(3), 845-910.
[http://dx.doi.org/10.1021/cr040090g] [PMID: 18335972]
[228]
Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R.Z.; Christensen, C.H.; Nørskov, J.K. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science, 2008, 320(5881), 1320-1322.
[http://dx.doi.org/10.1126/science.1156660] [PMID: 18535238]
[229]
Wu, P.; Cao, Y.; Zhao, L.; Wang, Y.; He, Z.; Xing, W.; Bai, P.; Mintova, S.; Yan, Z. Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation. J. Catal., 2019, 375, 32-43.
[http://dx.doi.org/10.1016/j.jcat.2019.05.003]
[230]
Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Prakash Dwivedi, R.; Alothman, Z.A.; Mola, G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci., 2019, 31, 257-269.
[http://dx.doi.org/10.1016/j.jksus.2017.06.012]
[231]
Reetz, M.T.; Helbig, W.; Quaiser, S.A. Electrochemical preparation of nanostructural bimetallic clusters. Chem. Mater., 1995, 7, 2227-2228.
[http://dx.doi.org/10.1021/cm00060a004]
[232]
Zhang, Y.; Rhee, K.Y.; Hui, D.; Park, S-J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Compos., Part B Eng., 2018, 143, 19-27.
[http://dx.doi.org/10.1016/j.compositesb.2018.01.028]
[233]
Johnston, R.L. Metal nanoparticles and nanoalloys.Frontiers of Nanoscience; Johnston, R.L.; Wilcoxon, J.P., Eds.; Elsevier: USA, 2012, Vol. 3, pp. 1-42.
[234]
Gawande, M.B.; Goswami, A.; Asefa, T.; Guo, H.; Biradar, A.V.; Peng, D-L.; Zboril, R.; Varma, R.S. Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev., 2015, 44(21), 7540-7590.
[http://dx.doi.org/10.1039/C5CS00343A] [PMID: 26288197]
[235]
Cui, Y.; Ren, B.; Yao, J-L.; Gu, R-A.; Tian, Z-Q. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy. J. Phys. Chem. B, 2006, 110(9), 4002-4006.
[http://dx.doi.org/10.1021/jp056203x] [PMID: 16509689]
[236]
Yan, J-M.; Zhang, X-B.; Akita, T.; Haruta, M.; Xu, Q. One-step seeding growth of magnetically recyclable Au@Co core-shell nanoparticles: highly efficient catalyst for hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc., 2010, 132(15), 5326-5327.
[http://dx.doi.org/10.1021/ja910513h] [PMID: 20345145]
[237]
Hajipour, A.R.; Khorsandi, Z.; Abeshtian, Z. Pd/Cu-free Heck and Sonogashira reactions using cobalt immobilized on in situ magnetic cross-linked chitosan fibers: A highly efficient and reusable catalyst. Inorg. Chem. Commun., 2019, 107107470
[http://dx.doi.org/10.1016/j.inoche.2019.107470]
[238]
Nasrollahzadeh, M.; Azarian, A.; Maham, M.; Ehsani, A. Synthesis of Au/Pd bimetallic nanoparticles and their application in the Suzuki coupling reaction. J. Ind. Eng. Chem., 2015, 21, 746-748.
[http://dx.doi.org/10.1016/j.jiec.2014.04.006]
[239]
Durán Pachón, L.; Thathagar, M.B.; Hartl, F.; Rothenberg, G. Palladium-coated nickel nanoclusters: new Hiyama cross-coupling catalysts. Phys. Chem. Chem. Phys., 2006, 8(1), 151-157.
[http://dx.doi.org/10.1039/B513587G] [PMID: 16482255]
[240]
Narayanan, R. Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-coupling reactions. Molecules, 2010, 15(4), 2124-2138.
[http://dx.doi.org/10.3390/molecules15042124] [PMID: 20428032]
[241]
Kim, M-R.; Choi, S-H. One-step synthesis of Pd-m/zno (m=ag, cu, and ni) catalysts by irradiation and their use in hydrogenation and Suzuki reaction. J. Nanomater., 2009, 2009302919
[http://dx.doi.org/10.1155/2009/302919]
[242]
Reetz, M.T.; Breinbauer, R.; Wanninger, K. Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladiumnickel bimetallic clusters. Tetrahedron Lett., 1996, 37, 4499-4502.
[http://dx.doi.org/10.1016/0040-4039(96)00924-0]
[243]
Lin, Y-Y.; Tsai, S-C.; Yu, S.J. Highly efficient and recyclable Au nanoparticle-supported palladium (II) interphase catalysts and microwave-assisted alkyne cyclotrimerization reactions in ionic liquids. J. Org. Chem., 2008, 73(13), 4920-4928.
[http://dx.doi.org/10.1021/jo800524h] [PMID: 18522419]
[244]
Toebes, M.L.; van Dillen, J.A.; de Jong, K.P. Synthesis of supported palladium catalysts. J. Mol. Catal. Chem., 2001, 173, 75-98.
[http://dx.doi.org/10.1016/S1381-1169(01)00146-7]
[245]
Heshmatpour, F.; Abazari, R.; Balalaie, S. Preparation of monometallic (Pd, Ag) and bimetallic (Pd/Ag, Pd/Ni, Pd/Cu) nanoparticles via reversed micelles and their use in the Heck reaction. Tetrahedron, 2012, 68, 3001-3011.
[http://dx.doi.org/10.1016/j.tet.2012.02.028]
[246]
Rashid, M.H.; Raula, M.; Mandal, T.K. Polymer assisted synthesis of chain-like cobalt-nickel alloy nanostructures: Magnetically recoverable and reusable catalysts with high activities. J. Mater. Chem. 2011, 21, 4904-4917.
[http://dx.doi.org/10.1039/c0jm03047c]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy