Abstract
Background: This study assessed the effects of solvent proportion, time and power intensity of ultrasound processing on the extraction, bioaccessibility, antioxidant and antimicrobial activity of phenolic compounds (PC) from acerola (Malpighia glabra DC) coproduct (ACP).
Methods: The ultrasound process with water as a solvent in a ratio of 1:2, power intensity of 75 W/cm2 during 10 min was selected as the optimal condition to provide higher extraction of the total phenolic compounds (4126 mg gallic acid.100 g-1 with total antioxidant activity of 98.62 μMTrolox. g-1). Power intensity and solid: solvent proportion were the parameters that increased the total PC quantification. The main phenolic compounds from the ACP tentatively identified by UPLC-ESI-QTOF-MS/MS were rutin, luteolin, and quercetin. Ultrasound extraction also improved antimicrobial activity against Listeria monocytogenes and Staphylococcus aureus (40 mg.L -1).
Results: These results indicate that antioxidant and antimicrobial activities in the ACP phenolic extracts are quite potent and implicate the presence of compounds with potent free-radical-scavenging activity.
Conclusion: It is possible to extract phenolic compounds from acerola coproducts using sustainable “green” technology, only using water as a solvent and ultrasound processing.
Keywords: Antimicrobial activity, ultrasound extraction, agroindustrial coproduct, phenolic compounds, antioxidant activity, bioaccessibility.
Graphical Abstract
[http://dx.doi.org/10.1016/j.bcdf.2020.100228]
[http://dx.doi.org/10.1016/j.foodchem.2018.10.099] [PMID: 30502205]
[http://dx.doi.org/10.1016/j.tifs.2018.01.014]
[http://dx.doi.org/10.1002/fft2.25]
[http://dx.doi.org/10.1016/j.cofs.2017.11.012]
[PMID: 29429729]
[http://dx.doi.org/10.1016/j.tifs.2015.01.002]
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.035] [PMID: 27773280]
[http://dx.doi.org/10.1016/j.indcrop.2015.02.059]
[http://dx.doi.org/10.1016/j.foodchem.2010.01.037]
[http://dx.doi.org/10.1093/ajcn/34.10.2248] [PMID: 6794346]
[http://dx.doi.org/10.1590/S0101-20612006000200007]
[http://dx.doi.org/10.1016/j.foodchem.2011.03.074] [PMID: 25212164]
[http://dx.doi.org/10.1111/j.1750-3841.2010.01843.x] [PMID: 21535610]
[http://dx.doi.org/10.1002/btpr.2664] [PMID: 29885035]
[http://dx.doi.org/10.1007/s13197-017-3017-6] [PMID: 29487446]
[http://dx.doi.org/10.1016/j.ultsonch.2014.08.012] [PMID: 25219872]
[http://dx.doi.org/10.1016/j.fbp.2015.12.008]
[http://dx.doi.org/10.1016/j.foodchem.2013.08.001] [PMID: 24054258]
[http://dx.doi.org/10.1016/j.lwt.2021.111030]
[http://dx.doi.org/10.1016/j.lwt.2017.07.020]
[http://dx.doi.org/10.1016/j.tifs.2012.03.003]
[http://dx.doi.org/10.1016/j.fbp.2020.10.009]
[http://dx.doi.org/10.1016/j.ultsonch.2011.01.005] [PMID: 21317015]
[http://dx.doi.org/10.1016/j.ultsonch.2013.02.010] [PMID: 23522904]
[http://dx.doi.org/10.1016/j.foodchem.2016.07.160] [PMID: 27542500]
[http://dx.doi.org/10.1016/j.foodchem.2018.06.154] [PMID: 30100433]
[http://dx.doi.org/10.1016/j.aca.2011.11.032] [PMID: 22688040]
[http://dx.doi.org/10.25135/rnp.74.18.03.250]
[http://dx.doi.org/10.1016/j.foodchem.2019.01.108] [PMID: 30744834]
[http://dx.doi.org/10.1089/mdr.2018.0097] [PMID: 30431396]
[http://dx.doi.org/10.1016/j.foodchem.2017.02.038] [PMID: 28317748]
[http://dx.doi.org/10.1016/j.lwt.2016.07.023]
[http://dx.doi.org/10.1016/j.foodchem.2017.08.078] [PMID: 29934184]
[http://dx.doi.org/10.1016/j.biopha.2017.01.109] [PMID: 28178632]
[http://dx.doi.org/10.1007/s10068-019-00618-4] [PMID: 31807344]
[http://dx.doi.org/10.1016/j.ultsonch.2017.09.001] [PMID: 28946400]
[http://dx.doi.org/10.1016/B978-0-12-811521-3.00010-7]
[http://dx.doi.org/10.1016/j.foodchem.2017.03.131] [PMID: 28449989]