Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Chemical Constituents, Ethnomedicinal Uses, Pharmacology, and Toxicity of Dysphania Ambrosioides (L.) Mosyakin & Clemants, Formerly Chenopodium Ambrosioides L.

Author(s): Boniface Pone Kamdem*, Eutrophe Le Doux Kamto, Hugues Kamdem Paumo, Lebogang Maureen Katata-Seru, Dieudonné Emmanuel Pegnyemb and Ferreira Elizabeth Igne

Volume 12, Issue 3, 2022

Published on: 12 January, 2022

Article ID: e200921196661 Pages: 43

DOI: 10.2174/2210315511666210920144526

Price: $65

Abstract

Background: Dysphania ambrosioides (L.) Mosyakin & Clemants is an aromatic herb native to South America but also distributed widely throughout Africa and Europe. This plant is traditionally used to treat various ailments including pain and swellings, flu, parasitic diseases and is used as an analgesic, antipyretic, and wound healing. Phytochemical analyses of D. ambrosioides revealed the presence of terpenoids, flavonoids, coumarins, fatty acids, and miscellaneous compounds, among others, which might be responsible for its modern pharmacological actions.

Objective: The present work summarizes recent developments on phytochemistry, ethnomedicinal use, pharmacology, and toxicity of D. ambrosioides. A critical assessment of the literature information of D. ambrosioides is also presented.

Methods: The available information on D. ambrosioides was collected through libraries and electronic databases [Scifinder, ACS, Scielo, Science direct, Pubmed (National Library of Medicine), Wiley, Springer, PROTA, Web of Science, Google Web, Yahoo search and Google scholar] from respective inception until January 2021.

Results: More than 150 compounds, including terpenoids, flavonoids, coumarins, fatty acids, and miscellaneous compounds, etc., were identified from D. ambrosioides. D. ambrosioides exhibited a wide range of pharmacological activities, including antimalarial, anti-inflammatory, antiparasitic, anticancer, insecticidal, antigiardial, among others. Metal nanoparticles synthesized from D. ambrosioides extracts presented enhanced pharmacological activities as compared to the crude plant extracts counterparts.

Conclusion: D. ambrosioides is a promising medicinal plant, however, more in vivo experiments, cytotoxicity tests, and mechanisms of actions of its extracts and compounds are recommended to transubstantiate the ethnomedicinal claims of this plant into scientific rationale-based information.

Keywords: Dysphania ambrosioides, essential oil, chemical constituents, pharmacology, nanoparticles, drug discovery.

Graphical Abstract

[1]
Nedialkova, Z.K.; Nedialkov, P.T.; Nikolov, S.D. The genus Chenopodium: phytochemistry ethnopharmacology and pharmacology. Pharmacogn. Rev., 2009, 3, 280-306.
[2]
TrivellatoGrassi, L.; Malheiros, A.; Meyre-Silva, C.; Buss, Z.S.; Monguilhott, E.D.; Fröde, T.S.; Silva, K.A.B.S.; de Souza, M.M. From popular use to pharmacological validation: a study of the anti-inflammatory, anti-nociceptive and healing effects of Chenopodium ambrosioides extract. J. Ethnopharmacol., 2013, 145(1), 127-138.
[http://dx.doi.org/10.1016/j.jep.2012.10.040] [PMID: 23123797]
[3]
Kishore, N.; Chansouria, J.P.N.; Dubey, N.K. Antidermatophytic action of the essential oil of Chenopodium ambrosioides and an ointment prepared from it. Phytother. Res., 1999, 10, 453-455.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199608)10:5<453::AID-PTR874>3.0.CO;2-A]
[4]
Kumar, R.; Mishra, A.K.; Dubey, N.K.; Tripathi, Y.B. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol., 2007, 115(2), 159-164.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.017] [PMID: 17174000]
[5]
Sá, R.D. Pharmacognostic study of Chenopodium ambrosioides L. (Chenopodiaceae). In: Master's dissertations - pharmaceutical sciences; Federal University of Pernambuco: Brazil, 2013; p. 106.
[6]
Nascimento, F.R.F.; Cruz, G.V.B.; Pereira, P.V.S.; Maciel, M.C.G.; Silva, L.A.; Azevedo, A.P.S.; Barroqueiro, E.S.B.; Guerra, R.N.M. Ascitic and solid Ehrlich tumor inhibition by Chenopodium ambrosioides L. treatment. Life Sci., 2006, 78(22), 2650-2653.
[http://dx.doi.org/10.1016/j.lfs.2005.10.006] [PMID: 16307762]
[7]
Bezerra, J.L.; Costa, G.C.; Lopes, T.C.; Carvalho, I.C.D.S.; Patrício, F.J.; Sousa, S.M.; Amaral, F.M.M.; Rebelo, J.M.M.; Guerra, R.N.M.; Ribeiro, M.N.S.; Nascimento, F.R.F. Avaliação da atividade leishmanicida in vitro de plantas medicinais. Brazilian J. Pharmacogn., 2006, 16, 631-637.
[http://dx.doi.org/10.1590/S0102-695X2006000500008]
[8]
Patrício, F.J.; Costa, G.C.; Pereira, P.V.S.; Aragão-Filho, W.C.; Sousa, S.M.; Frazão, J.B.; Pereira, W.S.; Maciel, M.C.G.; Silva, L.A.; Amaral, F.M.M.; Rebêlo, J.M.M.; Guerra, R.N.M.; Ribeiro, M.N.S.; Nascimento, F.R.F. Efficacy of the intralesional treatment with Chenopodium ambrosioides in the murine infection by Leishmania amazonensis. J. Ethnopharmacol., 2008, 115(2), 313-319.
[http://dx.doi.org/10.1016/j.jep.2007.10.009] [PMID: 18035510]
[9]
Reis, P.A.; Estato, V.; da Silva, T.I.; d’Avila, J.C.; Siqueira, L.D.; Assis, E.F.; Bozza, P.T.; Bozza, F.A.; Tibiriça, E.V.; Zimmerman, G.A.; Castro-Faria-Neto, H.C. Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog., 2012, 8(12), e1003099.
[http://dx.doi.org/10.1371/journal.ppat.1003099] [PMID: 23300448]
[10]
Lima-Júnior, J.A.C.; Costa, G.C.; Bezerra, J.L.; Patrício, F.J.B.; Silva, L.A.; Amaral, F.M.M.; Nascimento, F.R.F. Inibição da infecção in vitro de macrófagos por Leishmania amazonensis por extrato e frações de Chenopodium ambrosioides L. Rev. Ciênc. Saúde (Porto Alegre), 2014, 16, 46-53.
[11]
Neiva, V.A.; Ribeiro, M.N.S.; Nascimento, F.R.F.; Cartágenes, M.S.S.; Coutinho-Moraes, D.F.; Amaral, F.M.M. Plant species used in giardiasis treatment: ethnopharmacology and in vitro evaluation of anti-giardia activity. Brazilian J. Pharmacogn., 2014, 24, 215-224.
[http://dx.doi.org/10.1016/j.bjp.2014.04.004]
[12]
Sousa, Z.L.; de Oliveira, F.F.; da Conceição, A.O.; Silva, L.A.M.; Rossi, M.H.; Santos, J.S.; Andrioli, J.L. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi. Ann. Clin. Microbiol. Antimicrob., 2012, 11, 20.
[http://dx.doi.org/10.1186/1476-0711-11-20] [PMID: 22839690]
[13]
Cruz, G.V.B.; Pereira, P.V.S.; Patrício, F.J.; Costa, G.C.; Sousa, S.M.; Frazão, J.B.; Aragão-Filho, W.C.; Maciel, M.C.G.; Silva, L.A.; Amaral, F.M.M.; Barroqueiro, E.S.B.; Guerra, R.N.M.; Nascimento, F.R.F. Increase of cellular recruitment, phagocytosis ability and nitric oxide production induced by hydroalcoholic extract from Chenopodium ambrosioides leaves. J. Ethnopharmacol., 2007, 111(1), 148-154.
[http://dx.doi.org/10.1016/j.jep.2006.11.006] [PMID: 17156956]
[14]
Carrillo-López, L.M.; Soto-Hernández, R.M.; Zavaleta-Mancera, H.A.; Vilchis-Néstor, A.R. Study of the performance of the organic extracts of Chenopodium ambrosioides for Ag nanoparticle synthesis. J. Nanomater., 2016, 4714162, 13.
[15]
Subramaniam, J.; Murugan, K.; Jebanesan, A.; Pontheckan, P.; Dinesh, D.; Nicoletti, M.; Wei, H.; Higuchi, A.; Kumar, S.; Canale, A.; Do Benelli, G. Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus larvae? J. Cluster Sci., 2017, 28, 413-436.
[http://dx.doi.org/10.1007/s10876-016-1113-9]
[16]
Sheishaa, G.A.A.; Zaalouk, T.K.; Mostafa, M.E.S. Chenopodium ambrosioides oil extract reduced Cryptosporidium parvum development in vivo. J. Egypt. Soc. Parasitol., 2020, 50, 183-190.
[http://dx.doi.org/10.21608/jesp.2020.88835]
[17]
Olajide, O.A.; Awe, S.O.; Makinde, J.K. Pharmacological screening of the methanolic extract of Chenopodium ambrosioides. Fitoterapia, 1997, 68, 529-532.
[18]
Ibironke, G.F.; Ajiboye, K.I. Studies of anti-inflammatory and analgesic properties of Chenopodium ambrosioides leaf extract in rats. Int. J. Pharmacol., 2007, 3, 111-115.
[http://dx.doi.org/10.3923/ijp.2007.111.115]
[19]
Borges, A.R.; Aires, J.R.; Higino, T.M.M.; de Medeiros, M.; Citó, A.M.; Lopes, J.A.; de Figueiredo, R.C. Trypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of Brazil. Exp. Parasitol., 2012, 132(2), 123-128.
[http://dx.doi.org/10.1016/j.exppara.2012.06.003] [PMID: 22771867]
[20]
Jain, N.; Alam, M.S.; Kamil, M.; Ilyas, M.; Niwa, M.; Sakae, A. Two flavonol glycosides from Chenopodium ambrosioides. Phytochemistry, 1990, 29, 3988-3991.
[http://dx.doi.org/10.1016/0031-9422(90)85389-W]
[21]
Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. J. Funct. Foods, 2013, 5, 1732-1740.
[http://dx.doi.org/10.1016/j.jff.2013.07.019]
[22]
Reyes-Becerril, M.; Angulo, C.; Sanchez, V.; Vázquez-Martínez, J.; López, M.G. Antioxidant, intestinal immune status and anti-inflammatory potential of Chenopodium ambrosioides L. in fish: in vitro and in vivo studies. Fish Shellfish Immunol., 2019, 86, 420-428.
[http://dx.doi.org/10.1016/j.fsi.2018.11.059] [PMID: 30502468]
[23]
Zhu, W.X.; Zhao, K.; Chu, S.S.; Liu, Z.L. Evaluation of essential oil and its three main active ingredients of Chinese Chenopodium ambrosioides (Family: Chenopodiaceae) against Blattella germanica. J. Arthropod Borne Dis., 2012, 6(2), 90-97.
[PMID: 23378965]
[24]
Dasuki, U.A. Plant resources of South East Asia (PROSEA). 5p. Available from: https://uses.plantnet-project.org/en/Chenopodium_ambrosioides_(PROSEA) [Assessed on 24th November 2020]
[25]
Kliks, M.M. Studies on the traditional herbal anthelmintic Chenopodium ambrosioides L.: ethnopharmacological evaluation and clinical field trials. Soc. Sci. Med., 1985, 21(8), 879-886.
[http://dx.doi.org/10.1016/0277-9536(85)90144-3] [PMID: 3906906]
[26]
Curtin, L.S.M. Healing herbs of the upper Rio Grande; Southwest Museum: Los Angeles, 1965.
[27]
Morais, S.M.; Dantas, J.D.P.; da Silva, A.R.A.; Magalhães, E.F. Medicinal plants used by the Tapebas Indians of Ceará. Rev. Bras. Farmacogn., 2005, 15, 169-177.
[http://dx.doi.org/10.1590/S0102-695X2005000200017]
[28]
Lima, J.L.S.; Furtado, D.A.; Pereira, J.P.G.; Baracuthy, J.G.V.; Xavier, H.S. Medicinal plants in common use in Northeastern Brazil; CEDAC: Campina Grande, 2006, p. 82.
[29]
Garcia, D.; Domingues, M.V.; Rodrigues, E. Ethnopharmacological survey among migrants living in the Southeast Atlantic Forest of Diadema, São Paulo, Brazil. J. Ethnobiol. Ethnomed., 2010, 6, 29.
[http://dx.doi.org/10.1186/1746-4269-6-29] [PMID: 21034478]
[30]
Cartaxo, S.L.; Souza, M.M.A.; de Albuquerque, U.P. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. J. Ethnopharmacol., 2010, 131(2), 326-342.
[http://dx.doi.org/10.1016/j.jep.2010.07.003] [PMID: 20621178]
[31]
Ramos, U.F.; Soledade, S.C.; Baptista, E.R. Utilização de plantas medicinais pela comunidade atendida no Programa Saúde da Família da Pirajá, Belém, PA. Infarma., 2011, 24, 10-18.
[32]
Souza, C.D.; Felfili, J.M. Use of medicinal plants in the Alto Paraiso de Goias region, GO, Brazil. Acta Bot. Bras., 2006, 20, 135-142.
[http://dx.doi.org/10.1590/S0102-33062006000100013]
[33]
Brahim, M.A.S.; Fadli, M.; Hassani, L.; Boulay, B.; Markouka, M.; Bekkouchea, K.; Abbad, A.; Ali, M.A.; Larhsini, M. Chenopodium ambrosioides var. ambrosioides used in Moroccan traditional medicine can enhance the antimicrobial activity of conventional antibiotics. Ind. Crops Prod., 2015, 71, 37-43.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.067]
[34]
Burkill, H. The useful plants of west tropical Africa; Royal Botanic Garden Kew: London, 1985.
[35]
Okhale, S.E.; Egharevba, H.O.; Ona, E.C.; Kunle, O.F. Phytochemical and proximate analyses and thin layer chromatography fingerprinting of the aerial part of Chenopodium ambrosioides Linn. (Chenopodiaceae). J. Med. Plants Res., 2012, 6, 2289-2294.
[36]
Amole, O.; Izegbu, M. Chronic toxicity of Chenopodium ambrosioides in rats. Biomed. Res., 2005, 16, 111-113.
[37]
Kola-Mustapha, A.T.; Yohanna, K.A.; Ghazali, Y.O.; Ayotunde, H.T. Design, formulation and evaluation of Chasmanthera dependens Hochst and Chenopodium ambrosioides Linn based gel for its analgesic and anti-inflammatory activities. Heliyon, 2020, 6(9), e04894.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04894] [PMID: 32984602]
[38]
Kliks, M.M. Studies on the traditional herbal anthelmintic Chenopodium ambrosioides L.: ethnopharmacological evaluation and clinical field trials. Soc. Sci. Med., 2002, 55, 360-369.
[PMID: 3906906]
[39]
Yadav, N.; Vasudeva, N.; Singh, S.; Sharma, S.K. Medicinal properties of genus Chenopodium Linn. Nat. Prod. Radiance, 2007, 6, 131-134.
[40]
Peter, K.V. Handbook of herbs and spices, first Ed; Woodhead Publishing. Academic Press. Inc.: USA, 2012.
[41]
Josabad Alonso-Castro, A.; Jose Maldonado-Miranda, J.; Zarate- Martinez, A.; Jacobo-Salcedo, M.R.; Fernández-Galicia, C.; Alejandro Figueroa-Zuñiga, L.; Abel Rios-Reyes, N.; Angel de León-Rubio, M.; Andrés Medellín-Castillo, N.; Reyes-Munguia, A.; Méndez-Martínez, R.; Carranza-Alvarez, C. Medicinal plants used in the Huasteca Potosina, México. J. Ethnopharmacol., 2012, 143(1), 292-298.
[http://dx.doi.org/10.1016/j.jep.2012.06.035] [PMID: 22750435]
[42]
Luziatelli, G.; Sørensen, M.; Theilade, I.; Mølgaard, P. Asháninka medicinal plants: a case study from the native community of Bajo Quimiriki, Junín, Peru. J. Ethnobiol. Ethnomed., 2010, 6, 21.
[http://dx.doi.org/10.1186/1746-4269-6-21] [PMID: 20707893]
[43]
Ribeiro, A.; Romeiras, M.M.; Tavares, J.; Faria, M.T. Ethnobotanical survey in Canhane village, district of Massingir, Mozambique: medicinal plants and traditional knowledge. J. Ethnobiol. Ethnomed., 2010, 6(33), 33.
[http://dx.doi.org/10.1186/1746-4269-6-33] [PMID: 21129187]
[44]
Middleditch, B.S.; Amer, A.M. Kuwaiti plants-distribution, traditional medicine, phytochemistry, pharmacology, and economic value. Chapter: Chenopodium L. Studies Plant Sci., 1991, 2, 20.
[http://dx.doi.org/10.1016/B978-0-444-89215-7.50027-0]
[45]
Noumi, E.; Yomi, A. Medicinal plants used for intestinal diseases in Mbalmayo region, Central Province, Cameroon. Fitoterapia, 2001, 72(3), 246-254.
[http://dx.doi.org/10.1016/S0367-326X(00)00288-4] [PMID: 11295300]
[46]
Volpato, G.; Godínez, D.; Beyra, A.; Barreto, A. Uses of medicinal plants by Haitian immigrants and their descendants in the Province of Camagüey, Cuba. J. Ethnobiol. Ethnomed., 2009, 5, 16.
[http://dx.doi.org/10.1186/1746-4269-5-16] [PMID: 19450279]
[47]
Pardo de Santayana, M.; Blanco, E.; Morales, R. Plants known as té in Spain: an ethno-pharmaco-botanical review. J. Ethnopharmacol., 2005, 98(1-2), 1-19.
[http://dx.doi.org/10.1016/j.jep.2004.11.003] [PMID: 15763359]
[48]
Hajdu, Z.; Hohmann, J. An ethnopharmacological survey of the traditional medicine utilized in the community of Porvenir, Bajo Paraguá Indian Reservation, Bolivia. J. Ethnopharmacol., 2012, 139(3), 838-857.
[http://dx.doi.org/10.1016/j.jep.2011.12.029] [PMID: 22222280]
[49]
Monzote, L.; Montalvo, A.M.; Almanonni, S.; Scull, R.; Miranda, M.; Abreu, J. Activity of the essential oil from Chenopodium ambrosioides grown in Cuba against Leishmania amazonensis. Chemotherapy, 2006, 52(3), 130-136.
[http://dx.doi.org/10.1159/000092858] [PMID: 16636536]
[50]
Jirovetz, L.; Buchbauer, G.; Fleischhacker, W. Analysis of the essential oil of the leaves of the medicinal plant Chenopodium ambrosioides var. anthelminticum (L.) A. Gray from India. Sci. Pharm., 2000, 68, 123-128.
[http://dx.doi.org/10.3797/scipharm.aut-00-11]
[51]
Ávila-Blanco, M.E.; Rodríguez, M.G.; Duque, J.L.M.; Muñoz-Ortega, M.; Ventura-Juárez, J. Amoebicidal activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants in an amoebic liver abscess Hamster model. Evid. Based Complement. Alternat. Med; , 2014, 2014, p. 930208.
[52]
Almeida Bezerra, J.W.; Rodrigues Costa, A.; de Freitas, M.A.; Rodrigues, F.C.; de Souza, M.A.; da Silva, A.R.P.; Dos Santos, A.T.L.; Vieiralves Linhares, K.; Melo Coutinho, H.D.; de Lima Silva, J.R.; Bezerra Morais-Braga, M.F.; Morais-Braga, M.F.B. Chemical composition, antimicrobial, modulator and antioxidant activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants. Comp. Immunol. Microbiol. Infect. Dis., 2019, 65, 58-64.
[http://dx.doi.org/10.1016/j.cimid.2019.04.010] [PMID: 31300127]
[53]
Paré, P.W.; Zajicek, J.; Ferracini, V.L.; Melo, I.S. Antifungal terpenoids from Chenopodium ambrosioides. Biochem. Syst. Ecol., 1993, 21, 649-653.
[http://dx.doi.org/10.1016/0305-1978(93)90068-3]
[54]
Jiménez-Osornio, F.M.V.Z.J.; Kumamoto, J.; Wasser, C. Allelopathic activity of Chenopodium ambrosioides L. Biochem. Syst. Ecol., 1996, 24, 195-205.
[http://dx.doi.org/10.1016/0305-1978(96)00002-6]
[55]
Tapondjou, L.A.; Adler, C.; Bouda, H.; Fontem, D.A. Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. J. Stored Prod. Res., 2002, 38, 395-402.
[http://dx.doi.org/10.1016/S0022-474X(01)00044-3]
[56]
Lohani, H.; Chauhan, N.K.; Haider, K.K.S.Z.; Andola, H.C. Comparative aroma profile of wild and cultivated Chenopodium ambrosioides L. from Uttarakhand. J. Essent. Oil-Bear. Plants, 2012, 15, 657-661.
[http://dx.doi.org/10.1080/0972060X.2012.10644101]
[57]
Degenhardt, R.T.; Farias, I.V.; Grassi, L.T.; Franchi, G.C., Jr; Nowill, A.E.; Bittencourt, C.M. da S.; Wagner, T.M.; De Souza, M.M.; Cruz, A.B.; Malheiros, A. Characterization and evaluation of the cytotoxic potential of the essential oil of Chenopodium ambrosioides. Rev. Bras. Farmacogn., 2016, 26, 56-61.
[http://dx.doi.org/10.1016/j.bjp.2015.08.012]
[58]
Almadiy, A.A. Chemical profile, mosquitocidal, and biochemical effects of essential oil and major components of Dysphania ambrosioides against Culex quinquefasciatus Say. Environ. Sci. Pollut. Res. Int., 2020, 27(33), 41568-41576.
[http://dx.doi.org/10.1007/s11356-020-10137-z] [PMID: 32691320]
[59]
Dougnon, G.; Ito, M. Role of ascaridole and p-cymene in the sleep-promoting effects of Dysphania ambrosioides essential oil via the GABAergic system in a ddY mouse inhalation model. J. Nat. Prod., 2021, 84(1), 91-100.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01137] [PMID: 33325703]
[60]
Pavela, R.; Maggi, F.; Lupidi, G.; Mbuntcha, H.; Woguem, V.; Womeni, H.M.; Barboni, L.; Tapondjou, L.A.; Benelli, G. Clausena anisata and Dysphania ambrosioides essential oils: from ethno-medicine to modern uses as effective insecticides. Environ. Sci. Pollut. Res. Int., 2018, 25(11), 10493-10503.
[http://dx.doi.org/10.1007/s11356-017-0267-9] [PMID: 28965298]
[61]
Soares, M.H.; Dias, H.J.; Vieira, T.M.; de Souza, M.G.M.; Cruz, A.F.F.; Badoco, F.R.; Nicolella, H.D.; Cunha, W.R.; Groppo, M.; Martins, C.H.G.; Tavares, D.C.; Magalhães, L.G.; Crotti, A.E.M. Chemical composition, antibacterial, schistosomicidal, and cytotoxic activities of the essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants (Chenopodiaceae). Chem. Biodivers., 2017, 14(8), 10p.
[http://dx.doi.org/10.1002/cbdv.201700149] [PMID: 28504841]
[62]
Shah, H.; Khan, A.A. Phytochemical characterisation of an important medicinal plant, Chenopodium ambrosioides Linn. Nat. Prod. Res., 2017, 31(19), 2321-2324.
[http://dx.doi.org/10.1080/14786419.2017.1299722] [PMID: 28288517]
[63]
Rodrigues, J.G.M.; Albuquerque, P.S.V.; Nascimento, J.R.; Campos, J.A.V.; Godinho, A.S.S.; Araújo, S.J.; Brito, J.M.; Jesus, C.M.; Miranda, G.S.; Rezende, M.C.; Negrão-Corrêa, D.A.; Rocha, C.Q.; Silva, L.A.; Guerra, R.N.M.; Nascimento, F.R.F. The immunomodulatory activity of Chenopodium ambrosioides reduces the parasite burden and hepatic granulomatous inflammation in Schistosoma mansoni-infection. J. Ethnopharmacol., 2021, 264, 113287.
[http://dx.doi.org/10.1016/j.jep.2020.113287] [PMID: 32858197]
[64]
Althobaiti, F. Evaluation of the Chenopodium Ambrosioides leaf extract from Taif Region, Saudi Arabia on antimicroorganisms and the assessment of its genetic diversity using the RAMP assay. Biomed. Pharmacol. J., 2020, 13, 725-736.
[http://dx.doi.org/10.13005/bpj/1938]
[65]
Jesus, R.S.; Piana, M.; Freitas, R.B.; Brum, T.F.; Alves, C.F.S.; Belke, B.V.; Mossmann, N.J.; Cruz, R.C.; Santos, R.C.V.; Dalmolin, T.V.; Bianchini, B.V.; Campos, M.M.A.; Bauermann, L.F. In vitro antimicrobial and antimycobacterial activity and HPLC- DAD screening of phenolics from Chenopodium ambrosioides L. Braz. J. Microbiol., 2018, 49(2), 296-302.
[http://dx.doi.org/10.1016/j.bjm.2017.02.012] [PMID: 29037505]
[66]
Villalobos-Delgado, L.H.; González-Mondragón, E.G.; Govea, A.Y.S.; Andrade, J.R.; Santiago-Castro, J.T. Potential application of epazote (Chenopodium ambrosioides L.) as natural antioxidant in raw ground pork. Lebensm. Wiss. Technol., 2017, 84, 306-313.
[http://dx.doi.org/10.1016/j.lwt.2017.05.076]
[67]
Song, K.; Wang, H-Q.; Liu, C.; Kang, J.; Li, B.M.; Chen, R.Y. Chemical constituents from Chenopodium ambrosioides. Zhongguo Zhongyao Zazhi, 2014, 39(2), 254-257.
[PMID: 24761641]
[68]
Zohra, T.; Ovais, M.; Khalil, A.T.; Qasim, M.; Ayaz, M.; Shinwari, Z.K. Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants. Nat. Prod. Res., 2019, 33(1), 136-142.
[http://dx.doi.org/10.1080/14786419.2018.1437428] [PMID: 29430965]
[69]
Gohar, A.A.; Elmazar, M.M. Isolation of hypotensive flavonoids from Chenopodium species growing in Egypt. Phytother. Res., 1997, 11, 564-567.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199712)11:8<564::AID-PTR162>3.0.CO;2-L]
[70]
Song, K.; Zhang, J.; Zhang, P.; Wang, H-Q.; Liu, C.; Li, B-M.; Kang, J.; Chen, R-Y. Five new bioactive compounds from Chenopodium ambrosioides. J. Asian Nat. Prod. Res., 2015, 17(5), 482-490.
[http://dx.doi.org/10.1080/10286020.2015.1042872] [PMID: 26001043]
[71]
Elmasri, W.A.; Zhu, R.; Peng, W.; Al-Hariri, M.; Kobeissy, F.; Tran, P.; Hamood, A.N.; Hegazy, M.F.; Paré, P.W.; Mechref, Y. Multitargeted flavonoid inhibition of the pathogenic bacterium Staphylococcus aureus: A proteomic characterization. J. Proteome Res., 2017, 16(7), 2579-2586.
[http://dx.doi.org/10.1021/acs.jproteome.7b00137] [PMID: 28541047]
[72]
Li, M-C.; Zhang, Y-Q.; Meng, C-W.; Gao, J-G.; Xie, C-J.; Liu, J-Y.; Xu, Y.N. Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) F.A. Barkley - a review.J Ethnopharmacol; , 2021, p. 267, 113426.
[http://dx.doi.org/10.1016/j.jep.2020.113476]
[73]
Monzote, L.; García, M.; Pastor, J.; Gil, L.; Scull, R.; Maes, L.; Cos, P.; Gille, L. Essential oil from Chenopodium ambrosioides and main components: activity against Leishmania, their mitochondria and other microorganisms. Exp. Parasitol., 2014, 136, 20-26.
[http://dx.doi.org/10.1016/j.exppara.2013.10.007] [PMID: 24184772]
[74]
Cysne, D.N.; Fortes, T.S.; Reis, A.S.; de Paulo Ribeiro, B.; Dos Santos Ferreira, A.; do Amaral, F.M.; Guerra, R.N.; Marinho, C.R.; Nicolete, R.; Nascimento, F.R. Antimalarial potential of leaves of Chenopodium ambrosioides L. Parasitol. Res., 2016, 115(11), 4327-4334.
[http://dx.doi.org/10.1007/s00436-016-5216-x] [PMID: 27492200]
[75]
Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P.; das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part I. Curr. Med. Chem., 2012, 19(14), 2128-2175.
[http://dx.doi.org/10.2174/092986712800229023] [PMID: 22414103]
[76]
Rocha e Silva, L.F.; Nogueira, K.L.; Pinto, A.C.S.; Katzin, A.M.; Sussmann, R.A.C.; Muniz, M.P.; de Andrade Neto, V.F.; Chaves, F.C.M.; Coutinho, J.P.; Lima, E.S.; Krettli, A.U.; Tadei, W.P.; Pohlit, A.M. In vivo antimalarial activity and mechanisms of action of 4-nerolidylcatechol derivatives. Antimicrob. Agents Chemother., 2015, 59(6), 3271-3280.
[http://dx.doi.org/10.1128/AAC.05012-14] [PMID: 25801563]
[77]
Calado, G.P.; Lopes, A.J.O.; Costa Junior, L.M.; Lima, F.; Silva, L.A.; Pereira, W.S.; Amaral, F.M.; Garcia, J.B.S.; Cartágenes, M.S.; Nascimento, F.R.F. Chenopodium ambrosioides L. reduces synovial inflammation and pain in experimental osteoarthritis. PLoS One, 2015, 10(11), e0141886.
[http://dx.doi.org/10.1371/journal.pone.0141886] [PMID: 26524084]
[78]
Rios, C.E.P.; Abreu, A.G.; Braga Filho, J.A.F.; Nascimento, J.R.; Guerra, R.N.M.; Amaral, F.M.M.; Maciel, M.C.G.; Nascimento, F.R.F. Chenopodium ambrosioides L. improves phagocytic activity and decreases bacterial growth and the systemic inflammatory response in sepsis Induced by cecal ligation and puncture Front. Microbiol., 2017, 8, 148.
[PMID: 28203235]
[79]
Ayertey, F.; Ofori-Attah, E.; Antwi, S.; Amoa-Bosompem, M.; Djameh, G.; Lartey, N.L.; Ohashi, M.; Kusi, K.A.; Appiah, A.A.; Appiah-Opong, R.; Okine, L.K. Anti-inflammatory activity and mechanism of action of ethanolic leaf extract of Morinda lucida Benth. J. Tradit. Complement. Med., 2020, 11(3), 249-258.
[http://dx.doi.org/10.1016/j.jtcme.2020.07.001] [PMID: 34012871]
[80]
De Queiroz, A.C.; De Dias, T.L.M.F.; Da Matta, C.B.B.; Silva, L.H.A.C.; de Araújo-Júnior, J.X.; de Araújo, G.B.; Monzote, F.B.P.; Alexandre-Moreira, M.S. Antileishmanial activity of medicinal plants used in endemic areas in Northeastern Brazil. Evid. Based Complement. Alternat. Med., 2014, 2014, 478290.
[http://dx.doi.org/10.1155/2014/478290]
[81]
Monzote, L.; Geroldinger, G.; Tonner, M.; Scull, R.; De Sarkar, S.; Bergmann, S.; Bacher, M.; Staniek, K.; Chatterjee, M.; Rosenau, T.; Gille, L. Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytother. Res., 2018, 32(9), 1729-1740.
[http://dx.doi.org/10.1002/ptr.6097] [PMID: 29672979]
[82]
Machín, L.; Tamargo, B.; Piñón, A.; Atíes, R.C.; Scull, R.; Setzer, W.N.; Monzote, L. Bixa orellana L. (Bixaceae) and Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) Essential oils formulated in nanocochleates against Leishmania amazonensis. Molecules, 2019, 24(23), 4222.
[http://dx.doi.org/10.3390/molecules24234222] [PMID: 31757083]
[83]
Misra, P.; Sashidhara, K.V.; Singh, S.P.; Kumar, A.; Gupta, R.; Chaudhaery, S.S.; Gupta, S.S.; Majumder, H.K.; Saxena, A.K.; Dube, A. 16α-Hydroxycleroda-3,13 (14)Z-dien-15,16-olide from Polyalthia longifolia: a safe and orally active antileishmanial agent. Br. J. Pharmacol., 2010, 159(5), 1143-1150.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00609.x] [PMID: 20136832]
[84]
Camargos, H.S.; Moreira, R.A.; Mendanha, S.A.; Fernandes, K.S.; Dorta, M.L.; Alonso, A. Terpenes increase the lipid dynamics in the Leishmania plasma membrane at concentrations similar to their IC50 values. PLoS One, 2014, 9(8), e104429.
[http://dx.doi.org/10.1371/journal.pone.0104429] [PMID: 25101672]
[85]
Dos Santos, A.O.; Izumi, E.; Ueda-Nakamura, T.; Dias-Filho, B.P.; Veiga, V.F., Junior; Nakamura, C.V. Antileishmanial activity of diterpene acids in copaiba oil. Mem. Inst. Oswaldo Cruz, 2013, 108, 59-64.
[http://dx.doi.org/10.1590/S0074-02762013000100010]
[86]
Isah, M.B.; Tajuddeen, N.; Umar, M.I.; Alhafiz, Z.A.; Mohammed, A.; Ibrahim, M.A. Terpenoids as emerging therapeutic agents: Cellular targets and mechanisms of action against protozoan parasites. Stud. Nat. Prod. Chem., 2019, 59, 227-250.
[http://dx.doi.org/10.1016/B978-0-444-64179-3.00007-4]
[87]
Chekem, M.S.G.; Lunga, P.K.; Tamokou, J.D.; Kuiate, J.R.; Tane, P.; Vilarem, G.; Cerny, M. Antifungal properties of Chenopodium ambrosioides essential oil against Candida species. Pharmaceuticals (Basel), 2010, 3(9), 2900-2909.
[http://dx.doi.org/10.3390/ph3092900] [PMID: 27713382]
[88]
Ye, H.; Liu, Y.; Li, N.; Yu, J.; Cheng, H.; Li, J.; Zhang, X-Z. Anti-Helicobacter pylori activities of Chenopodium ambrosioides L. in vitro and in vivo. World J. Gastroenterol., 2015, 21(14), 4178-4183.
[http://dx.doi.org/10.3748/wjg.v21.i14.4178] [PMID: 25892867]
[89]
Zago, P.M.W.; Dos Santos Castelo Branco, S.J.; de Albuquerque Bogéa Fecury, L.; Carvalho, L.T.; Rocha, C.Q.; Madeira, P.L.B.; de Sousa, E.M.; de Siqueira, F.S.F.; Paschoal, M.A.B.; Diniz, R.S.; Goncalves, L.M. Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Front. Microbiol., 2019, 10, 1724.
[http://dx.doi.org/10.3389/fmicb.2019.01724] [PMID: 31456753]
[90]
Rao, A.; Zhang, Y.; Muend, S.; Rao, R. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrob. Agents Chemother., 2010, 54(12), 5062-5069.
[http://dx.doi.org/10.1128/AAC.01050-10] [PMID: 20921304]
[91]
Knauth, P.; Acevedo-Hernández, G.J.; Cano, M.E.; Gutiérrez-Lomelí, M.; López, Z. In vitro bioactivity of methanolic extracts from Amphipterygium adstringens (Schltdl.) Schiede ex Standl., Chenopodium ambrosioides L., Cirsium mexicanum DC., Eryngium carlinae F. Delaroche, and Pithecellobium dulce (Roxb.) Benth. used in traditional medicine in Mexico. Evid. Based Complement. Alternat. Med., 2018, 2018, 3610364.
[http://dx.doi.org/10.1155/2018/3610364] [PMID: 29681972]
[92]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[93]
Gishen, N.Z.; Taddese, S.; Zenebe, T.; Dires, K.; Tedla, A.; Mengiste, B.; Shenkute, D.; Tesema, A.; Shiferaw, Y.; Lulekal, E. In vitro antimicrobial activity of six Ethiopian medicinal plants against Staphylococcus aureus, Escherichia coli and Candida albicans. Eur. J. Integr. Med., 2020, 36(101121), 1-6.
[94]
Lall, N.; Meyer, J.J.M. In vitro inhibition of drug-resistant and drug-sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J. Ethnopharmacol., 1999, 66(3), 347-354.
[http://dx.doi.org/10.1016/S0378-8741(98)00185-8] [PMID: 10473184]
[95]
Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A.; Otchere, I.; Kissi-Twum, A. Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. J. Ethnopharmacol., 2016, 182, 10-15.
[http://dx.doi.org/10.1016/j.jep.2016.02.010] [PMID: 26875647]
[96]
Maharaj, R.; Maharaj, V.; Newmarch, M.; Crouch, N.R.; Bhagwandin, N.; Folb, P.I.; Pillay, P.; Gayaram, R. Evaluation of selected South African ethnomedicinal plants as mosquito repellents against the Anopheles arabiensis mosquito in a rodent model. Malar. J., 2010, 9, 301.
[http://dx.doi.org/10.1186/1475-2875-9-301] [PMID: 21029442]
[97]
Bossou, A.D.; Mangelinckx, S.; Yedomonhan, H.; Boko, P.M.; Akogbeto, M.C.; De Kimpe, N.; Avlessi, F.; Sohounhloue, D.C.K. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles). Parasit. Vectors, 2013, 6, 337.
[http://dx.doi.org/10.1186/1756-3305-6-337] [PMID: 24298981]
[98]
Pandey, A.K.; Palni, U.T.; Tripathi, N.N. Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F. (Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L. oil for the safety of pigeon pea seeds. J. Food Sci. Technol., 2014, 51(12), 4066-4071.
[http://dx.doi.org/10.1007/s13197-012-0896-4] [PMID: 25477682]
[99]
Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod., 2019, 140, 111609.
[http://dx.doi.org/10.1016/j.indcrop.2019.111609]
[100]
Dambolena, J.S.; Zunino, M.P.; Herrera, J.M.; Pizzolitto, R.P.; Arecom, V.A.; Zygadlo, J.A. Terpenes: Natural products for controlling insects of importance to human health-A structure-activity relationship study. Psyche (Stuttg.), 2016, 4595823, 1-17.
[101]
Yu, S.J. The toxicology and biochemistry of insecticides; CRC & Taylor & Francis: Boca Raton, Fla, USA, 2008.
[102]
Melo, J.G.; Rodrigues, M.D.; Nascimento, S.C.; Amorim, E.L.C.; Albuquerque, U.P. Cytotoxicity of plants from the Brazilian semi-arid region: A comparison of different selection approaches. S. Afr. J. Bot., 2017, 113, 47-53.
[http://dx.doi.org/10.1016/j.sajb.2017.07.013]
[103]
Gurung, R.L.; Lim, S.N.; Khaw, A.K.; Soon, J.F.F.; Shenoy, K.; Mohamed Ali, S.; Jayapal, M.; Sethu, S.; Baskar, R.; Hande, M.P. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One, 2010, 5(8), e12124.
[http://dx.doi.org/10.1371/journal.pone.0012124] [PMID: 20711342]
[104]
Vidhya, N.; Devaraj, S.N. Induction of apoptosis by eugenol in human breast cancer cells. Indian J. Exp. Biol., 2011, 49(11), 871-878.
[PMID: 22126019]
[105]
Bouyahya, A.; Belmehdi, O.; Benjouad, A.; El Hassani, R.A.; Amzazi, S.; Dakka, N.; Bakri, Y. Pharmacological properties and mechanism insights of Moroccan anticancer medicinal plants: What are the next steps? Ind. Crops Prod., 2020, 147, 26.
[http://dx.doi.org/10.1016/j.indcrop.2020.112198]
[106]
Park, K-R.; Nam, D.; Yun, H.M.; Lee, S-G.; Jang, H-J.; Sethi, G.; Cho, S.K.; Ahn, K.S. β-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/S6K1 pathways and ROS-mediated MAPKs activation. Cancer Lett., 2011, 312(2), 178-188.
[http://dx.doi.org/10.1016/j.canlet.2011.08.001] [PMID: 21924548]
[107]
Maldonado-Garcia, M.; Angulo, C.; Vazquez-Martinez, J.; Sanchez, V.; Lopez, M.G.; Reyes-Becerrila, M. Antioxidant and immunostimulant potentials of Chenopodium ambrosioides L. in Pacific red snapper (Lutjanus peru). Aquaculture, 2019, 513, 9p.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734414]
[108]
Campos, M.C.O.; Salomão, K.; Castro-Pinto, D.B.; Leon, L.L.; Barbosa, H.S.; Maciel, M.A.M.; de Castro, S.L. Croton cajucara crude extract and isolated terpenes: activity on Trypanosoma cruzi. Parasitol. Res., 2010, 107(5), 1193-1204.
[http://dx.doi.org/10.1007/s00436-010-1988-6] [PMID: 20680342]
[109]
Boniface, P.K.; Sano, C.M.; Elizabeth, F.I. Unveiling the targets involved in the quest of antileishmanial leads using in silico methods. Curr. Drug Targets, 2020, 21(7), 681-712.
[http://dx.doi.org/10.2174/1389450121666200128112948] [PMID: 32003668]
[110]
Nyasse, B.; Ngantchou, I.; Tchana, E.M.; Sonké, B.; Denier, C.; Fontaine, C. Inhibition of both Trypanosoma brucei bloodstream form and related glycolytic enzymes by a new kolavic acid derivative isolated from Entada abyssinica. Pharmazie, 2004, 59(11), 873-875.
[PMID: 15587590]
[111]
Kouam, M.K.; Payne, V.K.; Miégoué, E.; Tendonkeng, F.; Lemofouet, J.; Kana, J.R.; Boukila, B.; Pamo, E.T.; Bertine, M.N.M. Evaluation of in vivo acaricidal effect of soap containing essential oil of Chenopodium ambrosioides leaves on Rhipicephalus lunulatus in the Western highland of Cameroon. J. Pathog, 2015, 2015, 516869.
[112]
dos Santos, E.A.; de Carvalho, C.M.; Costa, A.L.S.; Conceição, A.S.; Moura, F.B.P.; Santana, A.E.G. Bioactivity evaluation of plant extracts used in indigenous medicine against the snail, Biomphalaria glabrata, and the larvae of Aedes aegypti.Evid. Based Complement. Altern. Med; , 2012, 2012, p. 846583.
[113]
Vanessa, A.N.; Maria, N.S.R.; Flávia, M.do S.S.C.; Denise, F.C.-M.; Flavia, M.M.doA. Plant species used in giardiasis treatment: ethnopharmacology and in vitro evaluation of anti-giardia activity. Rev. Braz. Pharmacogn., 2014, 24, 215-224.
[http://dx.doi.org/10.1016/j.bjp.2014.04.004]
[114]
Bum, E.N.; Soudi, S.; Ayissi, E.R.; Dong, C.; Lakoulo, N.H.; Maidawa, F.; Seke, P.F.E.; Nanga, L.D.; Taiwe, G.S.; Dimo, T.; Njikam, N.; Rakotonirina, A.; Rakotonirina, S.V.; Kamanyi, A. Anxiolytic activity evaluation of four medicinal plants from Cameroon. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(5)(Suppl.), 130-139.
[http://dx.doi.org/10.4314/ajtcam.v8i5S.19] [PMID: 22754066]
[115]
da Silva, F.M.A.; da Silva, K.P.A.; de Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.F.; Pinheiro, M.L.B.; de Souza, A.Q.L.; de Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). Mem. Inst. Oswaldo Cruz, 2020, 115, e200207.
[http://dx.doi.org/10.1590/0074-02760200207] [PMID: 33027419]
[116]
Soares, C.D.; Carvalho, M.G.; Carvalho, R.A.; Trindade, S.R.P.; Rêgo, A.C.; Araújo-Filho, I.; Marques, M.M. Chenopodium ambrosioides L. extract prevents bone loss. Acta Cir. Bras., 2015, 30(12), 812-818.
[http://dx.doi.org/10.1590/S0102-865020150120000004] [PMID: 26735052]
[117]
Neto, V.F.P.; Ribeiro, R.M.; Morais, C.S.; Campos, M.B.; Vieira, D.A.; Guerra, P.C.; Abreu-Silva, A.L.; Junior, J.R.S.; Nascimento, F.R.F.; Borges, M.O.R.; Borges, A.C.R. Chenopodium ambrosioides as a bone graft substitute in rabbits radius fracture. BMC Compl. Alternative Med., 2017, 17, 350.
[118]
Penha, E.S.D.; Lacerda-Santos, R.; Carvalho, M.G.F.; Oliveira, P.T. Effect of Chenopodium ambrosioides on the healing process of the in vivo bone tissue. Microsc. Res. Tech., 2017, 80(11), 1167-1173.
[http://dx.doi.org/10.1002/jemt.22913] [PMID: 28742256]
[119]
Assaidi, A.; Legssyer, A.; Berrichi, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; Ziyyat, A. Hypotensive property of Chenopodium ambrosioides in anesthetized normotensive rats. J. Complement. Integr. Med., 2014, 11(1), 1-7.
[http://dx.doi.org/10.1515/jcim-2013-0045] [PMID: 24552968]
[120]
Pereira-de-Morais, L.; Silva, A.A.; da Silva, R.E.R.; Ferraz Navarro, D.M.D.A.; Melo Coutinho, H.D.; Menezes, I.R.A.; Kerntopf, M.R.; Cunha, F.A.B.D.; Leal-Cardoso, J.H.; Barbosa, R.; Leal- Cardoso, J.H.; Barbosa, R. Myorelaxant action of the Dysphania ambrosioides (L.) Mosyakin & Clemants essential oil and its major constituent α-terpinene in isolated rat trachea. Food Chem., 2020, 325, 126923.
[http://dx.doi.org/10.1016/j.foodchem.2020.126923] [PMID: 32387952]
[121]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[122]
Ahmad, N.; Sharma, S.; Alam, M.K.; Singh, V.N.; Shamsi, S.F.; Mehta, B.R.; Fatma, A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B Biointerfaces, 2010, 81(1), 81-86.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.029] [PMID: 20656463]
[123]
Kapoor, S.; Lawless, D.; Kennepohl, P.; Meisel, D.; Serpone, N. Reduction and aggregation of silver ions in aqueous gelatin solutions. Langmuir, 1994, 10, 3018-3022.
[http://dx.doi.org/10.1021/la00021a026]
[124]
Li, X.; Xu, H.; Chen, Z.S.; Chen, G. Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater, 2011, 2011, 270974.
[http://dx.doi.org/10.1155/2011/270974]
[125]
Dwivedi, A.D.; Gopal, K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A Physicochem. Eng. Asp., 2010, 369, 27-33.
[http://dx.doi.org/10.1016/j.colsurfa.2010.07.020]
[126]
Carrillo-López, L.M.; Zavaleta-Mancera, H.A.; Vilchis-Nestor, A.; Soto-Hernández, R.M.; Arenas-Alatorre, J.; Trejo-Téllez, L.I.; Gómez-Merino, F. Biosynthesis of silver nanoparticles using Chenopodium ambrosioides. J. Nanomater., 2014, 951746, 9p.
[127]
Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H.; Park, Y.H. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol., 2008, 74(7), 2171-2178.
[http://dx.doi.org/10.1128/AEM.02001-07] [PMID: 18245232]
[128]
Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[129]
Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 2010, 28(11), 580-588.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.006] [PMID: 20724010]
[130]
Ponarulselvam, S.; Panneerselvam, C.; Murugan, K.; Aarthi, N.; Kalimuthu, K.; Thangamani, S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed., 2012, 2(7), 574-580.
[http://dx.doi.org/10.1016/S2221-1691(12)60100-2] [PMID: 23569974]
[131]
Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharm. Res., 1996, 13(12), 1838-1845.
[http://dx.doi.org/10.1023/A:1016085108889] [PMID: 8987081]
[132]
Cooper, D.L.; Conder, C.M.; Harirforoosh, S. Nanoparticles in drug delivery: mechanism of action, formulation and clinical application towards reduction in drug-associated nephrotoxicity. Expert Opin. Drug Deliv., 2014, 11(10), 1661-1680.
[http://dx.doi.org/10.1517/17425247.2014.938046] [PMID: 25054316]
[133]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[134]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[135]
Mashwani, Z.U.; Khan, T.; Khan, M.A.; Nadhman, A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl. Microbiol. Biotechnol., 2015, 99(23), 9923-9934.
[http://dx.doi.org/10.1007/s00253-015-6987-1] [PMID: 26392135]
[136]
Duran, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol., 2007, 3, 203-208.
[http://dx.doi.org/10.1166/jbn.2007.022]
[137]
Fortina, P.; Kricka, L.J.; Graves, D.J.; Park, J.; Hyslop, T.; Tam, F.; Halas, N.; Surrey, S.; Waldman, S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol., 2007, 25(4), 145-152.
[http://dx.doi.org/10.1016/j.tibtech.2007.02.005] [PMID: 17316852]
[138]
De Pascual, T.J.; Torres, B.C.; Perez, M.A. Essential oil of Chenopodium ambrosioides. Revista Italiana Essenze, Profiumi. Piante Officinali Aromi Cosmetica Aerosol., 1980, 62, 123-125.
[139]
Gadano, A.; Gurni, A.; López, P.; Ferraro, G.; Carballo, M. In vitro genotoxic evaluation of the medicinal plant Chenopodium ambrosioides L. J. Ethnopharmacol., 2002, 81(1), 11-16.
[http://dx.doi.org/10.1016/S0378-8741(01)00418-4] [PMID: 12020922]
[140]
Environmental Protection Agency (EPA). Extract of Chenopodium ambrosioides near ambrosioides (599995).Fact sheet; , 2011, p. 2.
[141]
Pereira, W.S.; Ribeiro, B.P.; Sousa, A.I.; Serra, I.C.; Mattar, N.S.; Fortes, T.S.; Reis, A.S.; Silva, L.A.; Barroqueiro, E.S.; Guerra, R.N.; Nascimento, F.R. Evaluation of the subchronic toxicity of oral treatment with Chenopodium ambrosioides in mice. J. Ethnopharmacol., 2010, 127(3), 602-605.
[http://dx.doi.org/10.1016/j.jep.2009.12.018] [PMID: 20026398]
[142]
da Silva, M.G.C.; Amorim, R.N.; Câmara, C.C.; Fontenele Neto, J.D.; Soto-Blanco, B. Acute and sub-chronic toxicity of aqueous extracts of Chenopodium ambrosioides leaves in rats. J. Med. Food, 2014, 17(9), 979-984.
[http://dx.doi.org/10.1089/jmf.2013.0134] [PMID: 24892475]
[143]
Cavalli, J.F.; Tomi, F.; Bernardini, A.F.; Casanova, J. Combined analysis of the essential oil of Chenopodium ambrosioides by GC, GC-MS and 13C-NMR spectroscopy: quantitative determination of ascaridole, a heat-sensitive compound. Phytochem. Anal., 2004, 15(5), 275-279.
[http://dx.doi.org/10.1002/pca.761] [PMID: 15508830]
[144]
Ruffa, M.J.; Ferraro, G.; Wagner, M.L.; Calcagno, M.L.; Campos, R.H.; Cavallaro, L. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J. Ethnopharmacol., 2002, 79(3), 335-339.
[http://dx.doi.org/10.1016/S0378-8741(01)00400-7] [PMID: 11849838]
[145]
Gadano, A.B.; Gurni, A.A.; Carballo, M.A. Argentine folk medicine: genotoxic effects of Chenopodiaceae family. J. Ethnopharmacol., 2006, 103(2), 246-251.
[http://dx.doi.org/10.1016/j.jep.2005.08.043] [PMID: 16219440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy