Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds

Author(s): Cauê Benito Scarim*, Renan Lira de Farias, Diego Eidy Chiba and Chung Man Chin*

Volume 29, Issue 13, 2022

Published on: 06 January, 2022

Page: [2334 - 2381] Pages: 48

DOI: 10.2174/0929867328666210917114912

Price: $65

Abstract

Scaffolds of metal-based compounds can act as pharmacophore groups in several ligands to treat various diseases, including tropical infectious diseases (TID). In this review article, we investigate the contribution of these moieties to medicinal inorganic chemistry in the last seven years against TID, including American trypanosomiasis (Chagas disease), human African trypanosomiasis (HAT, sleeping sickness), leishmania, and malaria. The most potent metal-based complexes are displayed and highlighted in figures, tables and graphics; according to their pharmacological activities (IC50 > 10μM) against Trypanosomatids and Plasmodium spp parasites. We highlight the current progresses and viewpoints of these metal-based complexes, with a specific focus on drug discovery.

Keywords: Metal-based drugs, new drugs, T. cruzi, T. brucei, Leishmania, Plasmodium ssp.

« Previous
[1]
Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: a new class of potent antitumour agents. Nature, 1969, 222(5191), 385-386.
[http://dx.doi.org/10.1038/222385a0] [PMID: 5782119]
[2]
Roy, H.; Deolalkar, M.; Desai, A.S. Synthesis of calix-salen silver corates for evaluation of their antimicrobial and anticancer activities. ACS Omega, 2019, 4(25), 21346-21352.
[http://dx.doi.org/10.1021/acsomega.9b02948] [PMID: 31867529]
[3]
Polo-Cerón, D. Cu(II) and Ni(II) Complexes with new tridentate NNS thiosemicarbazones: synthesis, characterisation, DNA interaction, and antibacterial activity. Bioinorg. Chem. Appl., 2019, 2019, 3520837.
[http://dx.doi.org/10.1155/2019/3520837] [PMID: 31354798]
[4]
Rostamizadeh, S.; Daneshfar, Z.; Moghimi, H. Synthesis of sulfamethoxazole and sulfabenzamide metal complexes; evaluation of their antibacterial activity. Eur. J. Med. Chem., 2019, 171, 364-371.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.002] [PMID: 30928708]
[5]
Bisceglie, F.; Bacci, C.; Vismarra, A.; Barilli, E.; Pioli, M.; Orsoni, N.; Pelosi, G. Antibacterial activity of metal complexes based on cinnamaldehyde thiosemicarbazone analogues. J. Inorg. Biochem., 2020, 203, 110888.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110888] [PMID: 31783215]
[6]
Đurić, S.; Vojnovic, S.; Pavic, A.; Mojicevic, M.; Wadepohl, H.; Savić, N.; Popsavin, M.; Nikodinovic-Runic, J.; Djuran, M.; Glišić, B. New polynuclear 1,5-naphthyri-dine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center. J. Inorg. Biochem., 2019, 203, 110872.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110872] [PMID: 31689592]
[7]
Varna, D.; Zainuddin, D.I.; Hatzidimitriou, A.G.; Psomas, G.; Pantazaki, A.A.; Papi, R.; Angaridis, P.; Aslanidis, P. Homoleptic and heteroleptic silver(I) complexes bearing diphosphane and thioamide ligands: Synthesis, structures, DNA interactions and antibacterial activity studies. Mater. Sci. Eng. C, 2019, 99, 450-459.
[http://dx.doi.org/10.1016/j.msec.2019.01.107] [PMID: 30889719]
[8]
Joshi, S.D.; Kumar, D.; Dixit, S.R.; Tigadi, N.; More, U.A.; Lherbet, C.; Aminabhavi, T.M.; Yang, K.S. Synthesis, characterization and antitubercular activities of novel pyrrolyl hydrazones and their Cu-complexes. Eur. J. Med. Chem., 2016, 121, 21-39.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.025] [PMID: 27214509]
[9]
Ali, M.; Ahmed, M.; Hafiz, S.; Kamal, M.; Mumtaz, M.; Hanif, M.; Khan, K.M. Metal complexes of isonicotinylhydrazide and their antitubercular activity. Pak. J. Pharm. Sci., 2017, 30(6)(Suppl.), 2399-2403.
[PMID: 29188776]
[10]
Arancibia, R.; Klahn, A.H.; Lapier, M.; Maya, J.D.; Ibañez, A.; Teresa, M.; Carrère-kremer, S.; Kremer, L.; Biot, C. Synthesis, characterization and in vitro anti-Trypanosoma Cruzi and Anti-Mycobacterium tuberculosis evaluations of cyrhetrenyl and ferrocenyl thiosemicarbazones. J. Organomet. Chem., 2014, 755, 1-6.
[http://dx.doi.org/10.1016/j.jorganchem.2013.12.049]
[11]
Ali, M.; Ahmed, M.; Hafiz, S.; Kamal, M.; Mumtaz, M.; Ayatollahi, S.A. Design, synthesis and antitubercular evaluation of novel series of pyrazinecarboxamide metal complexes. Iran. J. Pharm. Res., 2018, 17(1), 93-99.
[PMID: 29755542]
[12]
Scarim, C.B.; Lira de Farias, R.; Vieira de Godoy Netto, A.; Chin, C.M.; Leandro Dos Santos, J.; Pavan, F.R. Recent advances in drug discovery against Mycobacterium tuberculosis: Metal-based complexes. Eur. J. Med. Chem., 2021, 214, 113166.
[http://dx.doi.org/10.1016/j.ejmech.2021.113166] [PMID: 33550181]
[13]
Kulkarni, N.V.; Budagumpi, S.; Kurdekar, G.S.; Revankar, V.K.; Didagi, S. Anticonvulsant activity and toxicity evaluation of Cu(II) and Zn(II) metal complexes derived from triazole-quinoline ligands. Chem. Pharm. Bull. (Tokyo), 2010, 58(12), 1569-1575.
[http://dx.doi.org/10.1248/cpb.58.1569] [PMID: 21139256]
[14]
Adil, S.; Khan, A.U.; Badshah, H.; Asghar, F.; Usman, M.; Badshah, A.; Ali, S. in Silico and in vivo investigation of ferrocene-incorporated acyl ureas and homoleptic cadmium carboxylate derivatives for anticonvulsant, anxiolytic, and sedative potential. Drug Dev. Res., 2018, 79(4), 184-197.
[http://dx.doi.org/10.1002/ddr.21435] [PMID: 29989221]
[15]
Grünspan, L.D.; Mussulini, B.H.M.; Baggio, S.; Dos Santos, P.R.; Dumas, F.; Rico, E.P.; de Oliveira, D.L.; Moura, S. Teratogenic and anticonvulsant effects of zinc and copper valproate complexes in zebrafish. Epilepsy Res., 2018, 139, 171-179.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.01.005] [PMID: 29371041]
[16]
Cukierman, D.; Accardo, E.; Gomes, R.; Falco, A. De; Miotto, M.; Freitas, M.; Lanznaster, M.; Fernández, C.; Rey, N. Aroylhydrazones constitute a promising class of “metal-protein attenuating compounds” for the treatment of alzheimer’s disease: a proof-of-concept based on the study of the interactions between zinc(II) and pyridine-2-carboxaldehyde isonicotinoyl hydrazon. J. Biol. Inorg. Chem., 2018, 23(8), 1227-1241.
[17]
Zhang, W.; Huang, D.; Huang, M.; Huang, J.; Wang, D.; Liu, X.; Nguyen, M.; Vendier, L.; Mazères, S.; Robert, A.; Liu, Y.; Meunier, B. Preparation of tetradentate copper chelators as potential anti-alzheimer agents. ChemMedChem, 2018, 13(7), 684-704.
[http://dx.doi.org/10.1002/cmdc.201700734] [PMID: 29420864]
[18]
Liu, H.; Qu, Y.; Wang, X. Amyloid β-targeted metal complexes for potential applications in Alzheimer’s disease. Future Med. Chem., 2018, 10(6), 679-701.
[http://dx.doi.org/10.4155/fmc-2017-0248] [PMID: 29400551]
[19]
Chand, K.; Alsoghier, H.M.; Chaves, S.; Santos, M.A. Tacrine-(hydroxybenzoyl-pyridone) hybrids as potential multifunctional anti-Alzheimer’s agents: AChE inhibition, antioxidant activity and metal chelating capacity. J. Inorg. Biochem., 2016, 163, 266-277.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.05.005] [PMID: 27235273]
[20]
Niu, X.; Yang, J.; Yang, X. Synthesis and anti-diabetic activity of new N,N-dimethylphenylenediamine-derivatized nitrilotriacetic acid vanadyl complexes. J. Inorg. Biochem., 2017, 177, 291-299.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.06.017] [PMID: 28709620]
[21]
Nishiguchi, T.; Yoshikawa, Y.; Yasui, H. Investigating the target organs of novel anti-diabetic zinc complexes with organo selenium ligands. J. Inorg. Biochem., 2018, 185, 103-112.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.05.002] [PMID: 29843022]
[22]
Nishiguchi, T.; Yoshikawa, Y.; Yasui, H. Anti-diabetic effect of organo-chalcogen (sulfur and selenium) zinc complexes with hydroxy-pyrone derivatives on leptin-deficient type 2 diabetes model ob/ob mice. Int. J. Mol. Sci., 2017, 18(12), E2647.
[http://dx.doi.org/10.3390/ijms18122647] [PMID: 29215553]
[23]
Sakurai, H.; Yoshikawa, Y.; Yasui, H. Current state for the development of metallopharmaceutics and anti-diabetic metal complexes. Chem. Soc. Rev., 2008, 37(11), 2383-2392.
[http://dx.doi.org/10.1039/b710347f] [PMID: 18949111]
[24]
Dimiza, F.; Lazou, M.; Papadopoulos, A.N.; Hatzidimitriou, A.G.; Psomas, G. Manganese(II) coordination compounds of carboxylate non-steroidal anti-inflammatory drugs. J. Inorg. Biochem., 2020, 203, 110906.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110906] [PMID: 31707332]
[25]
Trommenschlager, A.; Chotard, F.; Bertrand, B.; Amor, S.; Richard, P.; Bettaïeb, A.; Paul, C.; Connat, J.L.; Le Gendre, P.; Bodio, E. gold(i)-coumarin-caffeine-based complexes as new potential anti-inflammatory and anticancer trackable agents. ChemMedChem, 2018, 13(22), 2408-2414.
[http://dx.doi.org/10.1002/cmdc.201800474] [PMID: 30203922]
[26]
Tsiliou, S.; Kefala, L.; Hatzidimitriou, A.; Kessissoglou, D.; Perdih, F.; Papadopoulos, A.; Turel, I.; Psomas, G. Cobalt(II) complexes with non-steroidal anti-inflammatory drugs and α-diimines. J. Inorg. Biochem., 2016, 160, 125-139.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.12.015]
[27]
Jiang, W.; Fan, S.; Zhou, Q.; Zhang, F.; Kuang, D.; Tan, Y. Diversity of complexes based on p-nitrobenzoylhydrazide, benzoylformic acid and diorganotin halides or oxides self-assemble: Cytotoxicity, the induction of apoptosis in cancer cells and DNA-binding properties. Bioorg. Chem., 2020, 94(4), 103402.
[http://dx.doi.org/10.1016/j.bioorg.2019.103402] [PMID: 31718891]
[28]
Ma, W.; Zhang, S.; Tian, Z.; Xu, Z.; Zhang, Y.; Xia, X.; Chen, X.; Liu, Z. Potential anticancer agent for selective damage to mitochondria or lysosomes: Naphthalimide-modified fluorescent biomarker half-sandwich iridium (III) and ruthenium (II) complexes. Eur. J. Med. Chem., 2019, 181, 111599.
[http://dx.doi.org/10.1016/j.ejmech.2019.111599] [PMID: 31408807]
[29]
Khater, M.; Ravishankar, D.; Greco, F.; Osborn, H. Metal complexes of flavonoids: their synthesis, characterization and enhanced antioxidant and anticancer activities. Future Med. Chem., 2019, 11(21), 2845-2867.
[http://dx.doi.org/10.4155/fmc-2019-023.]
[30]
Sarto, L.E.; DE Gois, E.P.; DE Andrade, G.G.; DE Almeida, M.S.; Freitas, J.T.J.; DE Souza Reis Júnior, A.; Franco, L.P.; Torres, C.; DE Almeida, E.T.; Gouvêa, C.M.C.P. Anticancer potential of palladium(II) complexes with schiff bases derived from 4-aminoacetophenone against melanoma in vitro. Anticancer Res., 2019, 39(12), 6693-6699.
[http://dx.doi.org/10.21873/anticanres.13884] [PMID: 31810934]
[31]
Yu, B.; Liu, Y.; Peng, X.; Hua, S.; Zhou, G.; Yan, K.; Liu, Y. Synthesis, characterization, and antitumor properties of Au(i)-thiourea complexes. Metallomics, 2020, 12, 104-113.
[http://dx.doi.org/10.1039/C9MT00232D]
[32]
Rogolino, D.; Cavazzoni, A.; Gatti, A.; Tegoni, M.; Pelosi, G.; Verdolino, V.; Fumarola, C.; Cretella, D.; Petronini, P.G.; Carcelli, M. Anti-proliferative effects of copper(II) complexes with hydroxyquinoline-thiosemicarbazone ligands. Eur. J. Med. Chem., 2017, 128, 140-153.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.031] [PMID: 28182987]
[33]
Zhi, S.; Li, Y.; Qiang, J.; Hu, J.; Song, W.; Zhao, J. Synthesis and anticancer evaluation of benzo-N-heterocycles transition metal complexes against esophageal cancer cell lines. J. Inorg. Biochem., 2019, 201, 110816.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110816] [PMID: 31518868]
[34]
Ravera, M.; Moreno-Viguri, E.; Paucar, R.; Pérez-Silanes, S.; Gabano, E. Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur. J. Med. Chem., 2018, 155, 459-482.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.044] [PMID: 29908440]
[35]
Kryshchyshyn, A.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Trends in research of antitrypanosomal agents among synthetic heterocycles. Eur. J. Med. Chem., 2014, 85, 51-64.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.092] [PMID: 25072876]
[36]
Salas, J.M.; Caballero, A.B.; Esteban-Parra, G.M.; Méndez-Arriaga, J.M. Leishmanicidal and Trypanocidal Activity of Metal Complexes with 1,2,4-Triazolo[1,5-a]pyrimidines: Insights on their Therapeutic Potential against Leishmaniasis and Chagas Disease. Curr. Med. Chem., 2017, 24(25), 2796-2806.
[http://dx.doi.org/10.2174/0929867324666170516122024] [PMID: 28521698]
[37]
Shamshad, H.; Hafiz, A.; Althagafi, I.I.; Saeed, M.; Mirza, A.Z. Characterization of the Trypanosoma brucei pteridine reductase active- site using computational docking and virtual screening techniques. Curr. Computeraided Drug Des., 2020, 16(5), 583-598.
[http://dx.doi.org/10.2174/1573409915666190827163327] [PMID: 31453790]
[38]
Mirza, A.Z.; Shamshad, H.; Osra, F.A.; Habeebullah, T.M.; Morad, M. An overview of viruses discovered over the last decades and drug development for the current pandemic. Eur. J. Pharmacol., 2021, 890, 173746.
[http://dx.doi.org/10.1016/j.ejphar.2020.173746] [PMID: 33221318]
[39]
Barry, N.P.; Sadler, P.J. Exploration of the medical periodic table: towards new targets. Chem. Commun. (Camb.), 2013, 49(45), 5106-5131.
[http://dx.doi.org/10.1039/c3cc41143e] [PMID: 23636600]
[40]
Allardyce, C.S.; Dyson, P.J. Metal-based drugs that break the rules. Dalton Trans., 2016, 45(8), 3201-3209.
[http://dx.doi.org/10.1039/C5DT03919C] [PMID: 26820398]
[41]
Storr, T.; Thompson, K.H.; Orvig, C. Design of targeting ligands in medicinal inorganic chemistry. Chem. Soc. Rev., 2006, 35(6), 534-544.
[http://dx.doi.org/10.1039/b514859f] [PMID: 16729147]
[42]
Thompson, K.H.; Orvig, C. Metal complexes in medicinal chemistry: new vistas and challenges in drug design. Dalton Trans., 2006, 6(6), 761-764.
[http://dx.doi.org/10.1039/B513476E] [PMID: 16437168]
[43]
Meggers, E. Exploring biologically relevant chemical space with metal complexes. Curr. Opin. Chem. Biol., 2007, 11(3), 287-292.
[http://dx.doi.org/10.1016/j.cbpa.2007.05.013] [PMID: 17548234]
[44]
Mjos, K.D.; Orvig, C. Metallodrugs in medicinal inorganic chemistry. Chem. Rev., 2014, 114(8), 4540-4563.
[http://dx.doi.org/10.1021/cr400460s] [PMID: 24456146]
[45]
de Almeida, A.; Oliveira, B.; Correia, J.; Soveral, G.; Casini, A. Review: emerging protein targets for metal-based pharmaceutical agents: an update. Coord. Chem. Rev., 2013, 257, 2689-2704.
[http://dx.doi.org/10.1016/j.ccr.2013.01.031]
[46]
Komeda, S.; Casini, A. Next-generation anticancer metallodrugs. Curr. Top. Med. Chem., 2012, 12(3), 219-235.
[http://dx.doi.org/10.2174/156802612799078964] [PMID: 22236158]
[47]
Medici, S.; Peana, M.; Nurchi, V.; Lachowicz, J.; Crisponi, G.; Zoroddu, M. Noble metals in medicine: latest advances. Coord. Chem., 2015, 284, 329-350.
[http://dx.doi.org/10.1016/j.ccr.2014.08.002]
[48]
Hannon, M. Metal-based anticancer drugs: from a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl. Chem., 2007, 79, 2243-2261.
[http://dx.doi.org/10.1351/pac200779122243]
[49]
Romero-Canelón, I.; Sadler, P.J. Next-generation metal anticancer complexes: Multitargeting via redox modulation. Inorg. Chem., 2013, 52(21), 12276-12291.
[http://dx.doi.org/10.1021/ic400835n] [PMID: 23879584]
[50]
Trudu, F.; Amato, F.; Vaňhara, P.; Pivetta, T.; Peña-Méndez, E.M.; Havel, J. Coordination compounds in cancer: past, present and perspectives. J. Appl. Biomed., 2015, 13(2), 79-103.
[http://dx.doi.org/10.1016/j.jab.2015.03.003]
[51]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39(35), 8113-8127.
[http://dx.doi.org/10.1039/c0dt00292e] [PMID: 20593091]
[52]
Gianferrara, T.; Bratsos, I.; Alessio, E. A Categorization of metal anticancer compounds based on their mode of action. Dalton Trans., 2009, 37, 7588-7598.
[53]
Fricker, S. Metal based drugs: from serendipity to design. Dalton Trans., 2007, 43, 4903-4917.
[54]
Sánchez-Delgado, R.A.; Anzellotti, A. Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis. Mini Rev. Med. Chem., 2004, 4(1), 23-30.
[http://dx.doi.org/10.2174/1389557043487493] [PMID: 14754440]
[55]
Navarro, M.; Gabbiani, C.; Messori, L.; Gambino, D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov. Today, 2010, 15(23-24), 1070-1078.
[http://dx.doi.org/10.1016/j.drudis.2010.10.005] [PMID: 20974285]
[56]
Gambino, D.; Otero, L. Design of prospective antiparasitic metal-based compounds including selected organometallic cores. Inorg. Chim. Acta, 2018, 472, 58-75.
[http://dx.doi.org/10.1016/j.ica.2017.07.068]
[57]
Glišić, B.Đ.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans., 2014, 43(16), 5950-5969.
[http://dx.doi.org/10.1039/C4DT00022F] [PMID: 24598838]
[58]
WHO. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec., 2015, 90(6), 33-43.
[PMID: 25671846]
[59]
DNDi. Drugs for Neglected Diseases Initiative (DNDi), Neglected Tropical Diseases. 2020. Available from: Https://Www.Dndi.Org/Diseases-Projects/Chagas/ (Accessed 02 January 2020).
[60]
WHO. World and Health Organization (WHO), Trypanosomiasis Human African (Sleeping Sickness). (Accessed 02 January 2020). , 2020.
[61]
World Health Organization. World Malaria Report 2017, 2017. Available from: https://doi.org/http://www.who.int/malaria/publications/world-malaria-report-2017/report/en/
[62]
Sherlock, I.A. Epidemiology and dynamics of the vectorial transmission of Chagas disease. Mem. Inst. Oswaldo Cruz, 1999, 94(1)(Suppl. 1), 385-386.
[http://dx.doi.org/10.1590/S0074-02761999000700075] [PMID: 10677761]
[63]
WHO. Chagas disease (American trypanosomiasis).
[64]
Rassi, A.; Rassi, A.; Marin-Neto, J.A. gas. Chagas Disease. Lancet, 2010, 375, 1388-1402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X]
[65]
DE SOUZA, W. O Parasita e Sua Interação Com Os Hospedeiros. In: Trypanosoma cruzi e Doença de Chagas; BRENER, Z., Ed.; Guanabara Koogan: Rio de Janeiro, 1999; pp. 88-126..
[66]
Dias, J.C.P.; Coura, J.R. Clínica e terapêutica da doença de chagas, uma abordagem geral, pratica para o clínico. Cad. Saude Publica, 1997, 486.
[67]
ANDRADE, Z. Patologia Da Doença de Chagas. In: Trypanosoma cruzi e Doença de Chagas; Koogan, G., Ed.; Rio de, 2000; pp. 379-388..
[68]
Fuentes, B, R.; Maturana, A, M.; de la Cruz, M, R. Eficacia de nifurtimox para el tratamiento de pacientes con enfermedad de chagas crónica. Rev. Chil. infectología, 2012, 29(1), 82-86.
[http://dx.doi.org/10.4067/S0716-10182012000100013]
[69]
Maya, J.D.; Orellana, M.; Ferreira, J.; Kemmerling, U.; López-Muñoz, R.; Morello, A. Chagas disease: Present status of pathogenic mechanisms and chemotherapy. Biol. Res., 2010, 43(3), 323-331.
[http://dx.doi.org/10.4067/S0716-97602010000300009] [PMID: 21249304]
[70]
WHO. Control of Chagas Disease: Second Report of the WHO Expert Committee World Health Organization (2000 : Brasilia, Brazil). Geneva World Heal. Organ., 2002, 905, 109.
[71]
Pan, P.; Vermelho, A.B.; Capaci Rodrigues, G.; Scozzafava, A.; Tolvanen, M.E.E.; Parkkila, S.; Capasso, C.; Supuran, C.T. Cloning, characterization, and sulfonamide and thiol inhibition studies of an α-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease. J. Med. Chem., 2013, 56(4), 1761-1771.
[http://dx.doi.org/10.1021/jm4000616] [PMID: 23391336]
[72]
de Andrade, A.L.S.S.; Zicker, F.; de Oliveira, R.M.; Almeida Silva, S.; Luquetti, A.; Travassos, L.R.; Almeida, I.C.; de Andrade, S.S.; de Andrade, J.G.; Martelli, C.M.T. Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet, 1996, 348(9039), 1407-1413.
[http://dx.doi.org/10.1016/S0140-6736(96)04128-1] [PMID: 8937280]
[73]
Sosa Estani, S.; Segura, E.L.; Ruiz, A.M.; Velazquez, E.; Porcel, B.M.; Yampotis, C. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas’ disease. Am. J. Trop. Med. Hyg., 1998, 59(4), 526-529.
[http://dx.doi.org/10.4269/ajtmh.1998.59.526] [PMID: 9790423]
[74]
Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; Guhl, F.; Velazquez, E.; Bonilla, L.; Meeks, B.; Rao-Melacini, P.; Pogue, J.; Mattos, A.; Lazdins, J.; Rassi, A.; Connolly, S.J.; Yusuf, S. Randomized trial of benznidazole for chronic chagas’ cardiomyopathy. N. Engl. J. Med., 2015, 373(14), 1295-1306.
[http://dx.doi.org/10.1056/NEJMoa1507574] [PMID: 26323937]
[75]
Sperandio da Silva, G.M.; Mediano, M.F.F.; Alvarenga Americano do Brasil, P.E.; da Costa Chambela, M.; da Silva, J.A.; de Sousa, A.S.; Xavier, S.S.; Rodrigues da Costa, A.; Magalhães Saraiva, R.; Hasslocher-Moreno, A.M. A clinical adverse drug reaction prediction model for patients with chagas disease treated with benznidazole. Antimicrob. Agents Chemother., 2014, 58(11), 6371-6377.
[http://dx.doi.org/10.1128/AAC.02842-14] [PMID: 25114135]
[76]
Soy, D.; Aldasoro, E.; Guerrero, L.; Posada, E.; Serret, N.; Mejía, T.; Urbina, J.A.; Gascón, J. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob. Agents Chemother., 2015, 59(6), 3342-3349.
[http://dx.doi.org/10.1128/AAC.05018-14] [PMID: 25824212]
[77]
Fernández, M.L.; Marson, M.E.; Ramirez, J.C.; Mastrantonio, G.; Schijman, A.G.; Altcheh, J.; Riarte, A.R.; Bournissen, F.G. Pharmacokinetic and pharmacodynamic responses in adult patients with Chagas disease treated with a new formulation of benznidazole. Mem. Inst. Oswaldo Cruz, 2016, 111(3), 218-221.
[http://dx.doi.org/10.1590/0074-02760150401] [PMID: 26982179]
[78]
Andrade, M.C. Oliveira, Mde.F.; Nagao-Dias, A.T.; Coêlho, I.C.B.; Cândido, Dda.S.; Freitas, E.C.; Coelho, H.L.L.; Bezerra, F.S.M. Clinical and serological evolution in chronic Chagas disease patients in a 4-year pharmacotherapy follow-up: a preliminary study. Rev. Soc. Bras. Med. Trop., 2013, 46(6), 776-778.
[http://dx.doi.org/10.1590/0037-8682-1646-2013] [PMID: 24474023]
[79]
Castro, J.A.; de Mecca, M.M.; Bartel, L.C. Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum. Exp. Toxicol., 2006, 25(8), 471-479.
[http://dx.doi.org/10.1191/0960327106het653oa] [PMID: 16937919]
[80]
Paixão, D.A.; Lopes, C.D.; Carneiro, Z.A.; Sousa, L.M.; de Oliveira, L.P.; Lopes, N.P.; Pivatto, M.; Chaves, J.D.S.; de Almeida, M.V.; Ellena, J.; Moreira, M.B.; Netto, A.V.G.; de Oliveira, R.J.; Guilardi, S.; de Albuquerque, S.; Guerra, W. in Vitro anti-Trypanosoma cruzi activity of ternary copper(II) complexes and in vivo evaluation of the most promising complex. Biomed. Pharmacother., 2019, 109, 157-166.
[http://dx.doi.org/10.1016/j.biopha.2018.10.057] [PMID: 30396072]
[81]
Carneiro, Z.A.; Lima, J.C.; Lopes, C.D.; Gaspari, A.P.S.; de Albuquerque, S.; Dinelli, L.R.; Veloso-Silva, L.L.W.; Paganelli, M.O.; Libardi, S.H.; Oliveira, C.G.; Deflon, V.M.; Oliveira, R.J.; Borges, J.C.; Maia, P.I.S. Heterobimetallic nickel(II) and palladium(II) complexes derived from S-benzyl-N- (ferrocenyl)methylenedithiocarbazate: Trypanocidal activity and interaction with Trypanosoma cruzi Old Yellow Enzyme (TcOYE). Eur. J. Med. Chem., 2019, 180, 213-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.014] [PMID: 31306908]
[82]
Demoro, B.; Rostán, S.; Moncada, M.; Li, Z.H.; Docampo, R.; Olea Azar, C.; Maya, J.D.; Torres, J.; Gambino, D.; Otero, L. Ibandronate metal complexes: solution behavior and antiparasitic activity. Eur. J. Biochem., 2018, 23(2), 303-312.
[http://dx.doi.org/10.1007/s00775-018-1535-y] [PMID: 29349663]
[83]
Fandzloch, M.; Arriaga, J.M.M.; Sánchez-Moreno, M.; Wojtczak, A.; Jezierska, J.; Sitkowski, J.; Wiśniewska, J.; Salas, J.M.; Łakomska, I. Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi. J. Inorg. Biochem., 2017, 176, 144-155.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.018] [PMID: 28910663]
[84]
Reddy, A.; Sangenito, L.S.; Guedes, A.A.; Branquinha, M.H.; Kavanagh, K.; McGinley, J.; Dos Santos, A.L.S.; Velasco-Torrijos, T. Glycosylated metal chelators as anti-parasitic agents with tunable selectivity. Dalton Trans., 2017, 46(16), 5297-5307.
[http://dx.doi.org/10.1039/C6DT04615K] [PMID: 28382355]
[85]
Possato, B.; Carneiro, Z.A.; de Albuquerque, S.; Nikolaou, S. New uses for old complexes: The very first report on the trypanocidal activity of symmetric trinuclear ruthenium complexes. J. Inorg. Biochem., 2017, 176(February), 156-158.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.08.021] [PMID: 28915432]
[86]
Lopes, C. D.; Possato, B.; Gaspari, A. P. S.; Oliveira, R. J.; Abram, U.; Montanari, C. A.; Almeida, J. P. A.; Rocho, R.; Leita, A.; Maia, P. I. S. Organometallic Gold(III) Complex [Au(Hdamp)(L1 4 )] + (L1 = SNS - Donating Thiosemicarbazone) as a Candidate to New Formulations against Chagas Disease. 2019.
[http://dx.doi.org/10.1021/acsinfecdis.8b00284]
[87]
Rettondin, A.R.; Carneiro, Z.A.; Gonçalves, A.C.R.; Ferreira, V.F.; Oliveira, C.G.; Lima, A.N.; Oliveira, R.J.; de Albuquerque, S.; Deflon, V.M.; Maia, P.I.S. Gold(III) complexes with ONS-Tridentate thiosemicarbazones: Toward selective trypanocidal drugs. Eur. J. Med. Chem., 2016, 120, 217-226.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.003] [PMID: 27191616]
[88]
Martins, D. A.; Gouvea, L. R.; Muniz, G. S. V.; Louro, S. R. W.; Batista, D. D. G. J.; Soeiro, M. D. N. C.; Teixeira, L. R. Norfloxacin and N-donor mixed-ligand copper(II) complexes: synthesis, albumin interaction, and antitrypanosoma cruzi activity. Bioinorg. Chem. Appl., 2016, 2016 (Ii).
[http://dx.doi.org/10.1155/2016/5027404]
[89]
Rodríguez Arce, E.; Mosquillo, M.F.; Pérez-Díaz, L.; Echeverría, G.A.; Piro, O.E.; Merlino, A.; Coitiño, E.L.; Maríngolo Ribeiro, C.; Leite, C.Q.F.; Pavan, F.R.; Otero, L.; Gambino, D. Aromatic amine N-oxide organometallic compounds: searching for prospective agents against infectious diseases. Dalton Trans., 2015, 44(32), 14453-14464.
[http://dx.doi.org/10.1039/C5DT00557D] [PMID: 26203896]
[90]
Fernández, M.; Arce, E. R.; Sarniguet, C.; Morais, T. S.; Tomaz, A. I.; Azar, C. O.; Figueroa, R.; Diego Maya, J.; Medeiros, A.; Comini, M. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites. J. Inorg. Biochem, 2015, 153(Ii), 306-314.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.06.018]
[91]
Machado, I.; Marino, L.B.; Demoro, B.; Echeverría, G.A.; Piro, O.E.; Leite, C.Q.; Pavan, F.R.; Gambino, D. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents. Eur. J. Med. Chem., 2014, 87, 267-273.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.067] [PMID: 25261824]
[92]
Rodríguez Arce, E.; Machado, I.; Rodríguez, B.; Lapier, M.; Zúñiga, M.C.; Maya, J.D.; Olea Azar, C.; Otero, L.; Gambino, D. Rhenium(I) tricarbonyl compounds of bioactive thiosemicarbazones: Synthesis, characterization and activity against Trypanosoma cruzi. J. Inorg. Biochem., 2017, 170(I), 125-133.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.01.011] [PMID: 28237731]
[93]
Scalese, G.; Benítez, J.; Rostán, S.; Correia, I.; Bradford, L.; Vieites, M.; Minini, L.; Merlino, A.; Coitiño, E.L.; Birriel, E.; Varela, J.; Cerecetto, H.; González, M.; Pessoa, J.C.; Gambino, D. Expanding the family of heteroleptic oxidovanadium(IV) compounds with salicylaldehyde semicarbazones and polypyridyl ligands showing anti-Trypanosoma cruzi activity. J. Inorg. Biochem., 2015, 147, 116-125.
[http://dx.doi.org/10.1016/j.jinorgbio.2015.03.002] [PMID: 25824466]
[94]
Scalese, G.; Mosquillo, M.F.; Rostán, S.; Castiglioni, J.; Alho, I.; Pérez, L.; Correia, I.; Marques, F.; Costa Pessoa, J.; Gambino, D. Heteroleptic oxidovanadium(IV) complexes of 2-hydroxynaphtylaldimine and polypyridyl ligands against Trypanosoma cruzi and prostate cancer cells. J. Inorg. Biochem., 2017, 175, 154-166.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.07.014] [PMID: 28755573]
[95]
Fonseca, D.; Páez, C.; Ibarra, L.; García-Huertas, P.; Macías, M.A.; Triana-Chávez, O.; Hurtado, J.J. Metal complex derivatives of bis(pyrazol-1-Yl)methane ligands: synthesis, characterization and anti-trypanosoma cruzi activity. Transit. Met. Chem., 2019, 44(2), 135-144.
[http://dx.doi.org/10.1007/s11243-018-0277-6]
[96]
Tabel, H.; Wei, G.; Shi, M. T cells and immunopathogenesis of experimental African trypanosomiasis. Immunol. Rev., 2008, 225, 128-139.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00675.x] [PMID: 18837780]
[97]
Barrett, M.P.; Burchmore, R.J.; Stich, A.; Lazzari, J.O.; Frasch, A.C.; Cazzulo, J.J.; Krishna, S. The trypanosomiases. Lancet, 2003, 362(9394), 1469-1480.
[http://dx.doi.org/10.1016/S0140-6736(03)14694-6] [PMID: 14602444]
[98]
Cordon-Obras, C.; Berzosa, P.; Ndong-Mabale, N.; Bobuakasi, L.; Buatiche, J.N.; Ndongo-Asumu, P.; Benito, A.; Cano, J. Trypanosoma brucei gambiense in domestic livestock of Kogo and Mbini foci (Equatorial Guinea). Trop. Med. Int. Health, 2009, 14(5), 535-541.
[http://dx.doi.org/10.1111/j.1365-3156.2009.02271.x] [PMID: 19320872]
[99]
Mehlitz, D.; Zillmann, U.; Scott, C.M.; Godfrey, D.G. Epidemiological studies on the animal reservoir of Gambiense sleeping sickness. Part III. Characterization of trypanozoon stocks by isoenzymes and sensitivity to human serum. Tropenmed. Parasitol., 1982, 33(2), 113-118.
[PMID: 6287687]
[100]
Hoare, C.A. The Trypanosomes of Mammals: A Zoological Monograph SERBIULA (Sistema Libr. 2.0); Cecil, A.H., Ed.; , 1972.
[101]
Sykes, M.L.; Baell, J.B.; Kaiser, M.; Chatelain, E.; Moawad, S.R.; Ganame, D.; Ioset, J.R.; Avery, V.M. Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign. PLoS Negl. Trop. Dis., 2012, 6(11), e1896.
[http://dx.doi.org/10.1371/journal.pntd.0001896] [PMID: 23209849]
[102]
Tatipaka, H.B.; Gillespie, J.R.; Chatterjee, A.K.; Norcross, N.R.; Hulverson, M.A.; Ranade, R.M.; Nagendar, P.; Creason, S.A.; McQueen, J.; Duster, N.A.; Nagle, A.; Supek, F.; Molteni, V.; Wenzler, T.; Brun, R.; Glynne, R.; Buckner, F.S.; Gelb, M.H. Substituted 2-phenylimidazopyridines: a new class of drug leads for human African trypanosomiasis. J. Med. Chem., 2014, 57(3), 828-835.
[http://dx.doi.org/10.1021/jm401178t] [PMID: 24354316]
[103]
Fajinmi, A.O.; Faleke, O.O.; Magaji, A.A.; Daneji, A.I.; Gweba, M. Presence of trypanosome species and determination of anaemia in trade cattle at sokoto abattoir, Nigeria, Res. J. Parasitol., 2011, 6, 31-42.
[http://dx.doi.org/10.3923/jp.2011.31.42]
[104]
Cattand, P. L’épidémiologie de la trypanosomiase humaine africaine: une histoire mulifactorielle complexe. Med. Trop. (Mars.), 2001, 61(4-5), 313-322.
[PMID: 11803821]
[105]
Uilenberg, G. Uilenberg, G. A field guide for the diagnosis, treatment and prevention of african animal trypanosomosis Food and agriculture organization of the united nations, Ed; Food & Agriculture Org: Rome, 1998.
[106]
Anene, B.M.; Onah, D.N.; Nawa, Y. Drug resistance in pathogenic African trypanosomes: what hopes for the future? Vet. Parasitol., 2001, 96(2), 83-100.
[http://dx.doi.org/10.1016/S0304-4017(00)00427-1] [PMID: 11230916]
[107]
Ezeokonkwo, Romanus & Kpogban, E.A. & Ogbodo, O.M. & Iheagwam, Chijioke & Ezeh, I. Efficacy of samorecide-plus in the treatment of experimental trypanosoma brucei brucei infection of albino rats. Nig J Exp Appl Biol, 2010, 10(2), 157-163.
[108]
Wilkinson, S.R.; Kelly, J.M. Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev. Mol. Med., 2009, 11, e31.
[http://dx.doi.org/10.1017/S1462399409001252] [PMID: 19863838]
[109]
Nagle, A.S.; Khare, S.; Kumar, A.B.; Supek, F.; Buchynskyy, A.; Mathison, C.J.N.; Chennamaneni, N.K.; Pendem, N.; Buckner, F.S.; Gelb, M.H.; Molteni, V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem. Rev., 2014, 114(22), 11305-11347.
[http://dx.doi.org/10.1021/cr500365f] [PMID: 25365529]
[110]
Day, D.P.; Dann, T.; Hughes, D.L.; Oganesyan, V.S.; Steverding, D.; Wildgoose, G.G. Cymantrene − triazole “ click ” products: structural characterization and electrochemical properties. Organometallics, 2014, 33(18), 4687-4696.
[http://dx.doi.org/10.1021/om4007642]
[111]
Arce, E.R.; Sarniguet, C.; Moraes, T.S.; Vieites, M.; Isabel, A.; Medeiros, A.; Comini, M.A.; Varela, J.; Cerecetto, H.; Marques, F. A new ruthenium cyclopentadienyl azole compound with activity on tumor cell lines and trypanosomatid parasites. Coord. Chem., 2015, 68(16), 37-41.
[http://dx.doi.org/10.1080/00958972.2015.1062480]
[112]
Massai, L.; Messori, L.; Micale, N.; Schirmeister, T.; Maes, L.; Fregona, D.; Cinellu, M.A.; Gabbiani, C. Gold compounds as cysteine protease inhibitors: perspectives for pharmaceutical application as antiparasitic agents. Biometals, 2017, 30(2), 313-320.
[http://dx.doi.org/10.1007/s10534-017-0007-0] [PMID: 28283781]
[113]
Simpson, P.V.; Nagel, C.; Bruhn, H.; Schatzschneider, U. Antibacterial and antiparasitic activity of manganese(I). Tricarbonyl complexes with ketoconazole, miconazole, and clotrimazole ligands. Organometallics, 2015, 34(15), 38093815.
[http://dx.doi.org/10.1021/acs.organomet.5b00458]
[114]
Velásquez, A.M.A.; de Souza, R.A.; Passalacqua, T.G.; Ribeiro, A.R.; Scontri, M.; Chin, C.M.; De Almeida, L.; Mayara, L.; Cistia, D.; Mauro, A.E. Antiprotozoal activity of the cyclopalladated complexes against leishmania amazonensis and trypanosoma cruzi. J. Braz. Chem. Soc., 2016, 27(6), 1-8.
[115]
Winter, I.; Lockhauserbäumer, J.; Lallinger-Kube, G.; Schobert, R.; Ersfeld, K.; Biersack, B. Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes. Mol. Biochem. Parasitol., 2017, 214(I), 112-120.
[http://dx.doi.org/10.1016/j.molbiopara.2017.05.001] [PMID: 28522152]
[116]
Pace, D. Leishmaniasis. J. Infect., 2014, 69(S1)(Suppl. 1), S10-S18.
[http://dx.doi.org/10.1016/j.jinf.2014.07.016] [PMID: 25238669]
[117]
WHO (World and Health Organization). Leishmaniasis.
[118]
Dantas-Torres, F.; Brandão-Filho, S.P. Visceral leishmaniasis in Brazil: revisiting paradigms of epidemiology and control. Rev. Inst. Med. Trop. São Paulo, 2006, 48(3), 151-156.
[http://dx.doi.org/10.1590/S0036-46652006000300007] [PMID: 16847505]
[119]
Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E.; Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E. Human leishmaniasis in Brazil: A general review. Rev. Assoc. Med. Bras., 2018, 64(3), 281-289.
[http://dx.doi.org/10.1590/1806-9282.64.03.281] [PMID: 29641786]
[120]
Ghorbani, M.; Farhoudi, R. Leishmaniasis in humans: drug or vaccine therapy? Drug Des. Devel. Ther., 2017, 12, 25-40.
[http://dx.doi.org/10.2147/DDDT.S146521] [PMID: 29317800]
[121]
Esteban-Parra, G.M.; Méndez-Arriaga, J.M.; Rodríguez-Diéguez, A.; Quirós, M.; Salas, J.M.; Sánchez-Moreno, M. High antiparasitic activity of silver complexes of 5,7-dimethyl-1,2,4-triazolo[1,5 a]pyrimidine. J. Inorg. Biochem., 2019, 201, 110810.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110810] [PMID: 31493678]
[122]
Hubin, T.J.; Walker, A.N.; Davilla, D.J.; Freeman, T.N.C.; Epley, B.M.; Hasley, T.R.; Amoyaw, P.N.A.; Jain, S.; Archibald, S.J.; Prior, T.J.; Krause, J.A.; Oliver, A.G.; Tekwani, B.L.; Khan, M.O.F. Tetraazamacrocyclic derivatives and their metal complexes as antileishmanial leads. Polyhedron, 2019, 163, 42-53.
[http://dx.doi.org/10.1016/j.poly.2019.02.027] [PMID: 30976133]
[123]
Sirajuddin, M.; Ali, S.; McKee, V.; Akhtar, N.; Andleeb, S.; Wadood, A. Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin(IV) carboxylates. J. Photochem. Photobiol. B, 2019, 197, 111516.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111516] [PMID: 31170508]
[124]
Sirajuddin, M.; McKee, V.; Tariq, M.; Ali, S. Newly designed organotin(IV) carboxylates with peptide linkage: Synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations. Eur. J. Med. Chem., 2018, 143, 1903-1918.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.001] [PMID: 29133050]
[125]
Keogan, D.M.; Oliveira, S.S.C.; Sangenito, L.S.; Branquinha, M.H.; Jagoo, R.D.; Twamley, B.; Santos, A.L.S.; Griffith, D.M. Novel antimony(iii) hydroxamic acid complexes as potential anti-leishmanial agents. Dalton Trans., 2018, 47(21), 7245-7255.
[http://dx.doi.org/10.1039/C8DT00546J] [PMID: 29757339]
[126]
Méndez-Arriaga, J.M.; Oyarzabal, I.; Escolano, G.; Rodríguez-Diéguez, A.; Sánchez-Moreno, M.; Salas, J.M. in vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine Cu(II) complexes. J. Inorg. Biochem., 2018, 180, 26-32.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.027] [PMID: 29227923]
[127]
Paloque, L.; Hemmert, C.; Valentin, A.; Gornitzka, H. Synthesis, characterization, and antileishmanial activities of gold(I) complexes involving quinoline functionalized N-heterocyclic carbenes. Eur. J. Med. Chem., 2015, 94, 22-29.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.046] [PMID: 25747497]
[128]
Rice, D.R.; Vacchina, P.; Norris-Mullins, B.; Morales, M.A.; Smith, B.D. Zinc(II)-Dipicolylamine Coordination Complexes as Targeting and Chemotherapeutic Agents for Leishmania major. Antimicrob. Agents Chemother., 2016, 60(5), 2932-2940.
[http://dx.doi.org/10.1128/AAC.00410-16] [PMID: 26926632]
[129]
Rauf, M.K.; Yaseen, S.; Badshah, A.; Zaib, S.; Arshad, R. Imtiaz-Ud-Din; Tahir, M.N.; Iqbal, J. Synthesis, characterization and urease inhibition, in Vitro anticancer and antileishmanial studies of Ni(II) complexes with N,N,N¢-trisubstituted thioureas. Eur. J. Biochem., 2015, 20(3), 541-554.
[http://dx.doi.org/10.1007/s00775-015-1239-5] [PMID: 25604966]
[130]
Urbanová, K.; Ramírez-Macías, I.; Martín-Escolano, R.; Rosales, M.J.; Cussó, O.; Serrano, J.; Company, A.; Sánchez-Moreno, M.; Costas, M.; Ribas, X.; Marín, C. Effective Tetradentate Compound Complexes against Leishmania spp. that Act on Critical Enzymatic Pathways of These Parasites. Molecules, 2018, 24(1), 1-21.
[http://dx.doi.org/10.3390/molecules24010134] [PMID: 30602705]
[131]
Azevedo-França, J.A.; Granado, R.; de Macedo Silva, S.T.; Santos-Silva, G.D.; Scapin, S.; Borba-Santos, L.P.; Rozental, S.; de Souza, W.; Martins-Duarte, É.S.; Barrias, E.; Rodrigues, J.C.F.; Navarro, M. Synthesis and biological activity of novel zinc-itraconazole complexes in protozoan parasites and Sporothrix spp. Antimicrob. Agents Chemother., 2020, 64(5), 1-15.
[http://dx.doi.org/10.1128/AAC.01980-19] [PMID: 32152072]
[132]
World Health Organization (WHO). Guidelines for the Treatment of Malaria. Trans. R. Soc. Trop. Med. Hyg, 2015. 85, pp. (4)556-557.
[http://dx.doi.org/10.1016/0035-9203(91)90261-V]
[133]
Scarim, C.B.; Jornada, D.H.; Machado, M.G.M.; Ferreira, C.M.R.; Dos Santos, J.L.; Chung, M.C. Thiazole, thio and semicarbazone derivatives against tropical infective diseases: Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria. Eur. J. Med. Chem., 2019, 162, 378-395.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.013] [PMID: 30453246]
[134]
Mohandas, N.; An, X. Malaria and human red blood cells. Med. Microbiol. Immunol. (Berl.), 2012, 201(4), 593-598.
[http://dx.doi.org/10.1007/s00430-012-0272-z] [PMID: 22965173]
[135]
Tibon, N.S.; Ng, C.H.; Cheong, S.L. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. Eur. J. Med. Chem., 2020, 188, 111983.
[http://dx.doi.org/10.1016/j.ejmech.2019.111983] [PMID: 31911292]
[136]
Wong, A.; Malvestiti, A.A. Hafner, Mde.F. Stevens-Johnson syndrome and toxic epidermal necrolysis: a review. Rev. Assoc. Med. Bras., 2016, 62(5), 468-473.
[http://dx.doi.org/10.1590/1806-9282.62.05.468] [PMID: 27656858]
[137]
Marcelino, P.R.F.; Moreira, M.B.; Lacerda, T.M.; da Silva, S.S. Metal-based drugs for treatment of malaria. In: Biomedical Applications of Metals; Springer International Publishing: Cham, 2018; pp. 167-193.
[http://dx.doi.org/10.1007/978-3-319-74814-6_8]
[138]
Navarro, M.; Castro, W.; Madamet, M.; Amalvict, R.; Benoit, N.; Pradines, B. Metal-chloroquine derivatives as possible anti-malarial drugs: Evaluation of anti-malarial activity and mode of action. Malar. J. 2014, 2014, 13(471), 1-8.
[http://dx.doi.org/10.1186/1475-2875-13-471]
[139]
Ekengard, E.; Glans, L.; Cassells, I.; Fogeron, T.; Govender, P.; Stringer, T.; Chellan, P.; Lisensky, G.C.; Hersh, W.H.; Doverbratt, I.; Lidin, S.; de Kock, C.; Smith, P.J.; Smith, G.S.; Nordlander, E. Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands. Dalton Trans., 2015, 44(44), 19314-19329.
[http://dx.doi.org/10.1039/C5DT02410B] [PMID: 26491831]
[140]
Taylor, A.R.; Watson, J.A.; Chu, C.S.; Puaprasert, K.; Duanguppama, J.; Day, N.P.J.; Nosten, F.; Neafsey, D.E.; Buckee, C.O.; Imwong, M.; White, N.J. Resolving the cause of recurrent Plasmodium vivax malaria probabilistically. Nat. Commun., 2019, 10(1), 5595.
[http://dx.doi.org/10.1038/s41467-019-13412-x] [PMID: 31811128]
[141]
Gildenhuys, J.; Sammy, C.J.; Müller, R.; Streltsov, V.A.; le Roex, T.; Kuter, D.; de Villiers, K.A. Alkoxide coordination of iron(III) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution. Dalton Trans., 2015, 44(38), 16767-16777.
[http://dx.doi.org/10.1039/C5DT02671G] [PMID: 26335948]
[142]
Delpe Acharige, A.M.D.S.; Brennan, M.P.C.; Lauder, K.; McMahon, F.; Odebunmi, A.O.; Durrant, M.C. Computational insights into the inhibition of β-haematin crystallization by antimalarial drugs. Dalton Trans., 2018, 47(43), 15364-15381.
[http://dx.doi.org/10.1039/C8DT03369B] [PMID: 30298161]
[143]
Tapanelli, S.; Habluetzel, A.; Pellei, M.; Marchiò, L.; Tombesi, A.; Capparè, A.; Santini, C. Novel metalloantimalarials: Transmission blocking effects of water soluble Cu(I), Ag(I) and Au(I) phosphane complexes on the murine malaria parasite Plasmodium berghei. J. Inorg. Biochem., 2017, 166, 1-4.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.10.004] [PMID: 27815977]
[144]
Stringer, T.; Taylor, D.; Guzgay, H.; Shokar, A.; Au, A.; Smith, P.J.; Hendricks, D.T.; Land, K.M.; Egan, T.J.; Smith, G.S. Polyamine quinoline rhodium complexes: synthesis and pharmacological evaluation as antiparasitic agents against Plasmodium falciparum and Trichomonas vaginalis. Dalton Trans., 2015, 44(33), 14906-14917.
[http://dx.doi.org/10.1039/C5DT02378E] [PMID: 26226082]
[145]
Stringer, T.; Melis, D.R.; Smith, G.S.N.N. O-Chelating quinoline-based half-sandwich organorhodium and -iridium complexes: synthesis, antiplasmodial activity and preliminary evaluation as transfer hydrogenation catalysts for the reduction of NAD. Dalton Trans., 2019, 48(35), 13143-13148.
[http://dx.doi.org/10.1039/C9DT02030F] [PMID: 31418441]
[146]
Stringer, T.; Quintero, M. A. S.; Wiesner, L.; Smith, G. S.; Nordlander, E. Evaluation of PTA-derived ruthenium(II) and iridium(III) quinoline complexes against chloroquinesensitive and resistant strains of the plasmodium falciparum malaria parasite. J. Inorg. Biochem, 2019, 191(Ii), 164-173.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.11.018]
[147]
Parra, Y. D. J. [( 7-Chloroquinolin-4-yl ) amino ] acetophenones and their copper ( ii ) derivatives: Synthesis , characterization , computational studies and antimalarial activity. EXCLI J. 2019;18962-987, 2019, No. Ii, 962-987.
[http://dx.doi.org/10.17179/excli2019-1805]
[148]
Melis, D.R.; Barnett, C.B.; Wiesner, L.; Nordlander, E.; Smith, G.S. Quinoline-triazole half-sandwich iridium(III) complexes: synthesis, antiplasmodial activity and preliminary transfer hydrogenation studies. Dalton Trans., 2020, 49(33), 11543-11555.
[http://dx.doi.org/10.1039/D0DT01935F] [PMID: 32697227]
[149]
Baartzes, N.; Jordaan, A.; Warner, D.F.; Combrinck, J.; Taylor, D.; Chibale, K.; Smith, G.S. Antimicrobial evaluation of neutral and cationic iridium(III) and rhodium(III) aminoquinoline-benzimidazole hybrid complexes. Eur. J. Med. Chem., 2020, 206, 112694.
[http://dx.doi.org/10.1016/j.ejmech.2020.112694] [PMID: 32861176]
[150]
Abu Ali, H.; Fares, H.; Darawsheh, M.; Rappocciolo, E.; Akkawi, M.; Jaber, S. Synthesis, characterization and biological activity of new mixed ligand complexes of Zn(II) naproxen with nitrogen based ligands. Eur. J. Med. Chem., 2015, 89, 67-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.032] [PMID: 25462227]
[151]
Sarı, Y.; Akkoç, S.; Gök, Y.; Sifniotis, V.; Özdemir, İ.; Günal, S.; Kayser, V. Benzimidazolium-based novel silver N-heterocyclic carbene complexes: synthesis, characterisation and in Vitro antimicrobial activity. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1527-1530.
[http://dx.doi.org/10.3109/14756366.2016.1156102] [PMID: 26987046]
[152]
Kılınçarslan, R.; Günay, M.E.; Fırıncı, R.; Denizaltı, S.; Çetinkaya, B. New palladium(II)-N-heterocyclic carbene complexes containing benzimidazole-2-ylidene ligand derived from menthol: synthesis, characterization and catalytic activities. Appl. Organomet. Chem., 2016, 30, 268-272.
[http://dx.doi.org/10.1002/aoc.3427]
[153]
Rylands, L.I.; Welsh, A.; Maepa, K.; Stringer, T.; Taylor, D.; Chibale, K.; Smith, G.S. Structure-activity relationship studies of antiplasmodial cyclometallated ruthenium(II), rhodium(III) and iridium(III) complexes of 2-phenylbenzimidazoles. Eur. J. Med. Chem., 2019, 161, 11-21.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.019] [PMID: 30342422]
[154]
Khan, M.O.F.; Keiser, J.; Amoyaw, P.N.A.; Hossain, M.F.; Vargas, M.; Le, J.G.; Simpson, N.C.; Roewe, K.D.; Freeman, T.N.C.; Hasley, T.R.; Maples, R.D.; Archibald, S.J.; Hubin, T.J. Discovery Of Antischistosomal Drug Leads Based On Tetraazamacrocyclic Derivatives And Their Metal Complexes. Antimicrob. Agents Chemother., 2016, 60(9), 5331-5336.
[http://dx.doi.org/10.1128/AAC.00778-16] [PMID: 27324765]
[155]
Mbaba, M.; Golding, T.M.; Smith, G.S. Recent advances in the biological investigation of organometallic platinum-group metal (Ir, Ru, Rh, Os, Pd, Pt) complexes as antimalarial agents. Molecules, 2020, 25(22), 5276.
[http://dx.doi.org/10.3390/molecules25225276] [PMID: 33198217]
[156]
Basto, A.P.; Müller, J.; Rubbiani, R.; Stibal, D.; Giannini, F.; Süss-Fink, G.; Balmer, V.; Hemphill, A.; Gasser, G.; Furrer, J. Characterization of the activities of dinuclear thiolato-bridged arene ruthenium complexes against Toxoplasma gondii. Antimicrob. Agents Chemother., 2017, 61(9), 1-14.
[http://dx.doi.org/10.1128/AAC.01031-17] [PMID: 28652238]
[157]
Sundaraneedi, M.K.; Tedla, B.A.; Eichenberger, R.M.; Becker, L.; Pickering, D.; Smout, M.J.; Rajan, S.; Wangchuk, P.; Keene, F.R.; Loukas, A.; Collins, J.G.; Pearson, M.S. Polypyridylruthenium(II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS Negl. Trop. Dis., 2017, 11(12), e0006134.
[http://dx.doi.org/10.1371/journal.pntd.0006134] [PMID: 29240773]
[158]
Branco Santos, J.C.; de Melo, J.A.; Maheshwari, S.; de Medeiros, W.M.T.Q.; de Freitas Oliveira, J.W.; Moreno, C.J.; Mario Amzel, L.; Gabelli, S.B.; Sousa Silva, M.; Moreno, C.J. Bisphosphonate-Based Molecules as Potential New Antiparasitic Drugs. Molecules, 2020, 25(11), 1-20.
[http://dx.doi.org/10.3390/molecules25112602] [PMID: 32503272]
[159]
Scarim, C.B.; Chin, C.M. Current challenges and obstacles to drug development for chagas disease. Drug Des. Intellect. Prop. Int. J., 2018, 2(2), 23-25.
[http://dx.doi.org/10.32474/DDIPIJ.2018.02.000134]
[160]
Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; Dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]
[161]
Abu-Surrah, A.S.; Kettunen, M. Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem., 2006, 13(11), 1337-1357.
[http://dx.doi.org/10.2174/092986706776872970] [PMID: 16712474]
[162]
Monro, S.; Colón, K.L.; Yin, H.; Roque, J., III; Konda, P.; Gujar, S.; Thummel, R.P.; Lilge, L.; Cameron, C.G.; McFarland, S.A. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev., 2019, 119(2), 797-828.
[http://dx.doi.org/10.1021/acs.chemrev.8b00211] [PMID: 30295467]
[163]
EMA. European medicines agency (science medicines heath). meeting highlights from the committee for medicinal products for human Use (CHMP) 11 to 14 September 2017. Available from: https://www.ema.europa.eu/en/news/meeting-highlights-committee-medicinal-products-humanuse-chmp-11-14-september-2017( (accessed Jan 7, 2020)
[164]
Rauf, M.K.; Shaheen, U.; Asghar, F.; Badshah, A.; Nadhman, A.; Azam, S.; Ali, M.I.; Shahnaz, G.; Yasinzai, M. Antileishmanial, DNA interaction, and docking studies of some ferrocene-based heteroleptic pentavalent antimonials. Arch. Pharm. (Weinheim), 2016, 349(1), 50-62.
[http://dx.doi.org/10.1002/ardp.201500312] [PMID: 26627058]
[165]
Kondratskyi, A.; Kondratska, K.; Vanden Abeele, F.; Gordienko, D.; Dubois, C.; Toillon, R-A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7(1), 15896.
[http://dx.doi.org/10.1038/s41598-017-16154-2] [PMID: 29162859]
[166]
Cipriani, M.; Rostán, S.; León, I.; Li, Z.H.; Gancheff, J.S.; Kemmerling, U.; Olea Azar, C.; Etcheverry, S.; Docampo, R.; Gambino, D.; Otero, L. Multi-target heteroleptic palladium bisphosphonate complexes. Eur. J. Biochem., 2020, 25(3), 509-519.
[http://dx.doi.org/10.1007/s00775-020-01779-y] [PMID: 32232584]
[167]
Ong, Y.C.; Roy, S.; Andrews, P.C.; Gasser, G. Metal compounds against neglected tropical diseases. Chem. Rev., 2019, 119(2), 730-796.
[http://dx.doi.org/10.1021/acs.chemrev.8b00338] [PMID: 30507157]
[168]
Gasser, G. Metal Complexes and Medicine: A Successful Combination. Chimia (Aarau), 2015, 69(7-8), 442-446.
[http://dx.doi.org/10.2533/chimia.2015.442] [PMID: 26507597]
[169]
de Moraes, J.; Dario, B.S.; Couto, R.A.A.; Pinto, P.L.S.; da Costa Ferreira, A.M. Antischistosomal Activity of Oxindolimine-Metal Complexes. Antimicrob. Agents Chemother., 2015, 59(10), 6648-6652.
[http://dx.doi.org/10.1128/AAC.01371-15] [PMID: 26239976]
[170]
Ajibade, P.A.; Kolawole, G.A. Cobalt(III) complexes of some antimalarial drugs: synthesis, characterization, and in vitro antiprotozoal studies. Synth. React. Inorganic, Met. Nano-Metal Chem., 2010, 40(4), 273-278.
[http://dx.doi.org/10.1080/15533171003766691]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy