摘要
细菌细胞壁肽聚糖(PG)是一种动态结构,在细菌分裂和生长过程中不断合成、重塑和降解。 合成后修饰在 PG 裂解和重塑生长和孢子形成过程中调节内源性自溶的作用,但它们也是病原菌用来逃避宿主先天免疫系统的一种机制。 聚糖骨架的修饰仅限于 GlcNAc 或 MurNAc 残基的 C-2 胺和 C-6 羟基部分。 本文回顾了肽聚糖去乙酰化酶(不同的 PG GlcNAc 和 MurNAc 去乙酰化酶)的功能作用和特性,以及通过遗传学研究和生化表征阐明其作用机制、3D 结构、底物特异性和生物学功能的最新进展。 由于它们是病原菌中的毒力因子,因此肽聚糖脱乙酰酶是设计新型抗菌剂的潜在目标。
关键词: 肽聚糖脱乙酰酶、细胞壁、发病机制、N-乙酰氨基葡萄糖、N-乙酰胞壁、特异性、X 射线结构、抗菌靶点
[1]
Vollmer, W.; Blanot, D.; De Pedro, M.A. Peptidoglycan structure and architecture. In: FEMS Microbiology Reviews; Oxford Academic, 2008; pp. 149-167.
[http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x]
[http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x]
[2]
Kashyap, D.R.; Wang, M.; Liu, L.H.; Boons, G.J.; Gupta, D.; Dziarski, R. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nat. Med., 2011, 17(6), 676-683.
[http://dx.doi.org/10.1038/nm.2357] [PMID: 21602801]
[http://dx.doi.org/10.1038/nm.2357] [PMID: 21602801]
[3]
Kashyap, D.R.; Kuzma, M.; Kowalczyk, D.A.; Gupta, D.; Dziarski, R. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Mol. Microbiol., 2017, 105(5), 755-776.
[http://dx.doi.org/10.1111/mmi.13733] [PMID: 28621879]
[http://dx.doi.org/10.1111/mmi.13733] [PMID: 28621879]
[4]
De Marzi, M.C.; Todone, M.; Ganem, M.B.; Wang, Q.; Mariuzza, R.A.; Fernández, M.M.; Malchiodi, E.L. Peptidoglycan recognition protein-peptidoglycan complexes increase monocyte/macrophage activation and enhance the inflammatory response. Immunology, 2015, 145(3), 429-442.
[http://dx.doi.org/10.1111/imm.12460] [PMID: 25752767]
[http://dx.doi.org/10.1111/imm.12460] [PMID: 25752767]
[5]
Oliveira-Nascimento, L.; Massari, P.; Wetzler, L.M. The role of TLR2 in infection and immunity. Front. Immunol., 2012, 3, 79.
[http://dx.doi.org/10.3389/fimmu.2012.00079] [PMID: 22566960]
[http://dx.doi.org/10.3389/fimmu.2012.00079] [PMID: 22566960]
[6]
Wolf, A.J.; Underhill, D.M. Peptidoglycan recognition by the innate immune system. Nat. Rev. Immunol., 2018, 18(4), 243-254.
[http://dx.doi.org/10.1038/nri.2017.136] [PMID: 29292393]
[http://dx.doi.org/10.1038/nri.2017.136] [PMID: 29292393]
[7]
Inohara, N.; Ogura, Y.; Fontalba, A.; Gutierrez, O.; Pons, F.; Crespo, J.; Fukase, K.; Inamura, S.; Kusumoto, S.; Hashimoto, M.; Foster, S.J.; Moran, A.P.; Fernandez-Luna, J.L.; Nuñez, G. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J. Biol. Chem., 2003, 278(8), 5509-5512.
[http://dx.doi.org/10.1074/jbc.C200673200] [PMID: 12514169]
[http://dx.doi.org/10.1074/jbc.C200673200] [PMID: 12514169]
[8]
Girardin, S.E.; Boneca, I.G.; Viala, J.; Chamaillard, M.; Labigne, A.; Thomas, G.; Philpott, D.J.; Sansonetti, P.J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem., 2003, 278(11), 8869-8872.
[http://dx.doi.org/10.1074/jbc.C200651200] [PMID: 12527755]
[http://dx.doi.org/10.1074/jbc.C200651200] [PMID: 12527755]
[9]
Moreira, L.O.; Zamboni, D.S. NOD1 and NOD2 Signaling in Infection and Inflammation. Front. Immunol., 2012, 3, 328.
[http://dx.doi.org/10.3389/fimmu.2012.00328] [PMID: 23162548]
[http://dx.doi.org/10.3389/fimmu.2012.00328] [PMID: 23162548]
[10]
Caruso, R.; Warner, N.; Inohara, N.; Núñez, G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity, 2014, 41(6), 898-908.
[http://dx.doi.org/10.1016/j.immuni.2014.12.010] [PMID: 25526305]
[http://dx.doi.org/10.1016/j.immuni.2014.12.010] [PMID: 25526305]
[11]
Pashenkov, M.V.; Murugina, N.E.; Budikhina, A.S.; Pinegin, B.V. Synergistic interactions between NOD receptors and TLRs: Mechanisms and clinical implications. J. Leukoc. Biol., 2019, 105(4), 669-680.
[http://dx.doi.org/10.1002/JLB.2RU0718-290R] [PMID: 30517768]
[http://dx.doi.org/10.1002/JLB.2RU0718-290R] [PMID: 30517768]
[12]
Root-Bernstein, R. Synergistic activation of toll-like and nod receptors by complementary antigens as facilitators of autoimmune disease: review, model and novel predictions. International Journal of Molecular Sciences; MDPI AG, 2020, pp. 1-34.
[http://dx.doi.org/10.3390/ijms21134645]
[http://dx.doi.org/10.3390/ijms21134645]
[13]
Moynihan, P.J.; Sychantha, D.; Clarke, A.J. Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg. Chem., 2014, 54, 44-50.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.010] [PMID: 24769153]
[http://dx.doi.org/10.1016/j.bioorg.2014.03.010] [PMID: 24769153]
[14]
Yadav, A.K.; Espaillat, A.; Cava, F.; Yadav, A.K.; Espaillat, A. Bacterial strategies to preserve cell wall integrity against environmental threats. Front. Microbiol., 2018, 9, 2064.
[http://dx.doi.org/10.3389/fmicb.2018.02064] [PMID: 30233540]
[http://dx.doi.org/10.3389/fmicb.2018.02064] [PMID: 30233540]
[15]
Blake, C.C.F.; Koenig, D.F.; Mair, G.A.; North, A.C.T.; Phillips, D.C.; Sarma, V.R. Structure of hen egg-white lysozyme. a three-dimensional fourier synthesis at 2 Angstrom resolution. Nature, 1965, 206(4986), 757-761.
[http://dx.doi.org/10.1038/206757a0] [PMID: 5891407]
[http://dx.doi.org/10.1038/206757a0] [PMID: 5891407]
[16]
Clarke, A.J.; Dupont, C. O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can. J. Microbiol., 1992, 38(2), 85-91.
[http://dx.doi.org/10.1139/m92-014] [PMID: 1521192]
[http://dx.doi.org/10.1139/m92-014] [PMID: 1521192]
[17]
Uehara, T.; Bernhardt, T.G. More than just lysins: peptidoglycan hydrolases tailor the cell wall. Current Opinion in Microbiology; NIH Public Access, 2011, pp. 698-703.
[http://dx.doi.org/10.1016/j.mib.2011.10.003]
[http://dx.doi.org/10.1016/j.mib.2011.10.003]
[18]
Moynihan, P.J.; Clarke, A.J. O-acetylated peptidoglycan: controlling the activity of bacterial autoly-sins and lytic enzymes of innate immune systems. Int. J. Biochem. Cell Biol., Elsevier Ltd. 2011, 1655-1659.
[http://dx.doi.org/10.1016/j.biocel.2011.08.007]
[http://dx.doi.org/10.1016/j.biocel.2011.08.007]
[19]
Araki, Y.; Fukuoka, S.; Oba, S.; Ito, E. Enzymatic deacetylation of N-acetylglucosamine residues in peptidoglycan from Bacillus cereus cell walls. Biochem. Biophys. Res. Commun., 1971, 45(3), 751-758.
[http://dx.doi.org/10.1016/0006-291X(71)90481-5] [PMID: 4256847]
[http://dx.doi.org/10.1016/0006-291X(71)90481-5] [PMID: 4256847]
[20]
Araki, Y.; Oba, S.; Araki, S.; Ito, E. Enzymatic deacetylation of N-acetylglucosamine residues in cell wall peptidoglycan. J. Biochem., 1980, 88(2), 469-479.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a132994] [PMID: 6774970]
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a132994] [PMID: 6774970]
[21]
Mirelman, D.; Sharon, N. Isolation and characterization of two disaccharide-peptides from lysozyme digests of Micrococcus lysodeikticus cell walls. Biochem. Biophys. Res. Commun., 1966, 24(2), 237-243.
[http://dx.doi.org/10.1016/0006-291X(66)90726-1] [PMID: 5965232]
[http://dx.doi.org/10.1016/0006-291X(66)90726-1] [PMID: 5965232]
[22]
Warth, A.D.; Strominger, J.L. Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc. Natl. Acad. Sci. USA, 1969, 64(2), 528-535.
[http://dx.doi.org/10.1073/pnas.64.2.528] [PMID: 4982357]
[http://dx.doi.org/10.1073/pnas.64.2.528] [PMID: 4982357]
[23]
Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res., 2014, 42(Database issue), D490-D495.
[http://dx.doi.org/10.1093/nar/gkt1178] [PMID: 24270786]
[http://dx.doi.org/10.1093/nar/gkt1178] [PMID: 24270786]
[24]
Pascual, S.; Planas, A. Carbohydrate de-N-acetylases acting on structural polysaccharides and glycoconjugates. Curr. Opin. Chem. Biol., 2021, 61, 9-18.
[http://dx.doi.org/10.1016/j.cbpa.2020.09.003] [PMID: 33075728]
[http://dx.doi.org/10.1016/j.cbpa.2020.09.003] [PMID: 33075728]
[25]
John, M.; Röhrig, H.; Schmidt, J.; Wieneke, U.; Schell, J. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc. Natl. Acad. Sci. USA, 1993, 90(2), 625-629.
[http://dx.doi.org/10.1073/pnas.90.2.625] [PMID: 8421697]
[http://dx.doi.org/10.1073/pnas.90.2.625] [PMID: 8421697]
[26]
Blair, D.E.; Schüttelkopf, A.W.; MacRae, J.I.; van Aalten, D.M.F. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15429-15434.
[http://dx.doi.org/10.1073/pnas.0504339102] [PMID: 16221761]
[http://dx.doi.org/10.1073/pnas.0504339102] [PMID: 16221761]
[27]
Aragunde, H.; Biarnés, X.; Planas, A. Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int. J. Mol. Sci., 2018, 19(2), 412.
[http://dx.doi.org/10.3390/ijms19020412] [PMID: 29385775]
[http://dx.doi.org/10.3390/ijms19020412] [PMID: 29385775]
[28]
Andrés, E.; Albesa-Jové, D.; Biarnés, X.; Moerschbacher, B.M.; Guerin, M.E.; Planas, A. Structural basis of chitin oligosaccharide deacetylation. Angew. Chem. Int. Ed. Engl., 2014, 53(27), 6882-6887.
[http://dx.doi.org/10.1002/anie.201400220] [PMID: 24810719]
[http://dx.doi.org/10.1002/anie.201400220] [PMID: 24810719]
[29]
Grifoll-Romero, L.; Pascual, S.; Aragunde, H.; Biarnés, X.; Planas, A. Chitin deacetylases: structures, specificities, and biotech applications. Polymers (Basel), 2018, 10(4), 352.
[http://dx.doi.org/10.3390/polym10040352] [PMID: 30966387]
[http://dx.doi.org/10.3390/polym10040352] [PMID: 30966387]
[30]
Weiser, J.N. The pneumococcus: why a commensal misbehaves. J. Mol. Med. (Berl.), 2010, 88(2), 97-102.
[http://dx.doi.org/10.1007/s00109-009-0557-x] [PMID: 19898768]
[http://dx.doi.org/10.1007/s00109-009-0557-x] [PMID: 19898768]
[31]
Vollmer, W.; Tomasz, A. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J. Biol. Chem., 2000, 275(27), 20496-20501.
[http://dx.doi.org/10.1074/jbc.M910189199] [PMID: 10781617]
[http://dx.doi.org/10.1074/jbc.M910189199] [PMID: 10781617]
[32]
Vollmer, W.; Tomasz, A.; Peptidoglycan, N. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect. Immun., 2002, 70(12), 7176-7178.
[http://dx.doi.org/10.1128/IAI.70.12.7176-7178.2002] [PMID: 12438406]
[http://dx.doi.org/10.1128/IAI.70.12.7176-7178.2002] [PMID: 12438406]
[33]
Meyrand, M.; Boughammoura, A.; Courtin, P.; Mézange, C.; Guillot, A.; Chapot-Chartier, M.P. Peptidoglycan N-acetylglucosamine deacetylation decreases autolysis in Lactococcus lactis. Microbiology, 2007, 153(Pt 10), 3275-3285.
[http://dx.doi.org/10.1099/mic.0.2007/005835-0] [PMID: 17906127]
[http://dx.doi.org/10.1099/mic.0.2007/005835-0] [PMID: 17906127]
[34]
Cao, L.; Liang, D.; Hao, P.; Song, Q.; Xue, E.; Caiyin, Q.; Cheng, Z.; Qiao, J. The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis. J. Ind. Microbiol. Biotechnol., 2018, 45(9), 813-825.
[http://dx.doi.org/10.1007/s10295-018-2052-2] [PMID: 29876686]
[http://dx.doi.org/10.1007/s10295-018-2052-2] [PMID: 29876686]
[35]
Dussurget, O.; Pizarro-Cerda, J.; Cossart, P. Molecular determinants of Listeria monocytogenes virulence. Annu. Rev. Microbiol., 2004, 58, 587-610.
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090934] [PMID: 15487949]
[http://dx.doi.org/10.1146/annurev.micro.57.030502.090934] [PMID: 15487949]
[36]
Hamon, M.; Bierne, H.; Cossart, P. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol., 2006, 4(6), 423-434.
[http://dx.doi.org/10.1038/nrmicro1413] [PMID: 16710323]
[http://dx.doi.org/10.1038/nrmicro1413] [PMID: 16710323]
[37]
Boneca, I.G.; Dussurget, O.; Cabanes, D.; Nahori, M.A.; Sousa, S.; Lecuit, M.; Psylinakis, E.; Bouriotis, V.; Hugot, J.P.; Giovannini, M.; Coyle, A.; Bertin, J.; Namane, A.; Rousselle, J.C.; Cayet, N.; Prévost, M.C.; Balloy, V.; Chignard, M.; Philpott, D.J.; Cossart, P.; Girardin, S.E. A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc. Natl. Acad. Sci. USA, 2007, 104(3), 997-1002.
[http://dx.doi.org/10.1073/pnas.0609672104] [PMID: 17215377]
[http://dx.doi.org/10.1073/pnas.0609672104] [PMID: 17215377]
[38]
Rae, C.S.; Geissler, A.; Adamson, P.C.; Portnoy, D.A. Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect. Immun., 2011, 79(9), 3596-3606.
[http://dx.doi.org/10.1128/IAI.00077-11] [PMID: 21768286]
[http://dx.doi.org/10.1128/IAI.00077-11] [PMID: 21768286]
[39]
Popowska, M.; Kusio, M.; Szymañska, P.; Markiewicz, Z. Inactivation of the wall-associated de-N-acetylase (PgdA) of Listeria monocytogenes results in greater susceptibility of the cells to induced autolysis. J. Microbiol. Biotechnol., 2009, 19(9), 932-945.
[http://dx.doi.org/10.4014/jmb.0810.557] [PMID: 19809250]
[http://dx.doi.org/10.4014/jmb.0810.557] [PMID: 19809250]
[40]
Rismondo, J.; Wamp, S.; Aldridge, C.; Vollmer, W.; Halbedel, S. Stimulation of PgdA-dependent peptidoglycan N-deacetylation by GpsB-PBP A1 in Listeria monocytogenes. Mol. Microbiol., 2018, 107(4), 472-487.
[http://dx.doi.org/10.1111/mmi.13893] [PMID: 29215169]
[http://dx.doi.org/10.1111/mmi.13893] [PMID: 29215169]
[41]
Hébert, L.; Courtin, P.; Torelli, R.; Sanguinetti, M.; Chapot-Chartier, M.P.; Auffray, Y.; Benachour, A. Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infect. Immun., 2007, 75(11), 5390-5398.
[http://dx.doi.org/10.1128/IAI.00571-07] [PMID: 17785473]
[http://dx.doi.org/10.1128/IAI.00571-07] [PMID: 17785473]
[42]
Benachour, A.; Ladjouzi, R.; Le Jeune, A.; Hébert, L.; Thorpe, S.; Courtin, P.; Chapot-Chartier, M.P.; Prajsnar, T.K.; Foster, S.J.; Mesnage, S. The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. J. Bacteriol., 2012, 194(22), 6066-6073.
[http://dx.doi.org/10.1128/JB.00981-12] [PMID: 22961856]
[http://dx.doi.org/10.1128/JB.00981-12] [PMID: 22961856]
[43]
Fittipaldi, N.; Sekizaki, T.; Takamatsu, D.; de la Cruz Domínguez-Punaro, M.; Harel, J.; Bui, N.K.; Vollmer, W.; Gottschalk, M. Significant contribution of the pgdA gene to the virulence of Streptococcus suis. Mol. Microbiol., 2008, 70(5), 1120-1135.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06463.x] [PMID: 18990186]
[http://dx.doi.org/10.1111/j.1365-2958.2008.06463.x] [PMID: 18990186]
[44]
Wang, G.; Olczak, A.; Forsberg, L.S.; Maier, R.J. Oxidative stress-induced peptidoglycan deacetylase in Helicobacter pylori. J. Biol. Chem., 2009, 284(11), 6790-6800.
[http://dx.doi.org/10.1074/jbc.M808071200] [PMID: 19147492]
[http://dx.doi.org/10.1074/jbc.M808071200] [PMID: 19147492]
[45]
Wang, G.; Maier, S.E.; Lo, L.F.; Maier, G.; Dosi, S.; Maier, R.J. Peptidoglycan deacetylation in Helicobacter pylori contributes to bacterial survival by mitigating host immune responses. Infect. Immun., 2010, 78(11), 4660-4666.
[http://dx.doi.org/10.1128/IAI.00307-10] [PMID: 20805339]
[http://dx.doi.org/10.1128/IAI.00307-10] [PMID: 20805339]
[46]
Shaik, M.M.; Cendron, L.; Percudani, R.; Zanotti, G. The structure of Helicobacter pylori HP0310 reveals an atypical peptidoglycan deacetylase. PLoS One, 2011, 6(4), e19207.
[http://dx.doi.org/10.1371/journal.pone.0019207] [PMID: 21559431]
[http://dx.doi.org/10.1371/journal.pone.0019207] [PMID: 21559431]
[47]
Suarez, G.; Romero-Gallo, J.; Piazuelo, M.B.; Wang, G.; Maier, R.J.; Forsberg, L.S.; Azadi, P.; Gomez, M.A.; Correa, P.; Peek, R.M. Jr. Modification of helicobacter pylori peptidoglycan enhances NOD1 activation and promotes cancer of the stomach. Cancer Res., 2015, 75(8), 1749-1759.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2291] [PMID: 25732381]
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2291] [PMID: 25732381]
[48]
Kaoukab-Raji, A.; Biskri, L.; Bernardini, M.L.; Allaoui, A. Characterization of SfPgdA, a Shigella flexneri peptidoglycan deacetylase required for bacterial persistence within polymorphonuclear neutrophils. Microbes Infect., 2012, 14(7-8), 619-627.
[http://dx.doi.org/10.1016/j.micinf.2012.01.009] [PMID: 22307019]
[http://dx.doi.org/10.1016/j.micinf.2012.01.009] [PMID: 22307019]
[49]
Yang, S.; Zhang, F.; Kang, J.; Zhang, W.; Deng, G.; Xin, Y.; Ma, Y. Mycobacterium tuberculosis Rv1096 protein: gene cloning, protein expression, and peptidoglycan deacetylase activity. BMC Microbiol., 2014, 14(1), 174.
[http://dx.doi.org/10.1186/1471-2180-14-174] [PMID: 24975018]
[http://dx.doi.org/10.1186/1471-2180-14-174] [PMID: 24975018]
[50]
Lu, Q.; Zhang, W.; Fang, J.; Zheng, J.; Dong, C.; Xiong, S. Mycobacterium tuberculosis Rv1096, facilitates mycobacterial survival by modulating the NF-κB/MAPK pathway as peptidoglycan N-deacetylase. Mol. Immunol., 2020, 127(127), 47-55.
[http://dx.doi.org/10.1016/j.molimm.2020.08.005] [PMID: 32927163]
[http://dx.doi.org/10.1016/j.molimm.2020.08.005] [PMID: 32927163]
[51]
Ho, T.D.; Williams, K.B.; Chen, Y.; Helm, R.F.; Popham, D.L.; Ellermeier, C.D. Clostridium difficile extracytoplasmic function σ factor σV regulates lysozyme resistance and is necessary for pathogenesis in the hamster model of infection. Infect. Immun., 2014, 82(6), 2345-2355.
[http://dx.doi.org/10.1128/IAI.01483-13] [PMID: 24664503]
[http://dx.doi.org/10.1128/IAI.01483-13] [PMID: 24664503]
[52]
Coullon, H.; Rifflet, A.; Wheeler, R.; Janoir, C.; Boneca, I.G.; Candela, T. Peptidoglycan analysis reveals that synergistic deacetylase activity in vegetative clostridium difficile impacts the host response. J. Biol. Chem., 2020, 295(49), 16785-16796.
[http://dx.doi.org/10.1074/jbc.RA119.012442]
[http://dx.doi.org/10.1074/jbc.RA119.012442]
[53]
Kaus, G.M.; Snyder, L.F.; Müh, U.; Flores, M.J.; Popham, D.L.; Ellermeier, C.D. Lysozyme resistance in clostridioides difficile is dependent on two peptidoglycan deacetylases. J. Bacteriol., 2020, 202(22), e00421-20.
[http://dx.doi.org/10.1128/JB.00421-20] [PMID: 32868404]
[http://dx.doi.org/10.1128/JB.00421-20] [PMID: 32868404]
[54]
Lambert, C.; Lerner, T.R.; Bui, N.K.; Somers, H.; Aizawa, S.; Liddell, S.; Clark, A.; Vollmer, W.; Lovering, A.L.; Sockett, R.E. Interrupting peptidoglycan deacetylation during Bdellovibrio predator-prey interaction prevents ultimate destruction of prey wall, liberating bacterial-ghosts. Sci. Rep., 2016, 6(1), 26010.
[http://dx.doi.org/10.1038/srep26010] [PMID: 27211869]
[http://dx.doi.org/10.1038/srep26010] [PMID: 27211869]
[55]
Deng, D.M.; Urch, J.E.; ten Cate, J.M.; Rao, V.A.; van Aalten, D.M.F.; Crielaard, W. Streptococcus mutans SMU.623c codes for a functional, metal-dependent polysaccharide deacetylase that modulates interactions with salivary agglutinin. J. Bacteriol., 2009, 191(1), 394-402.
[http://dx.doi.org/10.1128/JB.00838-08] [PMID: 18978064]
[http://dx.doi.org/10.1128/JB.00838-08] [PMID: 18978064]
[56]
Milani, C.J.E.; Aziz, R.K.; Locke, J.B.; Dahesh, S.; Nizet, V.; Buchanan, J.T. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. Microbiology, 2010, 156(Pt 2), 543-554.
[http://dx.doi.org/10.1099/mic.0.028365-0] [PMID: 19762441]
[http://dx.doi.org/10.1099/mic.0.028365-0] [PMID: 19762441]
[57]
Kao, P.H.N.; Kline, K.A. Dr. Jekyll and Mr. Hide: How Enterococcus faecalis subverts the host immune response to cause infection. J. Mol. Biol., 2019, 431(16), 2932-2945.
[http://dx.doi.org/10.1016/j.jmb.2019.05.030] [PMID: 31132360]
[http://dx.doi.org/10.1016/j.jmb.2019.05.030] [PMID: 31132360]
[58]
Goyette-Desjardins, G.; Auger, J.P.; Xu, J.; Segura, M.; Gottschalk, M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg. Microbes Infect., 2014, 3(6), e45.
[http://dx.doi.org/10.1038/emi.2014.45] [PMID: 26038745]
[http://dx.doi.org/10.1038/emi.2014.45] [PMID: 26038745]
[59]
Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev., 2006, 19(3), 449-490.
[http://dx.doi.org/10.1128/CMR.00054-05] [PMID: 16847081]
[http://dx.doi.org/10.1128/CMR.00054-05] [PMID: 16847081]
[60]
Austin, C.M.; Maier, R.J. Aconitase-mediated posttranscriptional regulation of Helicobacter pylori peptidoglycan deacetylase. J. Bacteriol., 2013, 195(23), 5316-5322.
[http://dx.doi.org/10.1128/JB.00720-13] [PMID: 24056106]
[http://dx.doi.org/10.1128/JB.00720-13] [PMID: 24056106]
[61]
Nisa, I.; Qasim, M.; Yasin, N.; Ullah, R.; Ali, A. Shigella flexneri: an emerging pathogen. Folia Microbiologica; Springer, 2020, pp. 275-291.
[http://dx.doi.org/10.1007/s12223-020-00773-w]
[http://dx.doi.org/10.1007/s12223-020-00773-w]
[62]
Jennison, A.V.; Verma, N.K. Shigella flexneri Infection: pathogenesis and vaccine development. FEMS Microbiology Reviews; Elsevier, 2004, pp. 43-58.
[http://dx.doi.org/10.1016/j.femsre.2003.07.002]
[http://dx.doi.org/10.1016/j.femsre.2003.07.002]
[63]
Lin, Z.; Cai, X.; Chen, M.; Ye, L.; Wu, Y.; Wang, X.; Lv, Z.; Shang, Y.; Qu, D. Virulence and stress responses of Shigella flexneri regulated by PhoP/PhoQ. Front. Microbiol., 2018, 8(JAN), 2689.
[http://dx.doi.org/10.3389/fmicb.2017.02689] [PMID: 29379483]
[http://dx.doi.org/10.3389/fmicb.2017.02689] [PMID: 29379483]
[64]
Maitra, A.; Munshi, T.; Healy, J.; Martin, L.T.; Vollmer, W.; Keep, N.H.; Bhakta, S. Cell wall peptidoglycan in Mycobacterium tuberculosis: an achilles’ heel for the TB-causing pathogen. FEMS Microbiology Reviews; Oxford University Press, 2019, pp. 548-275.
[http://dx.doi.org/10.1093/femsre/fuz016]
[http://dx.doi.org/10.1093/femsre/fuz016]
[65]
Bartlett, J.G. Clostridium difficile infection. Infectious Disease Clinics of North America; Massachusetts Medical Society, 2017, pp. 489-495.
[http://dx.doi.org/10.1016/j.idc.2017.05.012]
[http://dx.doi.org/10.1016/j.idc.2017.05.012]
[66]
Peltier, J.; Courtin, P.; El Meouche, I.; Lemée, L.; Chapot-Chartier, M.P.; Pons, J.L. Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. J. Biol. Chem., 2011, 286(33), 29053-29062.
[http://dx.doi.org/10.1074/jbc.M111.259150] [PMID: 21685382]
[http://dx.doi.org/10.1074/jbc.M111.259150] [PMID: 21685382]
[67]
Kirk, J.A.; Banerji, O.; Fagan, R.P. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb. Biotechnol., 2017, 10(1), 76-90.
[http://dx.doi.org/10.1111/1751-7915.12372] [PMID: 27311697]
[http://dx.doi.org/10.1111/1751-7915.12372] [PMID: 27311697]
[68]
Negus, D.; Moore, C.; Baker, M.; Raghunathan, D.; Tyson, J.; Sockett, R.E. Predator versus pathogen: how does predatory bdellovibrio bacteriovorus interface with the challenges of killing gram-negative pathogens in a host setting? Annu. Rev. Microbiol., 2017, 71(1), 441-457.
[http://dx.doi.org/10.1146/annurev-micro-090816-093618] [PMID: 28886689]
[http://dx.doi.org/10.1146/annurev-micro-090816-093618] [PMID: 28886689]
[69]
Sockett, R.E. Predatory lifestyle of bdellovibrio bacteriovorus. Annu. Rev. Microbiol., 2009, 63, 523-539.
[http://dx.doi.org/10.1146/annurev.micro.091208.073346]
[http://dx.doi.org/10.1146/annurev.micro.091208.073346]
[70]
Loesche, W.J. Role of Streptococcus Mutans in Human Dental Decay. Microbiological Reviews. American Society for Microbiology; ASM, 1986, pp. 353-380.
[http://dx.doi.org/10.1128/MMBR.50.4.353-380.1986]
[http://dx.doi.org/10.1128/MMBR.50.4.353-380.1986]
[71]
Wang, Q.; Zhang, C.; Xu, L.; Chen, J.; Wang, X. Characterization of Streptococcus Iniae ghost vac-cine and its immunization in nile tilapia (Oreochromis niloticus). Aquac. Res., 2020, are.14990.
[http://dx.doi.org/ 10.1111/are.14990]
[http://dx.doi.org/ 10.1111/are.14990]
[72]
Agnew, W.; Barnes, A.C. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Veterinary Microbiology; Elsevier, 2007, pp. 1-15.
[http://dx.doi.org/10.1016/j.vetmic.2007.03.002]
[http://dx.doi.org/10.1016/j.vetmic.2007.03.002]
[73]
Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus Cereus Group. Bacillus species with pathogenic potential. Microbiol. Spectr., 2019, 7(3), 10.1128/microbiolspec. GPP3-0032-2018
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0032-2018] [PMID: 31111815]
[http://dx.doi.org/10.1128/microbiolspec.GPP3-0032-2018] [PMID: 31111815]
[74]
Żakowska, D.; Bartoszcze, M.; Niemcewicz, M.; Bielawska-Drózd, A.; Knap, J.; Cieślik, P.; Chomiczewski, K.; Kocik, J. Bacillus anthracis infections – new possibilities of treatment. Annals of Agricultural and Environmental Medicine; Institute of Rural Health, 2015, pp. 202-207.
[http://dx.doi.org/10.5604/12321966.1152065]
[http://dx.doi.org/10.5604/12321966.1152065]
[75]
Balomenou, S.; Fouet, A.; Tzanodaskalaki, M.; Couture-Tosi, E.; Bouriotis, V.; Boneca, I.G. Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis and virulence of Bacillus anthracis. Mol. Microbiol., 2013, 87(4), 867-883.
[http://dx.doi.org/10.1111/mmi.12137] [PMID: 23336745]
[http://dx.doi.org/10.1111/mmi.12137] [PMID: 23336745]
[76]
Giastas, P.; Andreou, A.; Papakyriakou, A.; Koutsioulis, D.; Balomenou, S.; Tzartos, S.J.; Bouriotis, V.; Eliopoulos, E.E. Structures of the Peptidoglycan N-Acetylglucosamine Deacetylase Bc1974 and Its Complexes with Zinc Metalloenzyme Inhibitors. Biochemistry, 2018, 57(5), 753-763.
[http://dx.doi.org/10.1021/acs.biochem.7b00919] [PMID: 29257674]
[http://dx.doi.org/10.1021/acs.biochem.7b00919] [PMID: 29257674]
[77]
Prejanò, M.; Romeo, I.; Sgrizzi, L.; Russo, N.; Marino, T. Why hydroxy-proline improves the catalytic power of the peptidoglycan N-deacetylase enzyme: insight from theory. Phys. Chem. Chem. Phys., 2019, 21(42), 23338-23345.
[http://dx.doi.org/10.1039/C9CP03804C] [PMID: 31617504]
[http://dx.doi.org/10.1039/C9CP03804C] [PMID: 31617504]
[78]
Psylinakis, E.; Boneca, I.G.; Mavromatis, K.; Deli, A.; Hayhurst, E.; Foster, S.J.; Vårum, K.M.; Bouriotis, V. Peptidoglycan N-acetylglucosamine deacetylases from Bacillus cereus, highly conserved proteins in Bacillus anthracis. J. Biol. Chem., 2005, 280(35), 30856-30863.
[http://dx.doi.org/10.1074/jbc.M407426200] [PMID: 15961396]
[http://dx.doi.org/10.1074/jbc.M407426200] [PMID: 15961396]
[79]
Fadouloglou, V.E.; Balomenou, S.; Aivaliotis, M.; Kotsifaki, D.; Arnaouteli, S.; Tomatsidou, A.; Efstathiou, G.; Kountourakis, N.; Miliara, S.; Griniezaki, M.; Tsalafouta, A.; Pergantis, S.A.; Boneca, I.G.; Glykos, N.M.; Bouriotis, V.; Kokkinidis, M. Unusual α-Carbon Hydroxylation of Proline Promotes Active-Site Maturation. J. Am. Chem. Soc., 2017, 139(15), 5330-5337.
[http://dx.doi.org/10.1021/jacs.6b12209] [PMID: 28333455]
[http://dx.doi.org/10.1021/jacs.6b12209] [PMID: 28333455]
[80]
Fadouloglou, V.E.; Kapanidou, M.; Agiomirgianaki, A.; Arnaouteli, S.; Bouriotis, V.; Glykos, N.M.; Kokkinidis, M. Structure determination through homology modelling and torsion-angle simulated annealing: application to a polysaccharide deacetylase from Bacillus cereus. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 2), 276-283.
[http://dx.doi.org/10.1107/S0907444912045829] [PMID: 23385463]
[http://dx.doi.org/10.1107/S0907444912045829] [PMID: 23385463]
[81]
Arnaouteli, S.; Giastas, P.; Andreou, A.; Tzanodaskalaki, M.; Aldridge, C.; Tzartos, S.J.; Vollmer, W.; Eliopoulos, E.; Bouriotis, V. Two Putative Polysaccharide Deacetylases Are Required for Osmotic Stability and Cell Shape Maintenance in Bacillus anthracis. J. Biol. Chem., 2015, 290(21), 13465-13478.
[http://dx.doi.org/10.1074/jbc.M115.640029] [PMID: 25825488]
[http://dx.doi.org/10.1074/jbc.M115.640029] [PMID: 25825488]
[82]
Andreou, A.; Giastas, P.; Arnaouteli, S.; Tzanodaskalaki, M.; Tzartos, S.J.; Bethanis, K.; Bouriotis, V.; Eliopoulos, E.E. The putative polysaccharide deacetylase Ba0331: cloning, expression, crystallization and structure determination. Acta Crystallogr. F Struct. Biol. Commun., 2019, 75(Pt 4), 312-320.
[http://dx.doi.org/10.1107/S2053230X19001766] [PMID: 30950833]
[http://dx.doi.org/10.1107/S2053230X19001766] [PMID: 30950833]
[83]
Soni, A.; Oey, I.; Silcock, P.; Ross, I.K.; Bremer, P.J. Effect of Pulsed Electric Field with Moderate Heat (80°C) on Inactivation, Thermal Resistance and Differential Gene Expression in B. cereus Spores. J. Food Process. Preserv., 2020, 44(7)
[http://dx.doi.org/10.1111/jfpp.14503]
[http://dx.doi.org/10.1111/jfpp.14503]
[84]
Tomatsidou, A.; Koutsioulis, D.; Tzamarias, D.; Kokkinidis, M.; Vollmer, W.; Bouriotis, V. Role of the Putative Polysaccharide Deacetylase BA1836 from B. anthracis in Spore Development and Germination. Adv. Microbiol., 2019, 9, 679-702.
[http://dx.doi.org/10.4236/aim.2019.98042]
[http://dx.doi.org/10.4236/aim.2019.98042]
[85]
Andreou, A.; Giastas, P.; Christoforides, E.; Eliopoulos, E.E. Structural and Evolutionary Insights within the Polysaccharide Deacetylase Gene Family of Bacillus anthracis and Bacillus cereus. Genes (Basel), 2018, 9(8), 386.
[http://dx.doi.org/10.3390/genes9080386] [PMID: 30065210]
[http://dx.doi.org/10.3390/genes9080386] [PMID: 30065210]
[86]
Strunk, R.J.; Piemonte, K.M.; Petersen, N.M.; Koutsioulis, D.; Bouriotis, V.; Perry, K.; Cole, K.E. Structure determination of BA0150, a putative polysaccharide deacetylase from Bacillus anthracis. Acta Crystallogr. F Struct. Biol. Commun., 2014, 70(Pt 2), 156-159.
[http://dx.doi.org/10.1107/S2053230X13034262] [PMID: 24637747]
[http://dx.doi.org/10.1107/S2053230X13034262] [PMID: 24637747]
[87]
Khanna, K.; Lopez-Garrido, J.; Pogliano, K. Shaping an Endospore: Architectural Transformations During Bacillus subtilis Sporulation. Annu. Rev. Microbiol., 2020, 74, 361-386.
[http://dx.doi.org/10.1146/annurev-micro-022520-074650] [PMID: 32660383]
[http://dx.doi.org/10.1146/annurev-micro-022520-074650] [PMID: 32660383]
[88]
Fukushima, T.; Yamamoto, H.; Atrih, A.; Foster, S.J.; Sekiguchi, J. A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic δ-lactam residues in the spore cortex of Bacillus subtilis. J. Bacteriol., 2002, 184(21), 6007-6015.
[http://dx.doi.org/10.1128/JB.184.21.6007-6015.2002] [PMID: 12374835]
[http://dx.doi.org/10.1128/JB.184.21.6007-6015.2002] [PMID: 12374835]
[89]
Gilmore, M.E.; Bandyopadhyay, D.; Dean, A.M.; Linnstaedt, S.D.; Popham, D.L. Production of muramic δ-lactam in Bacillus subtilis spore peptidoglycan. J. Bacteriol., 2004, 186(1), 80-89.
[http://dx.doi.org/10.1128/JB.186.1.80-89.2004] [PMID: 14679227]
[http://dx.doi.org/10.1128/JB.186.1.80-89.2004] [PMID: 14679227]
[90]
Fukushima, T.; Kitajima, T.; Sekiguchi, J. A polysaccharide deacetylase homologue, PdaA, in Bacillus subtilis acts as an N-acetylmuramic acid deacetylase in vitro. J. Bacteriol., 2005, 187(4), 1287-1292.
[http://dx.doi.org/10.1128/JB.187.4.1287-1292.2005] [PMID: 15687192]
[http://dx.doi.org/10.1128/JB.187.4.1287-1292.2005] [PMID: 15687192]
[91]
Blair, D.E.; van Aalten, D.M.F. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine. FEBS Lett., 2004, 570(1-3), 13-19.
[http://dx.doi.org/10.1016/j.febslet.2004.06.013] [PMID: 15251431]
[http://dx.doi.org/10.1016/j.febslet.2004.06.013] [PMID: 15251431]
[92]
Fukushima, T.; Tanabe, T.; Yamamoto, H.; Hosoya, S.; Sato, T.; Yoshikawa, H.; Sekiguchi, J. Characterization of a polysaccharide deacetylase gene homologue (pdaB) on sporulation of Bacillus subtilis. J. Biochem., 2004, 136(3), 283-291.
[http://dx.doi.org/10.1093/jb/mvh151] [PMID: 15598884]
[http://dx.doi.org/10.1093/jb/mvh151] [PMID: 15598884]
[93]
Eminoğlu, A.; Ülker, S.; Sandallı, C. Cloning, Purification and Characterization of Acetyl Xylane Esterase from Anoxybacillus flavithermus DSM 2641(T) with Activity on Low Molecular-Weight Acetates. Protein J., 2015, 34(4), 237-242.
[http://dx.doi.org/10.1007/s10930-015-9618-x] [PMID: 26126589]
[http://dx.doi.org/10.1007/s10930-015-9618-x] [PMID: 26126589]
[94]
Kobayashi, K.; Sudiarta, I.P.; Kodama, T.; Fukushima, T.; Ara, K.; Ozaki, K.; Sekiguchi, J. Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J. Biol. Chem., 2012, 287(13), 9765-9776.
[http://dx.doi.org/10.1074/jbc.M111.329490] [PMID: 22277649]
[http://dx.doi.org/10.1074/jbc.M111.329490] [PMID: 22277649]
[95]
Grifoll-Romero, L.; Sainz-Polo, M.A.; Albesa-Jové, D.; Guerin, M.E.; Biarnés, X.; Planas, A. Structure-function relationships underlying the dual N-acetylmuramic and N-acetylglucosamine specificities of the bacterial peptidoglycan deacetylase PdaC. J. Biol. Chem., 2019, 294(50), 19066-19080.
[http://dx.doi.org/10.1074/jbc.RA119.009510] [PMID: 31690626]
[http://dx.doi.org/10.1074/jbc.RA119.009510] [PMID: 31690626]
[96]
Hu, K.; Yang, H.; Liu, G.; Tan, H. Identification and characterization of a polysaccharide deacetylase gene from Bacillus thuringiensis. Can. J. Microbiol., 2006, 52(10), 935-941.
[http://dx.doi.org/10.1139/w06-045] [PMID: 17110961]
[http://dx.doi.org/10.1139/w06-045] [PMID: 17110961]
[97]
Taylor, E.J.; Gloster, T.M.; Turkenburg, J.P.; Vincent, F.; Brzozowski, A.M.; Dupont, C.; Shareck, F.; Centeno, M.S.J.; Prates, J.A.M.; Puchart, V.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Biely, P.; Davies, G.J. Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J. Biol. Chem., 2006, 281(16), 10968-10975.
[http://dx.doi.org/10.1074/jbc.M513066200] [PMID: 16431911]
[http://dx.doi.org/10.1074/jbc.M513066200] [PMID: 16431911]
[98]
Coullon, H.; Rifflet, A.; Wheeler, R.; Janoir, C.; Boneca, I.G.; Candela, T. N-Deacetylases required for muramic-δ-lactam production are involved in Clostridium difficile sporulation, germination, and heat resistance. J. Biol. Chem., 2018, 293(47), 18040-18054.
[http://dx.doi.org/10.1074/jbc.RA118.004273] [PMID: 30266804]
[http://dx.doi.org/10.1074/jbc.RA118.004273] [PMID: 30266804]
[99]
Szurmant, H.; Fukushima, T.; Hoch, J.A. The essential YycFG two-component system of Bacillus subtilis. Methods Enzymol., 2007, 422(06), 396-417.
[http://dx.doi.org/10.1016/S0076-6879(06)22020-2] [PMID: 17628151]
[http://dx.doi.org/10.1016/S0076-6879(06)22020-2] [PMID: 17628151]
[100]
Cardona, S.T.; Choy, M.; Hogan, A.M. Essential Two-Component Systems Regulating Cell Envelope Functions: Opportunities for Novel Antibiotic Therapies. J. Membr. Biol., 2018, 251(1), 75-89.
[http://dx.doi.org/10.1007/s00232-017-9995-5] [PMID: 29098331]
[http://dx.doi.org/10.1007/s00232-017-9995-5] [PMID: 29098331]
[101]
Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. Dis. Primers, 2016, 2(1), 16020.
[http://dx.doi.org/10.1038/nrdp.2016.20] [PMID: 27158839]
[http://dx.doi.org/10.1038/nrdp.2016.20] [PMID: 27158839]
[102]
Bartlett, J.G. Clostridium Difficile Infection. Infect. Dis. Clin. North Am., 2017, 31(3), 489-495.
[http://dx.doi.org/10.1016/j.idc.2017.05.012]
[http://dx.doi.org/10.1016/j.idc.2017.05.012]
[103]
Bui, N.K.; Turk, S.; Buckenmaier, S.; Stevenson-Jones, F.; Zeuch, B.; Gobec, S.; Vollmer, W. Development of screening assays and discovery of initial inhibitors of pneumococcal peptidoglycan deacetylase PgdA. Biochem. Pharmacol., 2011, 82(1), 43-52.
[http://dx.doi.org/10.1016/j.bcp.2011.03.028] [PMID: 21501597]
[http://dx.doi.org/10.1016/j.bcp.2011.03.028] [PMID: 21501597]
[104]
Balomenou, S.; Koutsioulis, D.; Tomatsidou, A.; Tzanodaskalaki, M.; Petratos, K.; Bouriotis, V. Polysaccharide deacetylases serve as new targets for the design of inhibitors against Bacillus anthracis and Bacillus cereus. Bioorg. Med. Chem., 2018, 26(13), 3845-3851.
[http://dx.doi.org/10.1016/j.bmc.2018.06.045] [PMID: 29983281]
[http://dx.doi.org/10.1016/j.bmc.2018.06.045] [PMID: 29983281]
[105]
Melnyk, J.E.; Mohanan, V.; Schaefer, A.K.; Hou, C.W.; Grimes, C.L. Peptidoglycan Modifications Tune the Stability and Function of the Innate Immune Receptor Nod2. J. Am. Chem. Soc., 2015, 137(22), 6987-6990.
[http://dx.doi.org/10.1021/jacs.5b01607] [PMID: 26035228]
[http://dx.doi.org/10.1021/jacs.5b01607] [PMID: 26035228]
[106]
Wang, Y.; Lazor, K.M.; DeMeester, K.E.; Liang, H.; Heiss, T.K.; Grimes, C.L. Postsynthetic Modification of Bacterial Peptidoglycan Using Bioorthogonal N-Acetylcysteamine Analogs and Peptidoglycan O-Acetyltransferase B. J. Am. Chem. Soc., 2017, 139(39), 13596-13599.
[http://dx.doi.org/10.1021/jacs.7b06820] [PMID: 28898061]
[http://dx.doi.org/10.1021/jacs.7b06820] [PMID: 28898061]
[107]
DeMeester, K.E.; Liang, H.; Jensen, M.R.; Jones, Z.S.; D’Ambrosio, E.A.; Scinto, S.L.; Zhou, J.; Grimes, C.L. Synthesis of Functionalized N-Acetyl Muramic Acids To Probe Bacterial Cell Wall Recycling and Biosynthesis. J. Am. Chem. Soc., 2018, 140(30), 9458-9465.
[http://dx.doi.org/10.1021/jacs.8b03304] [PMID: 29986130]
[http://dx.doi.org/10.1021/jacs.8b03304] [PMID: 29986130]
[108]
Crump, G.M.; Zhou, J.; Mashayekh, S.; Grimes, C.L. Revisiting
peptidoglycan sensing: interactions with host immunity
and beyond. Chem. Commun., 2020, 56(87), 13313-13322.
[http://dx.doi.org/10.1039/D0CC02605K]
[http://dx.doi.org/10.1039/D0CC02605K]