Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Total Stromal Fraction (TSF) - Fortified Adipose Tissue-Derived Stem Cells Source: An Emerging Regenerative Realm Against COVID-19 Induced Pulmonary Compromise

Author(s): Madhan Jeyaraman, Sathish Muthu, Rashmi Jain, Ajay Shringeri Satish, Neha Garg, Prabhu Chandra Mishra, Kumari Swati, Anand Parkash, Niraj Kumar Jha*, Shreesh Ojha, Shubhadeep Roychoudhury, Dhruv Kumar, Janne Ruokolainen , Mohammad Amjad Kamal *, Kavindra Kumar Kesari* and Saurabh Kumar Jha*

Volume 3, Issue 1, 2022

Published on: 27 November, 2021

Article ID: e221221196287 Pages: 9

DOI: 10.2174/2666796702666210908151708

Price: $65

Abstract

The inception of the COVID-19 pandemic has jeopardized humanity with markedly dampening of worldwide resources. The viral infection may present with varying signs and symptoms, imitating pneumonia and seasonal flu. With a gradual course, this may progress and result in the deadliest state of acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). Moreover, following recovery from the severe brunt of COVID-19 infection, interstitial portions of alveoli have been found to undergo residual scarring and further to have compromised air exchange. Such alterations in the lung microenvironment and associated systemic manifestations have been recognized to occur due to the extensive release of cytokines. The mortality rate increases with advancing age and in individuals with underlying co-morbidity. Presently, there is no availability of specific antiviral therapy or any other definitive modality to counter this progressive worsening. However, we believe principles and advancing cell-based therapy may prove fruitful in subjugating such reported worsening in these patients. This article reviews eminent knowledge and relevant advancements about the amelioration of lung damage due to COVID-19 infection using adipose tissue- derived - total stromal fraction (TSF).

Keywords: COVID-19, Cytokines, total stromal fraction, adipose tissue-derived MSCs, TSF, corona related pulmonary compromise.

Graphical Abstract

[1]
World Health Organization. Director-General's opening remarks at the media briefing on COVID-19 – 17 May 2021. 2021. Available from: https://www.who.int/director-general/speeches/detail/director-general-s-opening-remarks-at-the-media-briefing-on- covid-19-17-may-2021 [Accessed 18th May, 2021].
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
WHO. Novel coronavirus - China. Disease outbreak news. Update 2021; 18 Available from: https://www.who.int/csr/don/18- may-2021-novel-coronavirus-china/en/
[4]
Johns Hopkins University. Coronavirus COVID-19 global cases by the center for systems science and engineering (CSSE) at Johns Hopkins University. Available from: https://www.arcgis.com/apps/opsdashboard/ index.html#/bda7594740fd40299423467b48e9 ecf6 [Accessed May 18, 2021].
[5]
Worldometer. COVID live update. Available from: https://www.worldometers.info/coronavirus/
[6]
Liu S, Peng D, Qiu H, Yang K, Fu Z, Zou L. Mesenchymal stem cells as a potential therapy for COVID-19. Stem Cell Res Ther 2020; 11(1): 169.
[http://dx.doi.org/10.1186/s13287-020-01678-8] [PMID: 32366290]
[7]
Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther 2017; 8(1): 145.
[http://dx.doi.org/10.1186/s13287-017-0598-y] [PMID: 28619097]
[8]
Gentile P, Sterodimas A. Adipose Stem Cells (ASCs) and Stromal Vascular Fraction (SVF) as a potential therapy in combating (COVID-19)-disease. Aging Dis 2020; 11(3): 465-9.
[http://dx.doi.org/10.14336/AD.2020.0422] [PMID: 32489692]
[9]
Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (ifats) and the international society for cellular therapy (ISCT). Cytotherapy 2013; 15(6): 641-8.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.006] [PMID: 23570660]
[10]
Copcu HE. Potential using of fat-derived stromal cells in the treatment of active disease, and also, in both pre- and post-periods in COVID-19. Aging Dis 2020; 11(4): 730-6.
[http://dx.doi.org/10.14336/AD.2020.0621] [PMID: 32765938]
[11]
You D, Jang MJ, Kim BH, et al. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury. Stem Cells Transl Med 2015; 4(4): 351-8.
[http://dx.doi.org/10.5966/sctm.2014-0161] [PMID: 25792486]
[12]
Al-Ghadban S, Bunnell BA. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential. Physiology (Bethesda) 2020; 35(2): 125-33.
[http://dx.doi.org/10.1152/physiol.00021.2019] [PMID: 32027561]
[13]
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006; 24(5): 1294-301.
[http://dx.doi.org/10.1634/stemcells.2005-0342] [PMID: 16410387]
[14]
Traktuev DO, Merfeld-Clauss S, Li J, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 2008; 102(1): 77-85.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.159475] [PMID: 17967785]
[15]
Traktuev DO, Prater DN, Merfeld-Clauss S, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 2009; 104(12): 1410-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.190926] [PMID: 19443841]
[16]
Szöke K, Brinchmann JE. Concise review: therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Transl Med 2012; 1(9): 658-67.
[http://dx.doi.org/10.5966/sctm.2012-0069] [PMID: 23197872]
[17]
Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3(3): 301-13.
[http://dx.doi.org/10.1016/j.stem.2008.07.003] [PMID: 18786417]
[18]
Caplan AI. MSCs: the sentinel and safe-guards of injury. J Cell Physiol 2016; 231(7): 1413-6.
[http://dx.doi.org/10.1002/jcp.25255] [PMID: 26565391]
[19]
Brennen WN, Denmeade SR, Isaacs JT. Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocr Relat Cancer 2013; 20(5): R269-90.
[http://dx.doi.org/10.1530/ERC-13-0151] [PMID: 23975882]
[20]
Aronowitz JA, Lockhart RA, Hakakian CS. Mechanical versus enzymatic isolation of stromal vascular fraction cells from adipose tissue. Springerplus 2015; 4: 713.
[http://dx.doi.org/10.1186/s40064-015-1509-2] [PMID: 26636001]
[21]
Shah FS, Wu X, Dietrich M, Rood J, Gimble JM. A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 2013; 15(8): 979-85.
[http://dx.doi.org/10.1016/j.jcyt.2013.04.001] [PMID: 23725689]
[22]
Cucchiani R, Corrales L. The effects of fat harvesting and preparation, air exposure, obesity, and stem cell enrichment on adipocyte viability prior to graft transplantation. Aesthet Surg J 2016; 36(10): 1164-73.
[http://dx.doi.org/10.1093/asj/sjw106] [PMID: 27474770]
[23]
Trivisonno A, Alexander RW, Baldari S, et al. Intraoperative strategies for minimal manipulation of autologous adipose tissue for cell- and tissue-based therapies: concise review. Stem Cells Transl Med 2019; 8(12): 1265-71.
[http://dx.doi.org/10.1002/sctm.19-0166] [PMID: 31599497]
[24]
Copcu HE, Oztan S. New mechanical fat separation technique: ARAT and MEST. Aesthetic Surg J Open Forum. 2(4): 1-15.
[http://dx.doi.org/10.1093/asjof/ojaa035]
[25]
Luo S, Zhang X, Dong H, Wen C, Hao L. Correction of the tear trough deformity and concomitant infraorbital hollows with extracellular matrix/stromal vascular fraction gel. Dermatol Surg 2020; 46(12): e118-25.
[http://dx.doi.org/10.1097/DSS.0000000000002359] [PMID: 32187039]
[26]
Cai J, Wang J, Hu W, Lu F. Mechanical micronization of lipoaspirates for the treatment of horizontal neck lines. Plast Reconstr Surg 2020; 145(2): 345-53.
[http://dx.doi.org/10.1097/PRS.0000000000006456] [PMID: 31985619]
[27]
Jiang S, Quan Y, Wang J, Cai J, Lu F. Fat grafting for facial rejuvenation using stromal vascular fraction gel injection. Clin Plast Surg 2020; 47(1): 73-9.
[http://dx.doi.org/10.1016/j.cps.2019.09.001] [PMID: 31739900]
[28]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[29]
Li F. Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. J Virol 2012; 86(5): 2856-8.
[http://dx.doi.org/10.1128/JVI.06882-11] [PMID: 22205743]
[30]
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14(2): 185-92.
[http://dx.doi.org/10.1007/s11684-020-0754-0] [PMID: 32170560]
[31]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[32]
Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. eLife 2020; 9: e58603.
[http://dx.doi.org/10.7554/eLife.58603] [PMID: 32452762]
[33]
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009; 7(6): 439-50.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[34]
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11(2): 216-28.
[http://dx.doi.org/10.14336/AD.2020.0228] [PMID: 32257537]
[35]
Fauci AS, Lane HC, Redfield RR. Covid-19 - navigating the uncharted. N Engl J Med 2020; 382(13): 1268-9.
[http://dx.doi.org/10.1056/NEJMe2002387] [PMID: 32109011]
[36]
Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 2012; 20(1): 14-20.
[http://dx.doi.org/10.1038/mt.2011.211] [PMID: 22008910]
[37]
Prockop DJ. The exciting prospects of new therapies with mesenchymal stromal cells. Cytotherapy 2017; 19(1): 1-8.
[http://dx.doi.org/10.1016/j.jcyt.2016.09.008] [PMID: 27769637]
[38]
Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol 2012; 11(2): 150-6.
[http://dx.doi.org/10.1016/S1474-4422(11)70305-2] [PMID: 22236384]
[39]
Shetty AK, Upadhya R, Madhu LN, Kodali M. Novel insights on systemic and brain aging, stroke, amyotrophic lateral sclerosis, and alzheimer’s disease. Aging Dis 2019; 10(2): 470-82.
[http://dx.doi.org/10.14336/AD.2019.0330] [PMID: 31011489]
[40]
Shetty AK, Kodali M, Upadhya R, Madhu LN. Emerging anti-aging strategies - scientific basis and efficacy. Aging Dis 2018; 9(6): 1165-84.
[http://dx.doi.org/10.14336/AD.2018.1026] [PMID: 30574426]
[41]
Thomas R, Wang W, Su DM. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun Ageing 2020; 17: 2.
[http://dx.doi.org/10.1186/s12979-020-0173-8] [PMID: 31988649]
[42]
Oh SJ, Lee JK, Shin OS. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw 2019; 19(6): e37.
[http://dx.doi.org/10.4110/in.2019.19.e37] [PMID: 31921467]
[43]
Gentile P, Casella D, Palma E, Calabrese C. Engineered fat graft enhanced with adipose-derived stromal vascular fraction cells for regenerative medicine: clinical, histological and instrumental evaluation in breast reconstruction. J Clin Med 2019; 8(4): 504.
[http://dx.doi.org/10.3390/jcm8040504] [PMID: 31013744]
[44]
Gentile P, Garcovich S. Concise review: Adipose-Derived Stem Cells (ASCs) and Adipocyte-Secreted Exosomal microRNA (A-SE-miR) modulate cancer growth and proMote wound repair. J Clin Med 2019; 8(6): 855.
[http://dx.doi.org/10.3390/jcm8060855] [PMID: 31208047]
[45]
Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science 2019; 364(6438): eaav2501.
[http://dx.doi.org/10.1126/science.aav2501] [PMID: 31023895]
[46]
Carvalho PP, Gimble JM, Dias IR, Gomes ME, Reis RL. Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng Part C Methods 2013; 19(6): 473-8.
[http://dx.doi.org/10.1089/ten.tec.2012.0465] [PMID: 23126465]
[47]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[48]
BioXcellerator. Treating COVID-19: bioxcellerator granted regulatory approval for major clinical trial on stem cell therapy. Available from: https://www.wfmz.com/news/pr_newswire/pr_ newswire_health/treating-covid-19-bioxcellerator-granted-regulatory-approval-for-major-clinical-trial-on-stem-cell-therapy/article_65ab9799-101e-57aa-a0d1-4ed74378f722.html [Accessed 18 May 2021].
[49]
BioWorld. Australia’s Mesoblast plans to evaluate its stem cell therapy in patients infected with COVID-19. Available from: https://www.bioworld.com/articles/433641-australias-mesoblast-plans-to-evaluate-its-stem-cell-therapy-in-patients-infected-with- covid-19 [Accessed 18 May 2021].
[50]
ClinicalTrials.gov. Mesenchymal stem cells COVID-19. Available from: https://clinicaltrials.gov/ct2/results/details?term=Mesenchymal+Stem+Cells&cond=COVID-19 [Accessed 18 May 2021].
[51]
ClinicalTrials.gov. Adipose Mesenchymal stem cells | COVID-19. Available from: https://clinicaltrials.gov/ct2/results/details?term=adipose+Mesenchymal+Stem+Cells&cond=COVID-19 [Accessed 18 May 2021].
[52]
ClinicalTrials.gov. A pilot clinical study on inhalation of mesenchymal stem cells exosomes treating severe novel coronavirus pneumonia. Available from: https://clinicaltrials.gov/ct2/show/NCT04276987 [Accessed 18 May 2021].
[53]
Roychoudhury S, Das A, Sengupta P, et al. Viral pandemics of the last four decades: pathophysiology, health impacts and perspectives. Int J Environ Res Public Health 2020; 17(24): 9411.
[http://dx.doi.org/10.3390/ijerph17249411] [PMID: 33333995]
[54]
Roychoudhury S, Das A, Jha NK, et al. Viral pathogenesis of sars-cov-2 infection and male reproductive health. Open Biol 2021; 11(1): 200347.
[http://dx.doi.org/10.1098/rsob.200347] [PMID: 33465325]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy