Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Progress and Challenges in Physiological Artifacts’ Detection in Electroencephalographic Readings

Author(s): Amandeep Bisht, Preeti Singh*, Chamandeep Kaur, Sunil Agarwal and Manisha Ajmani

Volume 18, Issue 5, 2022

Published on: 10 January, 2022

Article ID: e080921196274 Pages: 23

DOI: 10.2174/1573405617666210908124704

Price: $65

Abstract

Background: Electroencephalographic (EEG) recordings are used to trace neural activity within the cortex to study brain functioning over time.

Introduction: During data acquisition, the unequivocal way to reduce artifact is to avoid artifact stimulating events. Though there are certain artifacts that make this task challenging due to their association with the internal human mechanism, in the human-computer interface, these physiological artifacts are of great assistance and act as a command signal for controlling a device or an application (communication). That is why pre-processing of electroencephalographic readings has been a progressive area of exploration, as none of the published work can be viewed as a benchmark for constructive artifact handling.

Methods: This review offers a comprehensive insight into state of the art physiological artifact removal techniques listed so far. The study commences from the single-stage traditional techniques to the multistage techniques, examining the pros and cons of each discussed technique. Also, this review paper gives a general idea of various datasets available and briefs the topical trend in EEG signal processing.

Results: Comparing the state of the art techniques with hybrid ones on the basis of performance and computational complexity, it has been observed that the single-channel techniques save computational time but lack in effective artifact removal especially physiological artifacts. On the other hand, hybrid techniques merge the essential characteristics resulting in increased performance, but time consumption and complexity remain an issue.

Conclusion: Considering the high probability of the presence of multiple artifacts in EEG channels, a trade-off between performance, time and computational complexity is the only key for effective processing of artifacts in the time ahead. This paper is anticipated to facilitate upcoming researchers in enriching the contemporary artifact handling techniques to mitigate the expert’s burden.

Keywords: EEG, physiological artifacts, artifact removal, EOG, EMG, signal processing.

Graphical Abstract

[1]
Duvinage M, Castermans T, Petieau M, Hoellinger T, Cheron G, Dutoit T. Performance of the emotiv epoc headset for P300-based applications. Biomed Eng Online 2013; 12(1): 56.
[http://dx.doi.org/10.1186/1475-925X-12-56] [PMID: 23800158]
[2]
Jeon T, Kim B, Jeon M, Lee BG. Implementation of a portable device for real-time ECG signal analysis. Biomed Eng Online 2014; 13(1): 160.
[http://dx.doi.org/10.1186/1475-925X-13-160] [PMID: 25491135]
[3]
Jalovaara P, Niinimäki T, Vanharanta H. Pocket-size, portable surface EMG device in the differentiation of low back pain patients. Eur Spine J 1995; 4(4): 210-2.
[http://dx.doi.org/10.1007/BF00303412] [PMID: 8528778]
[4]
Bulling A, Ward JA, Gellersen H, Tröster G. Robust recognition of reading activity in transit using wearable electrooculography. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). 2008; pp. 19-37.
[http://dx.doi.org/10.1007/978-3-540-79576-6_2]
[5]
Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW. A brain-computer interface using electrocorticographic signals in humans. J Neural Eng 2004; 1(2): 63-71.
[http://dx.doi.org/10.1088/1741-2560/1/2/001] [PMID: 15876624]
[6]
Donoghue JP, Nurmikko A, Black M, Hochberg LR, Donoghue JP. Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol 2007; 579(Pt 3): 603-11.
[http://dx.doi.org/10.1113/jphysiol.2006.127209] [PMID: 17272345]
[7]
Lee JH, Ryu J, Jolesz FA, Cho ZH, Yoo SS. Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Neurosci Lett 2009; 450(1): 1-6.
[http://dx.doi.org/10.1016/j.neulet.2008.11.024] [PMID: 19026717]
[8]
Georgopoulos AP, Langheim FJ, Leuthold AC, Merkle AN. Magnetoencephalographic signals predict movement trajectory in space. Exp Brain Res 2005; 167(1): 132-5.
[http://dx.doi.org/10.1007/s00221-005-0028-8] [PMID: 16044305]
[9]
Coyle SM, Ward TE, Markham CM. Brain-computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng 2007; 4(3): 219-26.
[http://dx.doi.org/10.1088/1741-2560/4/3/007] [PMID: 17873424]
[10]
Duara R, Grady C, Haxby J, et al. Positron emission tomography in Alzheimer’s disease. Neurology 1986; 36(7): 879-87.
[http://dx.doi.org/10.1212/WNL.36.7.879] [PMID: 3487046]
[11]
Adams C, Hwang PA, Gilday DL, Armstrong DC, Becker LE, Hoffman HJ. Comparison of SPECT, EEG, CT, MRI, and pathology in partial epilepsy. Pediatr Neurol 1992; 8(2): 97-103.
[http://dx.doi.org/10.1016/0887-8994(92)90028-W] [PMID: 1580967]
[12]
Ketcham RA, Carlson WD. Acquisition, optimization and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput Geosci 2001; 27(4): 381-400.
[http://dx.doi.org/10.1016/S0098-3004(00)00116-3]
[14]
Becedas J. Brain–machine interfaces: Basis and advances. IEEE Transac Syst Man Cybernetics Part C 2012; 42(6): 825-36.
[http://dx.doi.org/10.1109/TSMCC.2012.2203301]
[15]
Lin C, Lin B, Lin F, Chang C. Brain computer interface-based smart living environmental auto-adjustment control system in UPnP home networking. IEEE Syst J 2014; 8(2): 363-70.
[http://dx.doi.org/10.1109/JSYST.2012.2192756]
[16]
Diykh M, Li Y, Wen P. EEG sleep stages classification based on time domain features and structural graph similarity. IEEE Trans Neural Syst Rehabil Eng 2016; 24(11): 1159-68.
[http://dx.doi.org/10.1109/TNSRE.2016.2552539] [PMID: 27101613]
[17]
Sharma R, Pachori RB. Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst Appl 2015; 42(3): 1106-17.
[http://dx.doi.org/10.1016/j.eswa.2014.08.030]
[18]
Yan W, Plis S, Calhoun V. Discriminating schizophrenia from normalcontrols using resting state functional network connectivity: A deep neural network and layer-wise relevance propagation method 2017. Sep 25-28; Tokyo, Japan. IEEE: 2017.
[http://dx.doi.org/10.1109/MLSP.2017.8168179]
[19]
Kaur C, Singh P, Sahni S. Electroencephalography-based source localization for depression using standardized low resolution brain electromagnetic tomography–variational mode. Eur Neurol 2019; 81(1-2): 63-75.
[http://dx.doi.org/10.1159/000500414] [PMID: 31112946]
[20]
Balamurugan M, Nancy A, Vijaykumar S. Alzheimer’s disease diagnosis by using dimensionality reduction based on knn classifier. Biomed Pharmacol J 2017; 10(4): 1823-30.
[http://dx.doi.org/10.13005/bpj/1299]
[21]
Islam MK, Rastegarnia A, Yang Z. Methods for artifact detection and removal from scalp EEG: A review. Neurophysiol Clin 2016; 46(4-5): 287-305.
[http://dx.doi.org/10.1016/j.neucli.2016.07.002] [PMID: 27751622]
[22]
Jung C-Y, Saikiran SS. A review on EEG artifacts and its different removal technique. Asia-pacific J Converg Res Interchang 2016; 2(4): 45-62.
[http://dx.doi.org/10.21742/apjcri.2016.12.06]
[23]
Bisht A, Singh P. Identification of single and multiple ocular peaks in EEG signal using adaptive thresholding technique. Wirel Pers Commun 2020; 113(2): 799-819.
[http://dx.doi.org/10.1007/s11277-020-07253-x]
[24]
Schuller PJ, Newell S, Strickland PA, Barry JJ. Response of bispectral index to neuromuscular block in awake volunteers. Br J Anaesth 2015; 115(Suppl. 1): i95-i103.
[http://dx.doi.org/10.1093/bja/aev072] [PMID: 26174308]
[25]
Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. EMG contamination of EEG: Spectral and topographical characteristics. Clin Neurophysiol 2003; 114(9): 1580-93.
[http://dx.doi.org/10.1016/S1388-2457(03)00093-2] [PMID: 12948787]
[26]
Urigüen JA, Garcia-Zapirain B. EEG artifact removal-state-of-the-art and guidelines. J Neural Eng 2015; 12(3): 031001.
[http://dx.doi.org/10.1088/1741-2560/12/3/031001] [PMID: 25834104]
[27]
Klem GH, Lüders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol Suppl 1999; 52: 3-6.
[PMID: 10590970]
[28]
Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. Neuroimage 2007; 34(4): 1600-11.
[http://dx.doi.org/10.1016/j.neuroimage.2006.09.024] [PMID: 17207640]
[29]
Wong ASW, Cooper PS, Conley AC, et al. Event-related potential responses to task switching are sensitive to choice of spatial filter. Front Neurosci 2018; 12: 143.
[http://dx.doi.org/10.3389/fnins.2018.00143] [PMID: 29568260]
[30]
Yeung N, Bogacz R, Holroyd CB, Nieuwenhuis S, Cohen JD. Theta phase resetting and the error-related negativity. Psychophysiology 2007; 44(1): 39-49.
[http://dx.doi.org/10.1111/j.1469-8986.2006.00482.x] [PMID: 17241139]
[31]
Farnsworth B. Top 14 EEG hardware companies. 2017. https://imotions.com/blog/top-14-eeg-hardware-companies-ranked/
[32]
Homepage of the university clinic for epileptology bonn / research. Available from: http://epileptologie-bonn.de/cms/front_content.php?idcat=103
[33]
Goldberger AL, Amaral LA, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000; 101(23): E215-20.
[http://dx.doi.org/10.1161/01.CIR.101.23.e215] [PMID: 10851218]
[34]
Klados MA, Bamidis PD. A semi-simulated EEG/EOG dataset for the comparison of EOG artifact rejection techniques. Data Brief 2016; 8: 1004-6.
[http://dx.doi.org/10.1016/j.dib.2016.06.032] [PMID: 27508255]
[35]
BioSource. 2021. Available from: https://homes.esat.kuleuven.be/~biomed/biosource/biosource.htm [Cited 2021 Feb 20]
[36]
Ihle M, Feldwisch-Drentrup H, Teixeira CA, et al. EPILEPSIAE - a European epilepsy database. Comput Methods Programs Biomed 2012; 106(3): 127-38.
[http://dx.doi.org/10.1016/j.cmpb.2010.08.011] [PMID: 20863589]
[37]
BCI competitions. 2014. Available from: http://www.bbci.de/competition/ [Cited 2021 Feb 20]
[38]
Temple university EEG corpus - downloads. Available from: https://www.isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml [Cited 2021 Feb 20]
[39]
Anisheh SM, Hassanpour H. Designing an adaptive approach for segmenting non-stationary signals. Int J Electron 2011; 98(8): 1091-102.
[http://dx.doi.org/10.1080/00207217.2011.560559]
[40]
Bisht A, Kaur C, Singh P. Recent advances in artifact removal techniques for EEG signal processing. In: Advances in intelligent systems and computing. Springer Verlag 2020; pp. 385-92.
[41]
Schlögl A, Keinrath C, Zimmermann D, Scherer R, Leeb R, Pfurtscheller G. A fully automated correction method of EOG artifacts in EEG recordings. Clin Neurophysiol 2007; 118(1): 98-104.
[http://dx.doi.org/10.1016/j.clinph.2006.09.003] [PMID: 17088100]
[42]
Romero S, Mañanas MA, Barbanoj MJ. A comparative study of automatic techniques for ocular artifact reduction in spontaneous EEG signals based on clinical target variables: A simulation case. Comput Biol Med 2008; 38(3): 348-60.
[http://dx.doi.org/10.1016/j.compbiomed.2007.12.001] [PMID: 18222418]
[43]
Woestenburg JC, Verbaten MN, Slangen JL. The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain. Biol Psychol 1983; 16(1-2): 127-47.
[http://dx.doi.org/10.1016/0301-0511(83)90059-5] [PMID: 6850023]
[44]
Kenemans JL, Molenaar PCM, Verbaten MN, Slangen JL. Removal of the ocular artifact from the EEG: A comparison of time and frequency domain methods with simulated and real data. Psychophysiology 1991; 28(1): 114-21.
[http://dx.doi.org/10.1111/j.1469-8986.1991.tb03397.x] [PMID: 1886960]
[45]
Sadasivan PK, Dutt DN. ANC schemes for the enhancement of EEG signals in the presence of EOG artifacts. Comput Biomed Res 1996; 29(1): 27-40.
[http://dx.doi.org/10.1006/cbmr.1996.0003] [PMID: 8689872]
[46]
Stearns S. Fundamentals of adaptive signal processing. 1985; 246-88. Available from: https://course.ece.cmu.edu/~ece792/handouts/LO_Chap_AdaptiveFilters.pdf
[47]
Mehrkanoon S, Moghavvemi M, Fariborzi H. Real time ocular and facial muscle artifacts removal from EEG signals using LMS adaptive algorithm. 2007 International Conference on Intelligent and Advanced Systems. 2007. Nov 25-28; Kuala Lumpur, Malaysia. IEEE: 2007.
[http://dx.doi.org/10.1109/ICIAS.2007.4658583]
[48]
Somers B, Francart T, Bertrand A. A generic EEG artifact removal algorithm based on the multi-channel Wiener filter. J Neural Eng 2018; 15(3): 036007.
[http://dx.doi.org/10.1088/1741-2552/aaac92] [PMID: 29393057]
[49]
Kalman RE. A new approach to linear filtering and prediction problems. J Fluids Eng Trans ASME 1960; 82(1): 35-45.
[http://dx.doi.org/10.1115/1.3662552]
[50]
Sweeney KT, Ward TE, McLoone SF. Artifact removal in physiological signals--practices and possibilities. IEEE Trans Inf Technol Biomed 2012; 16(3): 488-500.
[http://dx.doi.org/10.1109/TITB.2012.2188536] [PMID: 22361665]
[51]
Walters-Williams J, Li Y. Comparison of extended and unscented Kalman filters applied to EEG signals. IEEE/ICME International Conference on Complex Medical Engineering 2010; 45-51. Gold Coast, QLD, Australia. IEEE: 2010.
[http://dx.doi.org/10.1109/ICCME.2010.5558873]
[52]
Hallez H, De Vos M, Vanrumste B, et al. Removing muscle and eye artifacts using blind source separation techniques in ictal EEG source imaging. Clin Neurophysiol 2009; 120(7): 1262-72.
[http://dx.doi.org/10.1016/j.clinph.2009.05.010] [PMID: 19539525]
[53]
Casarotto S, Bianchi AM, Cerutti S, Chiarenza GA. Principal component analysis for reduction of ocular artefacts in event-related potentials of normal and dyslexic children. Clin Neurophysiol 2004; 115(3): 609-19.
[http://dx.doi.org/10.1016/j.clinph.2003.10.018] [PMID: 15036057]
[54]
Berg P, Scherg M. Dipole modelling of eye activity and its application to the removal of eye artefacts from the EEG and MEG. Clin Phys Physiol Meas 1991; 12(Suppl. A): 49-54.
[http://dx.doi.org/10.1088/0143-0815/12/A/010] [PMID: 1778052]
[55]
Roy V, Shukla S. Modern education and computer science. Mod Educ Comput Sci 2014; 7: 31-9.
[http://dx.doi.org/10.5815/ijmecs.2014.07.05]
[56]
Teixeira A, Tome A, Lang EW, Schachtner R, Stadlthanner K. On the use of KPCA to extract artifacts in one-dimensional biomedical signals. 2006.16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing Maynooth, Ireland. 2006.
[http://dx.doi.org/10.1109/MLSP.2006.275580]
[57]
Turnip A. Automatic artifacts removal of EEG signals using robust principal component analysis. 2nd International Conference on Technology, Informatics, Management, Engineering & Environment 2014; 19-21. IEEE : 2014.
[http://dx.doi.org/10.1109/TIME-E.2014.7011641]
[58]
Lagerlund TD, Sharbrough FW, Busacker NE. Spatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decomposition. J Clin Neurophysiol 1997; 14(1): 73-82.
[http://dx.doi.org/10.1097/00004691-199701000-00007] [PMID: 9013362]
[59]
Wallstrom GL, Kass RE, Miller A, Cohn JF, Fox NA. Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods. Int J Psychophysiol 2004; 53(2): 105-19.
[http://dx.doi.org/10.1016/j.ijpsycho.2004.03.007] [PMID: 15210288]
[60]
Vigário R, Särelä J, Jousmäki V, Hämäläinen M, Oja E. Independent component approach to the analysis of EEG and MEG recordings. IEEE Trans Biomed Eng 2000; 47(5): 589-93.
[http://dx.doi.org/10.1109/10.841330] [PMID: 10851802]
[61]
De Vos M, De Lathauwer L, Huffel SV. Spatially constrained ICA algorithm with an application in EEG processing. Signal Processing 2011; 91(8): 1963-72.
[http://dx.doi.org/10.1016/j.sigpro.2011.02.019]
[62]
Ting KH, Fung PC, Chang CQ, Chan FH. Automatic correction of artifact from single-trial event-related potentials by blind source separation using second order statistics only. Med Eng Phys 2006; 28(8): 780-94.
[http://dx.doi.org/10.1016/j.medengphy.2005.11.006] [PMID: 16406675]
[63]
Belouchrani A. A blind source separation technique using second-order statistics. IEEE Trans Signal Process 1997; 45(2): 434-44.
[http://dx.doi.org/10.1109/78.554307]
[64]
Joyce CA, Gorodnitsky IF, Kutas M. Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 2004; 41(2): 313-25.
[http://dx.doi.org/10.1111/j.1469-8986.2003.00141.x] [PMID: 15032997]
[65]
Tang Y, Tang J. Removal of ocular artifact from EEG using JADE. 1st International Conference on Bioinformatics and Biomedical Engineering 2007; 6-8. Wuhan, China. IEEE 2007.
[http://dx.doi.org/10.1109/ICBBE.2007.148]
[66]
Hesse C. The FastICA algorithm with spatial constraints. IEEE Signal Process Lett 2005; 12(11): 792-5.
[http://dx.doi.org/10.1109/LSP.2005.856867]
[67]
Vayá C, Rieta JJ, Sánchez C, Moratal D. Convolutive blind source separation algorithms applied to the electrocardiogram of atrial fibrillation: study of performance. IEEE Trans Biomed Eng 2007; 54(8): 1530-3.
[http://dx.doi.org/10.1109/TBME.2006.889778] [PMID: 17694875]
[68]
Leutheuser H, Gabsteiger F, Hebenstreit F, Reis P, Lochmann M, Eskofier B. Comparison of the AMICA and the InfoMax algorithm for the reduction of electromyogenic artifacts in EEG data. Annu Int Conf IEEE Eng Med Biol Soc 2013; 2013: 6804-7.
[http://dx.doi.org/10.1109/EMBC.2013.6611119] [PMID: 24111306]
[69]
Crespo-Garcia M, Atienza M, Cantero JL. Muscle artifact removal from human sleep EEG by using independent component analysis. Springer 2008; 36(3): 467-75.
[http://dx.doi.org/10.1007/s10439-008-9442-y]
[70]
Tong S, Bezerianos A, Paul J, Zhu Y, Thakor N. Removal of ECG interference from the EEG recordings in small animals using independent component analysis. J Neurosci Methods 2001; 108(1): 11-7.
[http://dx.doi.org/10.1016/S0165-0270(01)00366-1] [PMID: 11459613]
[71]
Devuyst S, Dutoit T, Stenuit P, Kerkhofs M, Stanus E. Removal of ECG artifacts from EEG using a modified independent component analysis approach. Annu Int Conf IEEE Eng Med Biol Soc 2008; 2008: 5204-7.
[http://dx.doi.org/10.1109/IEMBS.2008.4650387] [PMID: 19163890]
[72]
Gao J, Zheng C, Wang P. Online removal of muscle artifact from electroencephalogram signals based on canonical correlation analysis. Clin EEG Neurosci 2010; 41(1): 53-9.
[http://dx.doi.org/10.1177/155005941004100111] [PMID: 20307017]
[73]
Li J, Chen Y, Taya F, et al. A unified canonical correlation analysis-based framework for removing gradient artifact in concurrent EEG/fMRI recording and motion artifact in walking recording from EEG signal. Med Biol Eng Comput 2017; 55(9): 1669-81.
[http://dx.doi.org/10.1007/s11517-017-1620-3] [PMID: 28185050]
[74]
De Clercq W, Vergult A, Vanrumste B, Van Paesschen W, Van Huffel S. Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans Biomed Eng 2006; 53(12 Pt 1): 2583-7.
[http://dx.doi.org/10.1109/TBME.2006.879459] [PMID: 17153216]
[75]
De Vos M, Riès S, Vanderperren K, et al. Removal of muscle artifacts from EEG recordings of spoken language production. Neuroinformatics 2010; 8(2): 135-50.
[http://dx.doi.org/10.1007/s12021-010-9071-0] [PMID: 20480401]
[76]
Li YO, Adalı T, Wang W, Calhoun VD. Joint blind source separation by multiset canonical correlation analysis. IEEE Trans Signal Process 2009; 57(10): 3918-29.
[http://dx.doi.org/10.1109/TSP.2009.2021636] [PMID: 20221319]
[77]
Yong X, Ward R. Artifact removal in EEG using morphological component analysis. IEEE International Conference on Acoustics, Speech and Signal Processing 2009; 19-24. Taipei, Taiwan. IEEE :2009.
[http://dx.doi.org/10.1109/ICASSP.2009.4959591]
[78]
Singh B, Wagatsuma H. A removal of eye movement and blink artifacts from EEG data using morphological component analysis. Comput Math Methods Med 2017; 2017: 1861645.
[http://dx.doi.org/10.1155/2017/1861645] [PMID: 28194221]
[79]
Kim T, Eltoft T, Lee TW. Independent vector analysis: An extension of ICA to multivariate components. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer Verlag 2006; pp. 165-72.
[80]
Chen X, Liu A, Chen Q, Liu Y, Zou L, McKeown MJ. Simultaneous ocular and muscle artifact removal from EEG data by exploiting diverse statistics. Comput Biol Med 2017; 88: 1-10.
[http://dx.doi.org/10.1016/j.compbiomed.2017.06.013] [PMID: 28658649]
[81]
Bentley P, McDonnell JTE. Wavelet transforms: An introduction. Electron Commun Eng J 1994; 6(4): 175-86.
[http://dx.doi.org/10.1049/ecej:19940401]
[82]
Faust O, Acharya UR, Adeli H, Adeli A. Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 2015; 26: 56-64.
[http://dx.doi.org/10.1016/j.seizure.2015.01.012] [PMID: 25799903]
[83]
Misiti M, Misiti Y, Oppenheim G, Poggi J-M. Wavelet toolbox computation visualization programming user’s guide for use with matlab ®. Available from: ailab.chonbuk.ac.kr
[84]
Dora C. Robust ECG artifact removal from EEG using continuous wavelet transformation and linear regression. 2016 International Conference on Signal Processing and Communications (SPCOM) 2016; 12-5. Bangalore, India . IEEE: 2016.
[http://dx.doi.org/10.1109/SPCOM.2016.7746620]
[85]
Kaur C, Singh P. EEG artifact suppression based on SOBI based ICA using wavelet thresholding. 2015 2nd International Conference on Recent Advances in Engineering and Computational Sciences, RAECS 2015 ; 21-2. Chandigarh, India. IEEE : 2015.
[86]
Asaduzzaman K, Reaz MBI, Mohd-Yasin F, Sim KS, Hussain MS. A study on discrete wavelet-based noise removal from EEG signals. In: Advances in experimental medicine and biology. 2010; pp. 593-603.
[http://dx.doi.org/10.1007/978-1-4419-5913-3_65]
[87]
Krishnaveni V, Jayaraman S, Anitha L, Ramadoss K. Removal of ocular artifacts from EEG using adaptive thresholding of wavelet coefficients. J Neural Eng 2006; 3(4): 338-46.
[http://dx.doi.org/10.1088/1741-2560/3/4/011] [PMID: 17124338]
[88]
Ramanan SV. A novel wavelet based technique for detection and de-noising of ocular artifact in normal and epileptic electroencephalogram. Irish Signals and Systems Conference 2004; 2004: 71-6.
[http://dx.doi.org/10.1049/cp:20040520]
[89]
Zikov T, Bibian S, et al. A wavelet based de-noising technique for ocular artifact correction of the electroencephalogram. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Engineering in Medicine and Biology. 2003; Houston, TX, USA.
[90]
Shahbakhti M, Maugeon M, Beiramvand M, Marozas V. Low complexity automatic stationary wavelet transform for elimination of eye blinks from EEG. Brain Sci 2019; 9(12): 352.
[http://dx.doi.org/10.3390/brainsci9120352] [PMID: 31810263]
[91]
Garg N, Ryait HS, Kumar A, Bisht A. An effective method to identify various factors for denoising wrist pulse signal using wavelet denoising algorithm. Biomed Mater Eng 2018; 29(1): 53-65.
[http://dx.doi.org/10.3233/BME-171712] [PMID: 29254073]
[92]
Zhang DX, Wu XP, Guo XJ. The EEG signal preprocessing based on empirical mode decomposition. 2nd International Conference on Bioinformatics and Biomedical Engineering In: iCBBE; 2008; pp. 2008; 2131-4.
[http://dx.doi.org/10.1109/ICBBE.2008.862]
[93]
Processing RP-RL. Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. J Elect Comput Eng 2008; 2008.
[94]
Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys. Eng Sci 1971; 1998(454): 903-95.
[95]
Wu Z, Huang NE. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv Adapt Data Anal 2009; 1(1): 1-41.
[http://dx.doi.org/10.1142/S1793536909000047]
[96]
Rehman N, Mandic DP. Multivariate empirical mode decomposition. Proc R Soc A Math Phys. Eng Sci 2010; 466(2117): 1291-302.
[97]
Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process 2014; 62(3): 531-44.
[http://dx.doi.org/10.1109/TSP.2013.2288675]
[98]
Rehman NU, Aftab H. Multivariate variational mode decomposition. IEEE Trans Signal Process 2019; 67(23): 6039-52.
[http://dx.doi.org/10.1109/TSP.2019.2951223]
[99]
Shao SY, Shen KQ, Ong CJ, Wilder-Smith EPV, Li XP. Automatic EEG artifact removal: a weighted support vector machine approach with error correction. IEEE Trans Biomed Eng 2009; 56(2): 336-44.
[http://dx.doi.org/10.1109/TBME.2008.2005969] [PMID: 19272915]
[100]
Dhindsa K. Filter-bank artifact rejection: High performance real-time single-channel artifact detection for EEG. Biomed Signal Process Control 2017; 38: 224-35.
[http://dx.doi.org/10.1016/j.bspc.2017.06.012]
[101]
Zhang S, McIntosh J, Shadli SM, Neo PSH, Huang Z, McNaughton N. Removing eye blink artefacts from EEG-A single-channel physiology-based method. J Neurosci Methods 2017; 291: 213-20.
[http://dx.doi.org/10.1016/j.jneumeth.2017.08.031] [PMID: 28860078]
[102]
Maddirala AK, Shaik RA. Removal of EOG artifacts from single channel EEG signals using combined singular spectrum analysis and adaptive noise canceler. IEEE Sens J 2016; 16(23): 8279-87.
[http://dx.doi.org/10.1109/JSEN.2016.2560219]
[103]
Gribonval R, Lesage S. A survey of sparse component analysis for blind source separation: Principles, perspectives, and new challenges. ESANN’06 proceedings - 14th European Symposium on Artificial Neural Networks, Apr 2006, Bruges, Belgium. pp. 323-30.
[104]
Haas SM, Frei MG, Osorio I, Pasik-Duncan B, Radel J. EEG ocular artifact removal through ARMAX model system identification using extended least squares. Commun Inf Syst 2003; 3(1): 19-40.
[http://dx.doi.org/10.4310/CIS.2003.v3.n1.a2]
[105]
Jahankhani P, Kodogiannis VS, Lygouras JN, Petrounias IP. A decision support system for EEG signals based on adaptive fuzzy inference neural networks. J Comput Methods Sci Eng 2011; 11(4): 209-25.
[http://dx.doi.org/10.3233/JCM-2011-0387]
[106]
Mateo J, Torres AM, Sanchez-Morla EM, Santos JL. Eye movement artefact suppression using Volterra filter for electroencephalography signals. J Med Biol Eng 2015; 35(3): 395-405.
[http://dx.doi.org/10.1007/s40846-015-0036-5]
[107]
Borowicz A. Using a multichannel Wiener filter to remove eye-blink artifacts from EEG data. Biomed Signal Process Control 2018; 45: 246-55.
[http://dx.doi.org/10.1016/j.bspc.2018.05.012]
[108]
Shoker L, Sanei S, Chambers J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process Lett 2005; 12(10): 721-4.
[http://dx.doi.org/10.1109/LSP.2005.855539]
[109]
Halder S, Bensch M, Mellinger J, et al. Online artifact removal for brain-computer interfaces using support vector machines and blind source separation. Comput Intell Neurosci 2007; 2007: 82069.
[http://dx.doi.org/10.1155/2007/82069] [PMID: 18288259]
[110]
Bartels G, Shi LC, Lu BL. Automatic artifact removal from EEG - a mixed approach based on double blind source separation and support vector machine. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 2010. Buenos Aires, Argentina. IEEE : 2010.
[http://dx.doi.org/10.1109/IEMBS.2010.5626481]
[111]
Wang J, Zhang Q, Zhang Y, Xu G. Automatic artifacts removal from epileptic EEG using a hybrid algorithm. J Vibroeng 2013; 15(1): 477-87.
[112]
Tamburro G, Fiedler P, Stone D, Haueisen J, Comani S. A new ICA-based fingerprint method for the automatic removal of physiological artifacts from EEG recordings. PeerJ 2018; 6(2): e4380.
[http://dx.doi.org/10.7717/peerj.4380] [PMID: 29492336]
[113]
Radüntz T, Scouten J, Hochmuth O, Meffert B. Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features. J Neural Eng 2017; 14(4): 046004.
[http://dx.doi.org/10.1088/1741-2552/aa69d1] [PMID: 28497769]
[114]
Castellanos NP, Makarov VA. Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis. J Neurosci Methods 2006; 158(2): 300-12.
[http://dx.doi.org/10.1016/j.jneumeth.2006.05.033] [PMID: 16828877]
[115]
Ghandeharion H, Erfanian A. A fully automatic ocular artifact suppression from EEG data using higher order statistics: improved performance by wavelet analysis. Med Eng Phys 2010; 32(7): 720-9.
[http://dx.doi.org/10.1016/j.medengphy.2010.04.010] [PMID: 20466582]
[116]
Mammone N, La Foresta F, Morabito FC. Automatic artifact rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens J 2012; 12(3): 533-42.
[http://dx.doi.org/10.1109/JSEN.2011.2115236]
[117]
Kanoga S, Nakanishi M, Mitsukura Y. Assessing the effects of voluntary and involuntary eyeblinks in independent components of electroencephalogram. Neurocomputing 2016; 193: 20-32.
[http://dx.doi.org/10.1016/j.neucom.2016.01.057]
[118]
Al-Qazzaz NK, Hamid Bin Mohd Ali S, Ahmad SA, Islam MS, Escudero J. Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks. Sensors (Basel) 2017; 17(6): 1326.
[http://dx.doi.org/10.3390/s17061326] [PMID: 28594352]
[119]
Mammone N. Preprocessing the EEG of Alzheimer’s patients to automatically remove artifacts. In: Smart innovation, systems and technologies. Springer Science and Business Media Deutschland GmbH 2017; pp. 279-87.
[120]
Sai CY, Mokhtar N, Arof H, Cumming P, Iwahashi M. Automated classification and removal of EEG artifacts with SVM and wavelet-ICA. IEEE J Biomed Health Inform 2018; 22(3): 664-70.
[http://dx.doi.org/10.1109/JBHI.2017.2723420] [PMID: 28692997]
[121]
Zima M, Tichavský P, Paul K, Krajča V. Robust removal of short-duration artifacts in long neonatal EEG recordings using wavelet-enhanced ICA and adaptive combining of tentative reconstructions. Physiol Meas 2012; 33(8): N39-49.
[http://dx.doi.org/10.1088/0967-3334/33/8/N39] [PMID: 22814032]
[122]
Romo Vázquez R, Vélez-Pérez H, Ranta R, Louis Dorr V, Maquin D, Maillard L. Blind source separation, wavelet denoising and discriminant analysis for EEG artefacts and noise cancelling. Biomed Signal Process Control 2012; 7(4): 389-400.
[http://dx.doi.org/10.1016/j.bspc.2011.06.005]
[123]
Hamaneh MB, Chitravas N, Kaiboriboon K, Lhatoo SD, Loparo KA. Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation. IEEE Trans Biomed Eng 2014; 61(6): 1634-41.
[http://dx.doi.org/10.1109/TBME.2013.2295173] [PMID: 24845273]
[124]
Mammone N, Morabito F. Enhanced automatic wavelet independent component analysis for electroencephalographic artifact removal. Entropy (Basel) 2014; 16(12): 6553-72.
[http://dx.doi.org/10.3390/e16126553]
[125]
Cassani R, Falk TH, Fraga FJ, Kanda PAM, Anghinah R. The effects of automated artifact removal algorithms on electroencephalography-based Alzheimer’s disease diagnosis. Front Aging Neurosci 2014; 6: 55.
[http://dx.doi.org/10.3389/fnagi.2014.00055] [PMID: 24723886]
[126]
Mahajan R, Morshed BI. Unsupervised eye blink artifact denoising of EEG data with modified multiscale sample entropy, Kurtosis, and wavelet-ICA. IEEE J Biomed Health Inform 2015; 19(1): 158-65.
[http://dx.doi.org/10.1109/JBHI.2014.2333010] [PMID: 24968340]
[127]
Mingai L, Shuoda G, Guoyu Z, Yanjun S, Jinfu Y. Removing ocular artifacts from mixed EEG signals with FastKICA and DWT. J Intell Fuzzy Syst 2015; 28(6): 2851-61.
[http://dx.doi.org/10.3233/IFS-151564]
[128]
Bono V, Das S, Jamal W, Maharatna K. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG. J Neurosci Methods 2016; 267: 89-107.
[http://dx.doi.org/10.1016/j.jneumeth.2016.04.006] [PMID: 27102040]
[129]
Burger C, Van Den Heever DJ. Removal of EOG artefacts by combining wavelet neural network and independent component analysis. Biomed Signal Process Control 2015; 15: 67-79.
[http://dx.doi.org/10.1016/j.bspc.2014.09.009]
[130]
Geetha G, Geethalakshmi SN. Artifact removal from EEG using spatially constrained independent component analysis and wavelet denoising with Otsu’s thresholding technique. Procedia Eng 2012; 30: 1064-71.
[http://dx.doi.org/10.1016/j.proeng.2012.01.964]
[131]
Lindsen JP, Bhattacharya J. Correction of blink artifacts using independent component analysis and empirical mode decomposition. Psychophysiology 2010; 47(5): 955-60.
[http://dx.doi.org/10.1111/j.1469-8986.2010.00995.x] [PMID: 20345599]
[132]
Gao C, Ma L, Li H. An ICA/HHT hybrid approach for automatic ocular artifact correction. Int J Pattern Recognit Artif Intell 2015; 29(2): 1558001.
[http://dx.doi.org/10.1142/S021800141558001X]
[133]
Wang G, Teng C, Li K, Zhang Z, Yan X. The removal of EOG artifacts from EEG signals using independent component analysis and multivariate empirical mode decomposition. IEEE J Biomed Health Inform 2016; 20(5): 1301-8.
[http://dx.doi.org/10.1109/JBHI.2015.2450196] [PMID: 26126290]
[134]
Yang BH, He LF, Lin L, Wang Q. Fast removal of ocular artifacts from electroencephalogram signals using spatial constraint independent component analysis based recursive least squares in brain-computer interface. Front Inf Technol Electron Eng 2015; 16(6): 486-96.
[http://dx.doi.org/10.1631/FITEE.1400299]
[135]
Klados MA, Papadelis C, Braun C, Bamidis PD. REG-ICA: A hybrid methodology combining blind Source Separation and regression techniques for the rejection of ocular artifacts. Biomed Signal Process Control 2011; 6(3): 291-300.
[http://dx.doi.org/10.1016/j.bspc.2011.02.001]
[136]
Guarnieri R, Marino M, Barban F, Ganzetti M, Mantini D. Online EEG artifact removal for BCI applications by adaptive spatial filtering. J Neural Eng 2018; 15(5): 056009.
[http://dx.doi.org/10.1088/1741-2552/aacfdf] [PMID: 29952752]
[137]
Chan HL, Tsai YT, Meng LF, Wu T. The removal of ocular artifacts from EEG signals using adaptive filters based on ocular source components. Ann Biomed Eng 2010; 38(11): 3489-99.
[http://dx.doi.org/10.1007/s10439-010-0087-2] [PMID: 20532631]
[138]
Guerrero-Mosquera C, Navia-Vázquez A. Automatic removal of ocular artefacts using adaptive filtering and independent component analysis for electroencephalogram data. IET Signal Process 2012; 6(2): 99-106.
[http://dx.doi.org/10.1049/iet-spr.2010.0135]
[139]
Chiu CC, Hai BH, Yeh SJ, Liao KYK. Recovering EEG signals: Muscle artifact suppression using wavelet-enhanced, independent component analysis integrated with adaptive filter. Biomed Eng Appl Basis Commun 2014; 26(5): 1450063.
[http://dx.doi.org/10.4015/S101623721450063X]
[140]
Hsu SH, Mullen TR, Jung TP, Cauwenberghs G. Real-time adaptive EEG source separation using online recursive independent component analysis. IEEE Trans Neural Syst Rehabil Eng 2016; 24(3): 309-19.
[http://dx.doi.org/10.1109/TNSRE.2015.2508759] [PMID: 26685257]
[141]
Jafarifarmand A, Badamchizadeh MA, Khanmohammadi S, Nazari MA, Tazehkand BM. Real-time ocular artifacts removal of EEG data using a hybrid ICA-ANC approach. Biomed Signal Process Control 2017; 31: 199-210.
[http://dx.doi.org/10.1016/j.bspc.2016.08.006]
[142]
Wang Z, Xu P, Liu T, Tian Y, Lei X, Yao D. Robust removal of ocular artifacts by combining Independent Component Analysis and system identification. Biomed Signal Process Control 2014; 10(1): 250-9.
[http://dx.doi.org/10.1016/j.bspc.2013.10.006]
[143]
Li M, Cui Y, Yang J. Automatic removal of ocular artifact from EEG with DWT and ICA Method. Appl Math Inf Sci 2013; 7(2): 809-16.
[http://dx.doi.org/10.12785/amis/070252]
[144]
Daly I, Scherer R, Billinger M, Müller-Putz G. FORCe: Fully online and automated artifact removal for brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 2015; 23(5): 725-36.
[http://dx.doi.org/10.1109/TNSRE.2014.2346621] [PMID: 25134085]
[145]
Inuso G, La Foresta F, Mammone N, Morabito FC. Wavelet-ICA methodology for efficient artifact removal from Electroencephalographic recordings. 2007 International Joint Conference on Neural Networks; 2007 Aug 12-17; Orlando, FL, USA. IEEE: 2007.
[http://dx.doi.org/10.1109/IJCNN.2007.4371184]
[146]
Peng H, Hu B, Qi Y, Zhao Q, Ratcliffe M. An improved EEG denoising approach in electroencephalogram (EEG) for home care. 2011. 5th International Conference on Pervasive Computing Technologies for Healthcare and Workshops; 2011 May 23-26; Dublin, Ireland. IEEE: 2011.
[147]
Bono V, Jamal W, Das S, Maharatna K. An improved EEG denoising approach in electroencephalogram (EEG) for home care. 2011. 5th International Conference on Pervasive Computing Technologies for Healthcare and Workshops; 2011 May 23-26; Dublin, Ireland. IEEE: 2011.
[http://dx.doi.org/10.1109/ICASSP.2014.6854728]
[148]
Peng H, Hu B, Shi Q, et al. Removal of ocular artifacts in EEG--an improved approach combining DWT and ANC for portable applications. IEEE J Biomed Health Inform 2013; 17(3): 600-7.
[http://dx.doi.org/10.1109/JBHI.2013.2253614] [PMID: 24592462]
[149]
Nguyen HAT, Musson J, Li F, et al. EOG artifact removal using a wavelet neural network. Neurocomputing 2012; 97: 374-89.
[http://dx.doi.org/10.1016/j.neucom.2012.04.016]
[150]
Zhao Q, Hu B, Shi Y, et al. Automatic identification and removal of ocular artifacts in EEG--improved adaptive predictor filtering for portable applications. IEEE Trans Nanobioscience 2014; 13(2): 109-17.
[http://dx.doi.org/10.1109/TNB.2014.2316811] [PMID: 24802943]
[151]
Mijović B, De Vos M, Gligorijević I, Taelman J, Van Huffel S. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans Biomed Eng 2010; 57(9): 2188-96.
[http://dx.doi.org/10.1109/TBME.2010.2051440] [PMID: 20542760]
[152]
Chen X, He C, Peng H. Removal of muscle artifacts from single-channel EEG based on ensemble empirical mode decomposition and multiset canonical correlation analysis. J Appl Math 2014; 2014.
[http://dx.doi.org/10.1155/2014/261347]
[153]
Chen X, Liu A, Chiang J, Wang ZJ, McKeown MJ, Ward RK. Removing muscle artifacts from EEG data: Multichannel or single-channel techniques? IEEE Sens J 2016; 16(7): 1986-97.
[http://dx.doi.org/10.1109/JSEN.2015.2506982]
[154]
Patel R, Sengottuvel S, Janawadkar MP, Gireesan K, Radhakrishnan TS, Mariyappa N. Ocular artifact suppression from EEG using ensemble empirical mode decomposition with principal component analysis. Comput Electr Eng 2016; 54: 78-86.
[http://dx.doi.org/10.1016/j.compeleceng.2015.08.019]
[155]
Bai Y, Wan X, Zeng K, Ni Y, Qiu L, Li X. Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation. J Neural Eng 2016; 13(6): 066016.
[http://dx.doi.org/10.1088/1741-2560/13/6/066016] [PMID: 27788128]
[156]
Egambaram A, Badruddin N, Asirvadam VS, Begum T, Fauvet E, Stolz C. FastEMD–CCA algorithm for unsupervised and fast removal of eyeblink artifacts from electroencephalogram. Biomed Signal Process Control 2020; 57: 101692.
[http://dx.doi.org/10.1016/j.bspc.2019.101692]
[157]
Salsabili S, Sardoui SH, Shamsollahi MB. Interictal EEG denoising using independent component analysis and empirical mode decomposition. 2015 38th International Conference on Telecommunications and Signal Processing; 2015 Jul 9-11; Prague, Czech Republic. IEEE: 2015.
[158]
Chen X, Liu A, Peng H, Ward RK. A preliminary study of muscular artifact cancellation in single-channel EEG. Sensors (Basel) 2014; 14(10): 18370-89.
[http://dx.doi.org/10.3390/s141018370] [PMID: 25275348]
[159]
Chen X, Liu Q, Tao W, et al. ReMAE: User-friendly toolbox for removing muscle artifacts from EEG. IEEE Trans Instrum Meas 2020; 69(5): 2105-19.
[http://dx.doi.org/10.1109/TIM.2019.2920186]
[160]
Chen X, Xu X, Liu A, McKeown MJ, Wang ZJ. The use of multivariate EMD and CCA for denoising muscle artifacts from few-channel EEG recordings. IEEE Trans Instrum Meas 2018; 67(2): 359-70.
[http://dx.doi.org/10.1109/TIM.2017.2759398]
[161]
Xu X, Chen X, Yu Z. Removal of muscle artefacts from few-channel EEG recordings based on multivariate empirical mode decomposition and independent vector analysis. Electron Lett 2018; 54(14): 866-8.
[http://dx.doi.org/10.1049/el.2018.0191]
[162]
Feng Z, Liang M, Chu F. Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples. Mech Syst Signal Process 2013; 38(1): 165-205.
[http://dx.doi.org/10.1016/j.ymssp.2013.01.017]
[163]
Liu T, Luo Z, Huang J, Yan S. A comparative study of four kinds of adaptive decomposition algorithms and their applications. Sensors 2018; 18: 2120.
[http://dx.doi.org/10.3390/s18072120] [PMID: 30004429]
[164]
Xue YJ, Cao JX, Wang DX, Du HK, Yao Y. Application of the variational-mode decomposition for seismic time-frequency analysis. IEEE J Sel Top Appl Earth Obs Remote Sens 2016; 9(8): 3821-31.
[http://dx.doi.org/10.1109/JSTARS.2016.2529702]
[165]
Rahman MM, Hassan Bhuiyan MI, Das AB. Classification of focal and non-focal EEG signals in VMD-DWT domain using ensemble stacking. Biomed Signal Process Control 2019; 50: 72-82.
[http://dx.doi.org/10.1016/j.bspc.2019.01.012]
[166]
Lahmiri S, Boukadoum M. Physiological signal denoising with variational mode decomposition and weighted reconstruction after DWT thresholding. 2015 IEEE International Symposium on Circuits and Systems (ISCAS); 2015 May 24-27; Lisbon, Portugal. IEEE 2015.
[http://dx.doi.org/10.1109/ISCAS.2015.7168756]
[167]
Liu Y, Yang G, Li M, Yin H. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Processing 2016; 125: 349-64.
[http://dx.doi.org/10.1016/j.sigpro.2016.02.011]
[168]
Kaur C, Singh P, Sahni S. EEG artifact removal system for depression using a hybrid denoising approach. Basic Clin Neurosci 2020; 5.
[http://dx.doi.org/10.32598/bcn.9.10.530]
[169]
Alyasseri ZAA, Khader AT, Al-Betar MA. Optimal electroencephalogram signals denoising using hybrid β-hill climbing algorithm and wavelet transform. ACM International Conference Proceeding Series; 2017 Jul 26 - 28; Penang, Malaysia.
[170]
Chavez M, Grosselin F, Bussalb A, De Vico Fallani F, Navarro-Sune X. Surrogate-based artifact removal from single-channel EEG. IEEE Trans Neural Syst Rehabil Eng 2018; 26(3): 540-50.
[http://dx.doi.org/10.1109/TNSRE.2018.2794184] [PMID: 29522398]
[171]
Hu J, Wu M. Wang C sheng, Du Y xiao, He Y, She J. Removal of EOG and EMG artifacts from EEG using combination of functional link neural network and adaptive neural fuzzy inference system. Neurocomputing 2015; 151(P1): 278-87.
[http://dx.doi.org/10.1016/j.neucom.2014.09.040]
[172]
Jafarifarmand A, Badamchizadeh MA. Artifacts removal in EEG signal using a new neural network enhanced adaptive filter. Neurocomputing 2013; 103: 222-31.
[http://dx.doi.org/10.1016/j.neucom.2012.09.024]
[173]
Gajbhiye P, Tripathy RK, Pachori RB. Elimination of ocular artifacts from single channel EEG signals using FBSE-EWT based rhythms. IEEE Sens J 2020; 20(7): 3687-96.
[http://dx.doi.org/10.1109/JSEN.2019.2959697]
[174]
Egambaram A, Badruddin N, Asirvadam VS, Fauvet E, Stolz C, Begum T. Automated and online eye blink artifact removal from electroencephalogram. 2019 IEEE International Conference on Signal and Image Processing Applications (ICSIPA); 2019 Sept 17-19; Kuala Lumpur, Malaysia. IEEE : 2019.
[http://dx.doi.org/10.1109/ICSIPA45851.2019.8977797]
[175]
Akhtar MT, Mitsuhashi W, James CJ. Employing spatially constrained ICA and wavelet denoising, for automatic removal of artifacts from multichannel EEG data. Signal Processing 2012; 92(2): 401-16.
[http://dx.doi.org/10.1016/j.sigpro.2011.08.005]
[176]
Zeng H, Song A, Yan R, Qin H. EOG artifact correction from EEG recording using stationary subspace analysis and empirical mode decomposition. Sensors (Basel) 2013; 13(11): 14839-59.
[http://dx.doi.org/10.3390/s131114839] [PMID: 24189330]
[177]
Gerla V, Kremen V, Covassin N, Lhotska L, Saifutdinova EA, Bukartyk J, et al. Automatic identification of artifacts and unwanted physiologic signals in EEG and EOG during wakefulness. Biomed Signal Process Control 2017; 31: 381-90.
[http://dx.doi.org/10.1016/j.bspc.2016.09.006]
[178]
Yang B, Duan K, Zhang T. Removal of EOG artifacts from EEG using a cascade of sparse autoencoder and recursive least squares adaptive filter. Neurocomputing 2016; 214: 1053-60.
[http://dx.doi.org/10.1016/j.neucom.2016.06.067]
[179]
Rakibul Mowla M, Ng SC, Zilany MSA, Paramesran R. Artifacts-matched blind source separation and wavelet transform for multichannel EEG denoising. Biomed Signal Process Control 2015; 22: 111-8.
[http://dx.doi.org/10.1016/j.bspc.2015.06.009]
[180]
Patel R, Gireesan K, Sengottuvel S, Janawadkar MP, Radhakrishnan TS. Common methodology for cardiac and ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach. J Med Biol Eng 2017; 37(2): 201-8.
[http://dx.doi.org/10.1007/s40846-016-0208-y] [PMID: 29541010]
[181]
Islam MK, Rastegarnia A. Probability mapping based artifact detection and wavelet denoising based artifact removal from scalp EEG for BCI applications. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS); 2019 Feb 23-25; Singapore. IEEE: 2019.
[http://dx.doi.org/10.1109/CCOMS.2019.8821739]
[182]
Jindal K, Upadhyay R, Singh HS. Application of hybrid GLCT-PICA de-noising method in automated EEG artifact removal. Biomed Signal Process Control 2020; 60: 101977.
[http://dx.doi.org/10.1016/j.bspc.2020.101977]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy