[5]
Cohen JP, Morrison P, Dao L, Roth K, Duong TQ, Ghassemi M. Covid-19 image data collection: Prospective predictions are the future. preprint arXiv:200611988 2020.
[6]
Zhao J, Zhang Y, He X, Xie P. COVID-CT-Dataset: A CT scan dataset about COVID-19. arXiv preprint arXiv:200313865 2020.
[7]
Ma J, Wang Y, An X, et al. Towards efficient COVID-19 CT annotation: A Benchmark for lung and infection segmentation. preprint arXiv:200412537 2020.
[8]
Born J, Brändle G, Cossio M, et al. POCOVID-Net: Automatic detection of COVID-19 from a new lung ultrasound imaging dataset (POCUS). arXiv preprint arXiv:200412084 2020.
[9]
Morozov S, Andreychenko A, Pavlov N, et al. MosMedData: Chest CT scans with COVID-19 related findings dataset. arXiv preprint arXiv:200506465 2020.
[10]
Peng Y, Tang Y-X, Lee S, Zhu Y, Summers RM, Lu Z. COVID-19-CT-CXR: A freely accessible and weakly labeled chest X-ray and CT image collection on COVID-19 from biomedical literature. arXiv preprint arXiv:200606177 2020.
[12]
Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L, Eds. Imagenet: A large-scale hierarchical image database.2009 IEEE conference on computer vision and pattern recognition. Ieee 2009.
[13]
He X, Yang X, Zhang S, et al. Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. medRxi 2020.
[14]
Bassi PR, Attux R. A Deep Convolutional Neural Network for COVID-19 Detection Using Chest X-Rays. arXiv preprint arXiv:200501578 2020.
[15]
Shi F, Xia L, Shan F, et al. Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification. arXiv preprint arXiv:200309860 2020.
[16]
Zhou J, Jing B, Wang Z. SODA: Detecting Covid-19 in Chest X-rays with Semi-supervised Open Set Domain Adaptation. arXiv preprint arXiv:200511003 2020.
[18]
Hall LO, Paul R, Goldgof DB, Goldgof GM. Finding covid-19 from chest x-rays using deep learning on a small dataset. arXiv preprint arXiv:200402060 2020.
[20]
Narin A, Kaya C, Pamuk Z. Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:200310849 2020.
[21]
Nishio M, Noguchi S, Matsuo H, Murakami T. Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: Combination of data augmentation methods in a small dataset. arXiv preprint arXiv:200600730 2020.
[22]
Pathari S, Rahul U. Automatic Detection of COVID-19 and Pneumonia from Chest X-Ray using Transfer Learning. medRxiv 2020.
[23]
Tahir A, Qiblawey Y, Khandakar A, et al. Coronavirus: Comparing COVID-19, SARS and MERS in the eyes of AI. arXiv preprint arXiv:200511524 2020.
[25]
Afshar P, Heidarian S, Naderkhani F, Oikonomou A, Plataniotis KN, Mohammadi A. Covid-caps: A capsule network-based framework for identification of covid-19 cases from X-ray images. arXiv preprint arXiv:200402696 2020.
[26]
Alom MZ, Rahman M, Nasrin MS, Taha TM, Asari VK. COVID_MTNet: COVID-19 detection with multi-task deep learning approaches. arXiv preprint arXiv:200403747 2020.
[27]
Apostolopoulos ID, Mpesiana TA. Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks.Physical and Engineering Sciences in Medicine. 2020; 1.
[29]
Chowdhury ME, Rahman T, Khandakar A, et al. Can AI help in screening viral and COVID-19 pneumonia? arXiv preprint arXiv:200313145 2020.
[30]
Khalifa NEM, Taha MHN, Hassanien AE, Elghamrawy S. Detection of coronavirus (COVID-19) associated pneumonia based on generative adversarial networks and a fine-tuned deep transfer learning model using chest X-ray dataset. arXiv preprint arXiv:200401184 2020.
[33]
Laradji I, Rodriguez P, Manas O, Eds. A weakly supervised consistency-based learning method for COVID-19 segmentation in CT images. arxiv 2020.
[36]
Selvan R, Dam EB, Rischel S, Sheng K, Nielsen M, Pai A. Lung segmentation from chest X-rays using variational data imputation. arXiv preprint arXiv:200510052 2020.
[37]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inf Process Syst 2014; 27: 2672-80.
[40]
Shan F, Gao Y, Wang J, et al. Lung infection quantification of covid-19 in ct images with deep learning. arXiv preprint arXiv:200304655 2020.
[42]
Li L, Qin L, Xu Z et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology 2020; 200905.
[46]
Voulodimos A, Protopapadakis E, Katsamenis I, Doulamis A, Doulamis N. Deep learning models for COVID-19 infected area segmentation in CT images. medRxiv 2020.
[47]
Qiu Y, Liu Y, Xu J. MiniSeg: An extremely minimum network for efficient COVID-19 segmentation. arXiv preprint arXiv:200409750 2020.
[48]
Liu S, Georgescu B, Xu Z, et al. 3D tomographic pattern synthesis for enhancing the quantification of COVID-19. arXiv preprint arXiv:200501903 2020.
[49]
Rajinikanth V, Kadry S, Thanaraj KP, Kamalanand K, Seo S. Firefly-algorithm supported scheme to detect COVID-19 lesion in lung CT scan images using shannon entropy and markov-random-field. arXiv preprint arXiv:200409239 2020.
[50]
Yan Q, Wang B, Gong D, et al. COVID-19 chest CT image segmentation--A deep convolutional neural network solution. arXiv preprint arXiv:200410987 2020.
[52]
Chen X, Yao L, Zhang Y. Residual attention u-net for automated multi-class segmentation of COVID-19 chest CT images. arXiv preprint arXiv:200405645 2020.
[53]
Zhou T, Canu S, Ruan S. An automatic covid-19 ct segmentation network using spatial and channel attention mechanism. arXiv preprint arXiv:200406673 2020.
[54]
Wu Y-H, Gao S-H, Mei J, et al. JCS: An explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint arXiv:200407054 2020.
[55]
Wu W, Shi Y, Li X, et al. Deep learning to estimate the physical proportion of infected region of lung for COVID-19 pneumonia with CT image set. arXiv preprint arXiv:200605018 2020.
[56]
He K, Zhao W, Xie X, et al. Synergistic learning of lung lobe segmentation and hierarchical multi-instance classification for automated severity assessment of COVID-19 in CT images. arXiv preprint arXiv:200503832 2020.
[57]
Yeh C-F, Cheng H-T, Wei A, et al. A cascaded learning strategy for robust COVID-19 pneumonia chest x-ray screening. arXiv preprint arXiv:200412786 2020.
[58]
Signoroni A, Savardi M, Benini S, et al. End-to-end learning for semiquantitative rating of COVID-19 severity on chest X-rays. arXiv preprint arXiv:200604603 2020.
[59]
Gozes O, Frid-Adar M, Greenspan H, et al. Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis. arXiv preprint arXiv:200305037 2020.
[60]
Hu R, Ruan G, Xiang S, Huang M, Liang Q, Li J. Automated diagnosis of COVID-19 using deep learning and data augmentation on chest CT. medRxiv 2020.
[61]
Song Y, Zheng S, Li L, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images. medRxiv 2020.
[62]
Jamil M, Hussain I. Automatic detection of COVID-19 infection from chest X-ray using deep learning. medRxiv 2020.
[64]
Khuzani AZ, Heidari M, Shariati SA. COVID-Classifier: An automated machine learning model to assist in the diagnosis of COVID-19 infection in chest x-ray images. medRxiv 2020.
[65]
Ghoshal B, Tucker A. Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19) detection. arXiv preprint arXiv:200310769 2020.
[67]
Zhang J, Xie Y, Li Y, Shen C, Xia Y. Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:200312338 2020.
[68]
Rahimzadeh M, Attar A. A new modified deep convolutional neural network for detecting COVID-19 from X-ray images. arXiv preprint arXiv:200408052 2020.
[70]
Farooq M, Hafeez A. Covid-resnet: A deep learning framework for screening of covid19 from radiographs. arXiv preprint arXiv:200314395 2020.
[71]
Li X, Li C, Zhu D. COVID-MobileXpert: On-device COVID-19 screening using snapshots of chest X-ray. arXiv preprint arXiv:200403042 2020.
[72]
Asif S, Wenhui Y. Automatic detection of COVID-19 using X-ray images with deep convolutional neural networks and machine learning. medRxiv 2020.
[73]
González G, Bustos A, Salinas JM, et al. UMLS-ChestNet: A deep convolutional neural network for radiological findings, differential diagnoses and localizations of COVID-19 in chest x-rays. arXiv preprint arXiv:200605274 2020.
[74]
Lv D, Qi W, Li Y, Sun L, Wang Y. A cascade network for detecting COVID-19 using chest X-rays. arXiv preprint arXiv:200501468 2020.
[76]
Karim M, Döhmen T, Rebholz-Schuhmann D, Decker S, Cochez M, Beyan O. Deepcovidexplainer: Explainable covid-19 predictions based on chest X-ray images. arXiv preprint arXiv:200404582 2020.
[78]
Minaee S, Kafieh R, Sonka M, Yazdani S, Soufi GJ. Deep-covid: Predicting covid-19 from chest x-ray images using deep transfer learning. arXiv preprint arXiv:200409363 2020.
[81]
Ozkaya U, Ozturk S, Barstugan M. Coronavirus (COVID-19) classification using deep features fusion and ranking technique. arXiv preprint arXiv:200403698 2020.
[83]
Chassagnon G, Vakalopoulou M, Battistella E, et al. AI-Driven CT-based quantification, staging and short-term outcome prediction of COVID-19 pneumonia. arXiv preprint arXiv:200412852 2020.
[85]
Tang Z, Zhao W, Xie X, et al. Severity assessment of coronavirus disease 2019 (COVID-19) using quantitative features from chest CT images. arXiv preprint arXiv:200311988 2020.
[87]
Goncharov M, Pisov M, Shevtsov A, et al. CT-based COVID-19 triage: Deep multitask learning improves joint identification and severity quantification. arXiv preprint arXiv:200601441 2020.