Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

A Novel Rosuvastatin Calcium Cow Ghee Fraction Biform Complex: Formulation Characterization and Evaluation

Author(s): Vijendra Kumar Suryawanshi, Khomendra Kumar Sarwa*, Suhas Narayan Sakarkar and Chanchal Deep Kaur

Volume 11, Issue 4, 2021

Published on: 31 August, 2021

Page: [307 - 324] Pages: 18

DOI: 10.2174/2210303111666210831170312

Price: $65

Abstract

Background: Rosuvastatin calcium is a statin class of drug having limited oral bioavailability of about 20%. Bioavailability can be enhanced by using a biform complex of the drug with cow ghee.

Methods: A precise thermal fractionation technique was adopted to separate different fatty acids from cow ghee. The collected fraction was characterized for fatty acid content. LC-MS and FTIR confirm the content variation in the collected fraction. Biform complex was prepared by fusion method with a constant ratio of drug and cow ghee fraction. The prepared complex was subjected to FTIR, DSC, and LC-MS studies to confirm chemical composition characteristics. For evaluation of the drug content, in-vitro and ex-vivo permeation studies were also performed. The antiinflammatory response was measured using the carrageenan paw-induced edema rat model. To determine the lipid-lowering effect, inflammation marker analysis was also performed using ELISA specific kit.

Results: The biform complex prepared with a thermal fraction at 30°C of cow ghee showed the highest in-vitro and ex-vivo permeation. The anti-inflammation response of the biform complex F1 was higher than other tested formulations with a significant decrease in lipid and lipoprotein content.

Conclusion: This study confirms that the thermal fractionation method is able to separate cow ghee as per the fatty acid content. The complexion of rosuvastatin calcium with cow ghee thermal fraction could enhance the oral bioavailability and improve anti-inflammatory and lipid-lowering activities.

Keywords: Rosuvastatin calcium, cow ghee, thermal fractionation, biform complex, C-reactive protein, plasma fibrinogen, anti-inflammation, clarified butter.

Graphical Abstract

[1]
Joshi, K.S. Docosahexaenoic acid content is significantly higher in ghrita prepared by traditional Ayurvedic method. J. Ayurveda Integr. Med., 2014, 5(2), 85-88.
[http://dx.doi.org/10.4103/0975-9476.131730] [PMID: 24948858]
[2]
Jariwala, K.N. Analytical techniques for the assessment of Physico-chemical properties of ghee. Indian J. Appl. Res., 2014, 4(6), 216-217.
[http://dx.doi.org/10.15373/2249555X/June2014/67]
[3]
Ahmad, N.; Saleem, M.; Ahmed, M.; Mahmood, S. Heating effects of desi ghee using raman spectroscopy. Appl. Spectrosc., 2018, 72(6), 833-846.
[http://dx.doi.org/10.1177/0003702818763331] [PMID: 29569466]
[4]
Duraipandi, S.; Selvakumar, V.; Er, N.Y. Reverse engineering of Ayurvedic lipid based formulation, ghrita by combined column chromatography, normal and reverse phase HPTLC analysis. BMC Complement. Altern. Med., 2015, 15, 62.
[http://dx.doi.org/10.1186/s12906-015-0568-9] [PMID: 25885542]
[5]
Vaccarezza, M.; Balla, C.; Rizzo, P. Atherosclerosis as an inflammatory disease: Doubts? No more. Int. J. Cardiol. Heart Vasc., 2018, 19, 1-2.
[http://dx.doi.org/10.1016/j.ijcha.2018.03.003] [PMID: 29946555]
[6]
Tousoulis, D.; Psarros, C.; Demosthenous, M.; Patel, R.; Antoniades, C.; Stefanadis, C. Innate and adaptive inflammation as a therapeutic target in vascular disease: the emerging role of statins. J. Am. Coll. Cardiol., 2014, 63(23), 2491-2502.
[http://dx.doi.org/10.1016/j.jacc.2014.01.054] [PMID: 24613322]
[7]
Patel, V.; Lalani, R.; Bardoliwala, D.; Ghosh, S.; Misra, A. Lipid-based oral formulation strategies for lipophilic drugs. AAPS PharmSciTech, 2018, 19(8), 3609-3630.
[http://dx.doi.org/10.1208/s12249-018-1188-8] [PMID: 30255474]
[8]
Mehta, M. Consumption pattern and fatty acid composition of ghee. Food Sci. Res. J., 2013, 4(2), 116-120.
[9]
Kumar, A. Physico-chemical and natural products investigations of essential oil from the rhizomes of Kaempferia galanga. Pelagia Research Library. Der. Chemica Sinica., 2014, 5(2), 91-94.
[10]
Sarwa, K.K.; Suresh, P.K.; Debnath, M.; Ahmad, M.Z. Tamoxifen citrate loaded ethosomes for transdermal drug delivery system: preparation and characterization. Curr. Drug Deliv., 2013, 10(4), 466-476.
[http://dx.doi.org/10.2174/1567201811310040011] [PMID: 23656399]
[11]
Sarwa, K.K.; Mazumder, B.; Suresh, P.K.; Kaur, C.D. Topical analgesic nanolipid vesicles formulation of capsaicinoids extract of bhut jolokia (capsicum chinense jacq): pharmacodynamic evaluation in rat models and acceptability studies in human volunteers. Curr. Drug Deliv., 2016, 13(8), 1325-1338.
[http://dx.doi.org/10.2174/1567201813666160614120809] [PMID: 27306849]
[12]
Sarwa, K.K.; Suresh, P.K.; Rudrapal, M.; Verma, V.K. Penetration of tamoxifen citrate loaded ethosomes and liposomes across human skin: a comparative study with confocal laser scanning microscopy. Curr. Drug Deliv., 2014, 11(3), 332-337.
[http://dx.doi.org/10.2174/1567201811666140115113127] [PMID: 24428443]
[13]
Torres, F.G.; Troncoso, O.P.; Pisani, A.; Gatto, F.; Bardi, G. Natural polysaccharide nanomaterials: an overview of their immunological properties. Int. J. Mol. Sci., 2019, 20(20)E5092
[http://dx.doi.org/10.3390/ijms20205092] [PMID: 31615111]
[14]
Kumar Sarwa, K.; Rudrapal, M.; Mazumder, B. Topical ethosomal capsaicin attenuates edema and nociception in arthritic rats. Drug Deliv., 2015, 22(8), 1043-1052.
[http://dx.doi.org/10.3109/10717544.2013.861041] [PMID: 24506573]
[15]
Rai, U.; Rawal, A.; Singh, S. Evaluation of the anti-inflammatory effect of an anti-platelet agent crinumin on carrageenan-induced paw oedema and granuloma tissue formation in rats. Inflammopharmacology, 2018, 26(3), 769-778.
[http://dx.doi.org/10.1007/s10787-017-0411-7] [PMID: 29197932]
[16]
van Vlijmen, B.J.; van den Maagdenberg, A.M.; Gijbels, M.J.; van der Boom, H. HogenEsch, H.; Frants, R.R.; Hofker, M.H.; Havekes, L.M. Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J. Clin. Invest., 1994, 93(4), 1403-1410.
[http://dx.doi.org/10.1172/JCI117117] [PMID: 8163645]
[17]
Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci., 2011, 3(1), 118-127.
[http://dx.doi.org/10.4103/0975-7406.76489] [PMID: 21430962]
[18]
Ratnoff, O.D.; Menzie, C. A new method for the determination of fibrinogen in small samples of plasma. J. Lab. Clin. Med., 1951, 37(2), 316-320.
[PMID: 14814359]
[19]
Mehta, B.M.; Darji, V.B.; Aparnathi, K.D.; Aparnathi, K.D. Comparison of five analytical methods for the determination of peroxide value in oxidized ghee. Food Chem., 2015, 185, 449-453.
[http://dx.doi.org/10.1016/j.foodchem.2015.04.023] [PMID: 25952892]
[20]
Beattie, R.; Bell, S.E.; Borgaard, C.; Fearon, A.M.; Moss, B.W. Multivariate prediction of clarified butter composition using Raman spectroscopy. Lipids, 2004, 39(9), 897-906.
[http://dx.doi.org/10.1007/s11745-004-1312-5] [PMID: 15669766]
[21]
Hazra, T.; Sharma, V.; Saha, P.; Pratapsinh, P.M.K. Physico-chemical properties analysis based approaches to ascertain the purity of ghee-a mini review. Int. J. Environ. Sci. Technol., 2017, 6(1), 899-907.
[22]
Jiang, F.L.; Ikeda, I.; Ogawa, Y.; Endo, Y. Rapid determination of saponification value and polymer content of vegetable and fish oils by terahertz spectroscopy. J. Oleo Sci., 2012, 61(10), 531-535.
[http://dx.doi.org/10.5650/jos.61.531] [PMID: 23018850]
[23]
Omari, A.; Mgani, Q.A.; Mubofu, E.B. Fatty acid profile and physico-chemical parameters of castor oils in tanzania. Green Sustain. Chem., 2015, 5(04), 154-163.
[http://dx.doi.org/10.4236/gsc.2015.54019]
[24]
Huang, J.; Lu, S.; Kong, X.; Liu, S.; Li, Y. Form-stable phase change materials based on eutectic mixture of tetradecanol and fatty acids for building energy storage: preparation and performance analysis. Materials (Basel), 2013, 6(10), 4758-4775.
[http://dx.doi.org/10.3390/ma6104758] [PMID: 28788358]
[25]
Dhurvey, Y.R.; Kawtikwar, P.S.; Sakarkar, D.M. Evaluation of physicochemical properties of cow ghee before and after hydrogenation. Int. J. Chemtech Res., 2012, 4(1), 185-189.
[26]
Louis, D. Formulation and evaluation of nanocrystals of a lipid lowering agent. Iran. J. Pharm. Res., 2016, 15(1), 71-82.
[PMID: 27610148]
[27]
Sarfraz, R.M.; Ahmad, M.; Mahmood, A.; Minhas, M.U.; Yaqoob, A. Fabrication and evaluation of rosuvastatin calcium fast disintegrating tablets using β-cyclodextrin and superdisintegrants. Trop. J. Pharm. Res., 2015, 14(11), 1961-1968.
[http://dx.doi.org/10.4314/tjpr.v14i11.2]
[28]
Meza, C.P.; Santos, M.A.; Romañach, R.J. Quantitation of drug content in a low dosage formulation by transmission near infrared spectroscopy. AAPS PharmSciTech, 2006, 7(1)E29
[http://dx.doi.org/10.1208/pt070129] [PMID: 16584160]
[29]
Indian Pharmacopoeia. Published by The Indian Pharmacopoeia Commission, Ghaziabad, on behalf of Government of India, Ministry of Health and Family WelfareDelhi, 2007, II, pp. 42-43..
[30]
Chouinard, P.Y.; Girard, V.; Brisson, G.J. Fatty acid profile and physical properties of milk fat from cows fed calcium salts of fatty acids with varying unsaturation. J. Dairy Sci., 1998, 81(2), 471-481.
[http://dx.doi.org/10.3168/jds.S0022-0302(98)75599-7] [PMID: 9532502]
[31]
van Rooijen, M.A.; Mensink, R.P. Palmitic acid versus stearic acid: effects of interesterification and intakes on cardiometabolic risk markers - a systematic review. Nutrients, 2020, 12(3), 615.
[http://dx.doi.org/10.3390/nu12030615] [PMID: 32111040]
[32]
Kim, M.J.; Doh, H.J.; Choi, M.K.; Chung, S.J.; Shim, C.K.; Kim, D.D.; Kim, J.S.; Yong, C.S.; Choi, H.G. Skin permeation enhancement of diclofenac by fatty acids. Drug Deliv., 2008, 15(6), 373-379.
[http://dx.doi.org/10.1080/10717540802006898] [PMID: 18686081]
[33]
Taguchi, K.; Fukushima, S.; Yamaoka, Y.; Takeuchi, Y.; Suzuki, M. Enhancement of propylene glycol distribution in the skin by high purity cis-unsaturated fatty acids with different alkyl chain lengths having different double bond position. Biol. Pharm. Bull., 1999, 22(4), 407-411.
[http://dx.doi.org/10.1248/bpb.22.407] [PMID: 10328563]
[34]
Prasadani, W.C.; Senanayake, C.M.; Jayathilaka, N.; Ekanayake, S.; Seneviratne, K.N. Effect of three edible oils on the intestinal absorption of caffeic acid: An in vivo and in vitro study. PLoS One, 2017, 12(6)e0179292
[http://dx.doi.org/10.1371/journal.pone.0179292] [PMID: 28617858]
[35]
Kandimalla, K.; Kanikkannan, N.; Andega, S.; Singh, M. Effect of fatty acids on the permeation of melatonin across rat and pig skin in-vitro and on the transepidermal water loss in rats in-vivo. J. Pharm. Pharmacol., 1999, 51(7), 783-790.
[http://dx.doi.org/10.1211/0022357991773140] [PMID: 10467952]
[36]
Gordon, S.M.; McKenzie, B.; Kemeh, G.; Sampson, M.; Perl, S.; Young, N.S.; Fessler, M.B.; Remaley, A.T. Rosuvastatin alters the proteome of high density lipoproteins: generation of alpha-1-antitrypsin enriched particles with anti-inflammatory properties. Mol. Cell. Proteomics, 2015, 14(12), 3247-3257.
[http://dx.doi.org/10.1074/mcp.M115.054031] [PMID: 26483418]
[37]
Stoll, G.; Bendszus, M. Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke, 2006, 37(7), 1923-1932.
[http://dx.doi.org/10.1161/01.STR.0000226901.34927.10] [PMID: 16741184]
[38]
Aghajanzadeh, M.; Ghannad, F.; Zamani, M.; Andalib, S.; Danafar, H. Anti-inflammatory effect of rosuvastatin using diblock amphiphilic copolymer: Synthesis, characterization, in vitro and in vivo study. J. Biomater. Appl., 2019, 34(2), 229-238.
[http://dx.doi.org/10.1177/0885328219847055] [PMID: 31053039]
[39]
Schönbeck, U.; Libby, P. Inflammation, immunity, and HMG-CoA reductase inhibitors: statins as antiinflammatory agents? Circulation, 2004, 109(21)(Suppl. 1), II18-II26.
[http://dx.doi.org/10.1161/01.CIR.0000129505.34151.23] [PMID: 15173059]
[40]
Schmidt, W.M.; Spiel, A.O.; Jilma, B.; Wolzt, M.; Müller, M. In-vivo effects of simvastatin and rosuvastatin on global gene expression in peripheral blood leucocytes in a human inflammation model. Pharmacogenet. Genomics, 2008, 18(2), 109-120.
[http://dx.doi.org/10.1097/FPC.0b013e3282f44d81] [PMID: 18192897]
[41]
Stalker, T.J.; Lefer, A.M.; Scalia, R. A new HMG-CoA reductase inhibitor, rosuvastatin, exerts anti-inflammatory effects on the microvascular endothelium: the role of mevalonic acid. Br. J. Pharmacol., 2001, 133(3), 406-412.
[http://dx.doi.org/10.1038/sj.bjp.0704070] [PMID: 11375257]
[42]
Vazquez, E.; Navarro, M.; Salazar, Y.; Crespo, G.; Bruges, G.; Osorio, C.; Tortorici, V.; Vanegas, H.; López, M. Systemic changes following carrageenan-induced paw inflammation in rats. Inflamm. Res., 2015, 64(5), 333-342.
[http://dx.doi.org/10.1007/s00011-015-0814-0] [PMID: 25772383]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy