Research Article

贝伐单抗与敲低的 β-连环蛋白联合使用可减少 HepG2 中的 VEGF-A 和 Slug mRNA,但在 Caco-2 细胞系中没有

卷 22, 期 4, 2022

发表于: 11 January, 2022

页: [374 - 383] 页: 10

弟呕挨: 10.2174/1573405617666210824120618

价格: $65

摘要

背景:假设贝伐单抗 (Bev) 耐药性可以通过联合其他信号通路的抑制剂来克服。 目的:我们旨在研究Bev与敲低的β-连环蛋白(Bev-β-cat-siRNA)联合对VEGF-A、Slug、NFкB及其两个靶基因c-Flip和FasR表达的影响,在 HepG2 中。还在 Caco-2 细胞中研究了 VEGF-A 和 Slug 的表达。 方法:将培养的细胞分为六组:1)用 Bev 处理的细胞,2)用 β-catenin-siRNA 处理的细胞,3)用 Bev-β-cat-siRNA 处理的细胞,4)用阴性对照处理的细胞,5)用 Bev 阴性对照处理的细胞,和 6) 未处理的细胞。使用 qPCR 和蛋白质印迹评估表达。 结果:Bev-β-cat-siRNA 显着降低了 VEGF-A 的 mRNA 水平,该水平最初在 HepG2 中响应于单独的 Bev 而在 Caco-2 中增加。此外,与 Bev 处理的 HepG2 细胞相比,Bev-β-cat-siRNA 显着降低了 Slug mRNA 水平。相比之下,Bev 组的 VEGF-A 和 Slug mRNA 水平显着低于 Caco-2 细胞中的 Bev-β-cat-siRNA。在 HepG2 和 Caco-2 细胞中观察到不同的 β-catenin 和 Slug 蛋白表达。另一方面,与 Bev 处理的 HepG2 细胞相比,Bev-β-catsiRNA 显着降低了 NFкB、FasR 和 c-Flip 的水平,尽管差异无统计学意义。 结论:我们得出结论,将贝伐单抗与敲低的 β-连环蛋白联合使用可降低 HepG2 中 VEGF-A 和 Slug 的表达,但不会降低 Caco-2 细胞中的表达。

关键词: 贝伐单抗、β-连环蛋白、VEGF-A、Slug、NFкB、C-Flip、FasR。

« Previous
[1]
Shen H, McDonald L. The complexities of resistance to bevacizumab. J Cancer Ther 2012; 3: 491-503.
[http://dx.doi.org/10.4236/jct.2012.35064]
[2]
FDA grants Breakthrough Therapy Designation for Roche's Tecentriq in combination with Avastin as first-line treatment for advanced or metastatic hepatocellular carcinoma (HCC). Roche. 2018. Available from: https://www.roche.com/media/releases/med-cor-2018-07-18.htm.
[3]
Pons-Cursach R, Casanovas O. Mechanisms of anti-angiogenic therapy. Tumor Angiogenesis 2017; 1: 25.
[http://dx.doi.org/10.1007/978-3-319-31215-6_2-2]
[4]
Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 2016; 17(10): 611-25.
[http://dx.doi.org/10.1038/nrm.2016.87] [PMID: 27461391]
[5]
Clarke S, Sharma R. Angiogenesis inhibitors in cancer - mechanisms of action. Experimental and clinical pharmacology 2006; 29(1): 9-12
[6]
Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 2018; 24(34): 3834-48.
[http://dx.doi.org/10.3748/wjg.v24.i34.3834] [PMID: 30228778]
[7]
Mésange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 2014; 5(13): 4709-21.
[http://dx.doi.org/10.18632/oncotarget.1671] [PMID: 25015210]
[8]
Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett 2016; 11(3): 1615-20.
[http://dx.doi.org/10.3892/ol.2016.4113] [PMID: 26998052]
[9]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[10]
Fernández JG, Rodríguez DA, Valenzuela M, et al. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol Cancer 2014; 13: 209.
[http://dx.doi.org/10.1186/1476-4598-13-209] [PMID: 25204429]
[11]
Saifo MS, Rempinski DR Jr, Rustum YM, Azrak RG. Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers. Mol Cancer 2010; 9: 310.
[http://dx.doi.org/10.1186/1476-4598-9-310] [PMID: 21126356]
[12]
Tien LT, Ito M, Nakao M, et al. Expression of β-catenin in hepatocellular carcinoma. World J Gastroenterol 2005; 11(16): 2398-401.
[http://dx.doi.org/10.3748/wjg.v11.i16.2398] [PMID: 15832407]
[13]
Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of β-catenin signaling, Slug, and MAPK. J Cell Biol 2003; 163(4): 847-57.
[http://dx.doi.org/10.1083/jcb.200308162] [PMID: 14623871]
[14]
Kim W, Kim M, Jho EH. Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem J 2013; 450(1): 9-21.
[http://dx.doi.org/10.1042/BJ20121284] [PMID: 23343194]
[15]
Shirley SH, Hudson LG, He J, Kusewitt DF. The skinny on Slug. Mol Carcinog 2010; 49(10): 851-61.
[http://dx.doi.org/10.1002/mc.20674] [PMID: 20721976]
[16]
Li C, Ren W. Effects of Bevacizumab on the proliferation and epithelial-mesenchymal transition in human retinal pigment epithelial cells in vitro 2016 16.
[17]
Huang W, Zhang C, Cui M, Niu J, Ding W. Inhibition of bevacizumab-induced epithelial-mesenchymal transition by batf2 overexpression involves the suppression of wnt/β-catenin signaling in glioblastoma cells. Anticancer Res 2017; 37(8): 4285-94.
[http://dx.doi.org/10.21873/anticanres.11821] [PMID: 28739720]
[18]
Alidzanovic L, Starlinger P, Schauer D, et al. The VEGF rise in blood of bevacizumab patients is not based on tumor escape but a host-blockade of VEGF clearance. Oncotarget 2016; 7(35): 57197-212.
[http://dx.doi.org/10.18632/oncotarget.11084] [PMID: 27527865]
[19]
Mahfouz N, Tahtouh R, Alaaeddine N, et al. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One 2017; 12(6): e0179202.
[http://dx.doi.org/10.1371/journal.pone.0179202] [PMID: 28594907]
[20]
Liu F, Bardhan K, Yang D, et al. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem 2012; 287(30): 25530-40.
[http://dx.doi.org/10.1074/jbc.M112.356279] [PMID: 22669972]
[21]
Deng J, Miller SA, Wang HY, et al. β-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2002; 2(4): 323-34.
[http://dx.doi.org/10.1016/S1535-6108(02)00154-X] [PMID: 12398896]
[22]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[23]
Khalaf AM, Fuentes D, Morshid AI, et al. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 2018; 5: 61-73.
[http://dx.doi.org/10.2147/JHC.S156701] [PMID: 29984212]
[24]
Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr Opin Genet Dev 2006; 16(1): 51-9.
[http://dx.doi.org/10.1016/j.gde.2005.12.007] [PMID: 16377174]
[25]
Carraway KR, Johnson EM, Kauffmann TC, Fry NJ, Mansfield KD. Hypoxia and Hypoglycemia synergistically regulate mRNA stability. RNA Biol 2017; 14(7): 938-51.
[http://dx.doi.org/10.1080/15476286.2017.1311456] [PMID: 28362162]
[26]
Marin JJG, Cives-Losada C, Asensio M, Lozano E, Briz O, Macias RIR. Mechanisms of anticancer drug resistance in hepatoblastoma. Cancers (Basel) 2019; 11(3): 407.
[http://dx.doi.org/10.3390/cancers11030407] [PMID: 30909445]
[27]
Terashima J, Tachikawa C, Kudo K, Habano W, Ozawa S. An aryl hydrocarbon receptor induces VEGF expression through ATF4 under glucose deprivation in HepG2. BMC Mol Biol 2013; 14: 27.
[http://dx.doi.org/10.1186/1471-2199-14-27] [PMID: 24330582]
[28]
Costantini S, Di Bernardo G, Cammarota M, Castello G, Colonna G. Gene expression signature of human HepG2 cell line. Gene 2013; 518(2): 335-45.
[http://dx.doi.org/10.1016/j.gene.2012.12.106] [PMID: 23357223]
[29]
Kawai HF, Kaneko S, Honda M, Shirota Y, Kobayashi K. alpha-fetoprotein-producing hepatoma cell lines share common expression profiles of genes in various categories demonstrated by cDNA microarray analysis. Hepatology 2001; 33(3): 676-91.
[http://dx.doi.org/10.1053/jhep.2001.22500] [PMID: 11230749]
[30]
Kuang R, Jahangiri A, Mascharak S, et al. GLUT3 upregulation promotes metabolic reprogramming associated with antiangiogenic therapy resistance. JCI Insight 2017; 2(2): e88815.
[http://dx.doi.org/10.1172/jci.insight.88815] [PMID: 28138554]
[31]
Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J 2018; 285(16): 2926-43.
[http://dx.doi.org/10.1111/febs.14577] [PMID: 29893496]
[32]
Easwaran V, Lee SH, Inge L, et al. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res 2003; 63(12): 3145-53.
[PMID: 12810642]
[33]
Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001; 61(16): 6050-4.
[PMID: 11507052]
[34]
Sumner G, Georgaros C, Rafique A, et al. Anti-VEGF drug interference with VEGF quantitation in the R&D systems human quantikine VEGF ELISA kit. Bioanalysis 2019; 11(5): 381-92.
[http://dx.doi.org/10.4155/bio-2018-0096] [PMID: 30892063]
[35]
Zhou W, Gross KM, Kuperwasser C. Molecular regulation of Snai2 in development and disease. J Cell Sci 2019; 132(23): jcs235127.
[http://dx.doi.org/10.1242/jcs.235127] [PMID: 31792043]
[36]
Kim M, Jang K, Miller P, et al. VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36(36): 5199-211.
[http://dx.doi.org/10.1038/onc.2017.4] [PMID: 28504716]
[37]
Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ. Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA 2012; 109(41): 16654-9.
[http://dx.doi.org/10.1073/pnas.1205822109] [PMID: 23011797]
[38]
Lambertini E, Franceschetti T, Torreggiani E, et al. SLUG: A new target of lymphoid enhancer factor-1 in human osteoblasts. BMC Mol Biol 2010; 11: 13.
[http://dx.doi.org/10.1186/1471-2199-11-13] [PMID: 20128911]
[39]
Toiyama Y, Yasuda H, Saigusa S, et al. Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 2013; 34(11): 2548-57.
[http://dx.doi.org/10.1093/carcin/bgt282] [PMID: 24001454]
[40]
Deferme L, Briedé JJ, Claessen SM, Cavill R, Kleinjans JC. Cell line-specific oxidative stress in cellular toxicity: A toxicogenomics-based comparison between liver and colon cell models. Toxicol In Vitro 2015; 29(5): 845-55.
[http://dx.doi.org/10.1016/j.tiv.2015.03.007] [PMID: 25800948]
[41]
Lindholm EM, Ragle Aure M, Haugen MH, et al. miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol Oncol 2019; 13(10): 2278-96.
[http://dx.doi.org/10.1002/1878-0261.12561] [PMID: 31402562]
[42]
Wu Z, Li X, Cai X, Huang C, Zheng M. miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug. Tumour Biol 2016; 37(6): 7939-50.
[http://dx.doi.org/10.1007/s13277-015-4665-7] [PMID: 26700673]
[43]
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mrna abundance. Cell 2016; 165(3): 535-50.
[http://dx.doi.org/10.1016/j.cell.2016.03.014] [PMID: 27104977]
[44]
Kendrick N. A gene's mRNA level does not usually predict its protein level 2014.
[45]
El-Bahrawy M, Poulsom R, Rowan AJ, Tomlinson IT, Alison MR. Characterization of the E-cadherin/catenin complex in colorectal carcinoma cell lines. Int J Exp Pathol 2004; 85(2): 65-74.
[http://dx.doi.org/10.1111/j.0959-9673.2004.0371.x] [PMID: 15154912]
[46]
Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1(1): 55-67.
[http://dx.doi.org/10.1038/35094067] [PMID: 11900252]
[47]
Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF. β-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 1997; 94(19): 10330-4.
[http://dx.doi.org/10.1073/pnas.94.19.10330] [PMID: 9294210]
[48]
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol 2016; 7: 378.
[http://dx.doi.org/10.3389/fimmu.2016.00378] [PMID: 27713747]
[49]
Nejak-Bowen K, Kikuchi A, Monga SP. Beta-catenin-NF-κB interactions in murine hepatocytes: A complex to die for. Hepatology 2013; 57(2): 763-74.
[http://dx.doi.org/10.1002/hep.26042] [PMID: 22941935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy