Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Combining Bevacizumab with Knocked-Down β-Catenin Reduces VEGF-A and Slug mRNA in HepG2 but not in Caco-2 Cell Lines

Author(s): Reem Mebed , Yasser BM Ali, Nahla Shehata, Nahla Gamal, Nadia El-Guendy, Abdel-Rahman Zekri and Salwa Sabet*

Volume 22, Issue 4, 2022

Published on: 11 January, 2022

Page: [374 - 383] Pages: 10

DOI: 10.2174/1573405617666210824120618

Price: $65

Abstract

Background: Bevacizumab (Bev) resistance is hypothesized to be overcome by combining inhibitors of other signalling pathways.

Objective: We aimed to study the effect of combining Bev with knocked down β-catenin (Bev-β-cat-siRNA) on the expression of VEGF-A, Slug, NFκB, and its two target genes, c-Flip and FasR, in HepG2. Expression of VEGF-A and Slug was also studied in Caco-2 cells.

Methods: Cultured cells were divided into six groups 1) cells treated with Bev, 2) cells treated with β-catenin-siRNA, 3) cells treated with Bev-β-cat-siRNA, 4) cells treated with negative control, 5) cells treated with Bev-negative control, and 6) untreated cells. Expressions were assessed using qPCR and western blotting.

Results: Bev-β-cat-siRNA significantly reduced the mRNA level of VEGF-A, which was initially increased in response to Bev alone in HepG2 but not in Caco-2. Additionally, Bev-β-cat-siRNA significantly decreased Slug mRNA level compared to Bev treated HepG2 cells. In contrast, VEGF-A and Slug mRNA levels in Bev group were remarkably lower than Bev-β-cat-siRNA in Caco-2 cells. Distinct β-catenin and Slug protein expressions were noticed in HepG2 and Caco-2 cells. On the other hand, Bev-β-catsiRNA remarkably reduced the level of NFκB, FasR, and c-Flip compared to Bev treated HepG2 cells, although the difference was not statistically significant.

Conclusion: We conclude that combining Bevacizumab with knocked down β-catenin reduces the expression of VEGF-A and Slug in HepG2 but not in Caco-2 cells.

Keywords: Bevacizumab, β-catenin, VEGF-A, Slug, NFκB, C-Flip, FasR.

« Previous
[1]
Shen H, McDonald L. The complexities of resistance to bevacizumab. J Cancer Ther 2012; 3: 491-503.
[http://dx.doi.org/10.4236/jct.2012.35064]
[2]
FDA grants Breakthrough Therapy Designation for Roche's Tecentriq in combination with Avastin as first-line treatment for advanced or metastatic hepatocellular carcinoma (HCC). Roche. 2018. Available from: https://www.roche.com/media/releases/med-cor-2018-07-18.htm.
[3]
Pons-Cursach R, Casanovas O. Mechanisms of anti-angiogenic therapy. Tumor Angiogenesis 2017; 1: 25.
[http://dx.doi.org/10.1007/978-3-319-31215-6_2-2]
[4]
Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 2016; 17(10): 611-25.
[http://dx.doi.org/10.1038/nrm.2016.87] [PMID: 27461391]
[5]
Clarke S, Sharma R. Angiogenesis inhibitors in cancer - mechanisms of action. Experimental and clinical pharmacology 2006; 29(1): 9-12
[6]
Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 2018; 24(34): 3834-48.
[http://dx.doi.org/10.3748/wjg.v24.i34.3834] [PMID: 30228778]
[7]
Mésange P, Poindessous V, Sabbah M, Escargueil AE, de Gramont A, Larsen AK. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget 2014; 5(13): 4709-21.
[http://dx.doi.org/10.18632/oncotarget.1671] [PMID: 25015210]
[8]
Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol Lett 2016; 11(3): 1615-20.
[http://dx.doi.org/10.3892/ol.2016.4113] [PMID: 26998052]
[9]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[10]
Fernández JG, Rodríguez DA, Valenzuela M, et al. Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced β-catenin/Tcf-Lef dependent transcription. Mol Cancer 2014; 13: 209.
[http://dx.doi.org/10.1186/1476-4598-13-209] [PMID: 25204429]
[11]
Saifo MS, Rempinski DR Jr, Rustum YM, Azrak RG. Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers. Mol Cancer 2010; 9: 310.
[http://dx.doi.org/10.1186/1476-4598-9-310] [PMID: 21126356]
[12]
Tien LT, Ito M, Nakao M, et al. Expression of β-catenin in hepatocellular carcinoma. World J Gastroenterol 2005; 11(16): 2398-401.
[http://dx.doi.org/10.3748/wjg.v11.i16.2398] [PMID: 15832407]
[13]
Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of β-catenin signaling, Slug, and MAPK. J Cell Biol 2003; 163(4): 847-57.
[http://dx.doi.org/10.1083/jcb.200308162] [PMID: 14623871]
[14]
Kim W, Kim M, Jho EH. Wnt/β-catenin signalling: From plasma membrane to nucleus. Biochem J 2013; 450(1): 9-21.
[http://dx.doi.org/10.1042/BJ20121284] [PMID: 23343194]
[15]
Shirley SH, Hudson LG, He J, Kusewitt DF. The skinny on Slug. Mol Carcinog 2010; 49(10): 851-61.
[http://dx.doi.org/10.1002/mc.20674] [PMID: 20721976]
[16]
Li C, Ren W. Effects of Bevacizumab on the proliferation and epithelial-mesenchymal transition in human retinal pigment epithelial cells in vitro 2016 16.
[17]
Huang W, Zhang C, Cui M, Niu J, Ding W. Inhibition of bevacizumab-induced epithelial-mesenchymal transition by batf2 overexpression involves the suppression of wnt/β-catenin signaling in glioblastoma cells. Anticancer Res 2017; 37(8): 4285-94.
[http://dx.doi.org/10.21873/anticanres.11821] [PMID: 28739720]
[18]
Alidzanovic L, Starlinger P, Schauer D, et al. The VEGF rise in blood of bevacizumab patients is not based on tumor escape but a host-blockade of VEGF clearance. Oncotarget 2016; 7(35): 57197-212.
[http://dx.doi.org/10.18632/oncotarget.11084] [PMID: 27527865]
[19]
Mahfouz N, Tahtouh R, Alaaeddine N, et al. Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One 2017; 12(6): e0179202.
[http://dx.doi.org/10.1371/journal.pone.0179202] [PMID: 28594907]
[20]
Liu F, Bardhan K, Yang D, et al. NF-κB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression. J Biol Chem 2012; 287(30): 25530-40.
[http://dx.doi.org/10.1074/jbc.M112.356279] [PMID: 22669972]
[21]
Deng J, Miller SA, Wang HY, et al. β-catenin interacts with and inhibits NF-kappa B in human colon and breast cancer. Cancer Cell 2002; 2(4): 323-34.
[http://dx.doi.org/10.1016/S1535-6108(02)00154-X] [PMID: 12398896]
[22]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[23]
Khalaf AM, Fuentes D, Morshid AI, et al. Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 2018; 5: 61-73.
[http://dx.doi.org/10.2147/JHC.S156701] [PMID: 29984212]
[24]
Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Curr Opin Genet Dev 2006; 16(1): 51-9.
[http://dx.doi.org/10.1016/j.gde.2005.12.007] [PMID: 16377174]
[25]
Carraway KR, Johnson EM, Kauffmann TC, Fry NJ, Mansfield KD. Hypoxia and Hypoglycemia synergistically regulate mRNA stability. RNA Biol 2017; 14(7): 938-51.
[http://dx.doi.org/10.1080/15476286.2017.1311456] [PMID: 28362162]
[26]
Marin JJG, Cives-Losada C, Asensio M, Lozano E, Briz O, Macias RIR. Mechanisms of anticancer drug resistance in hepatoblastoma. Cancers (Basel) 2019; 11(3): 407.
[http://dx.doi.org/10.3390/cancers11030407] [PMID: 30909445]
[27]
Terashima J, Tachikawa C, Kudo K, Habano W, Ozawa S. An aryl hydrocarbon receptor induces VEGF expression through ATF4 under glucose deprivation in HepG2. BMC Mol Biol 2013; 14: 27.
[http://dx.doi.org/10.1186/1471-2199-14-27] [PMID: 24330582]
[28]
Costantini S, Di Bernardo G, Cammarota M, Castello G, Colonna G. Gene expression signature of human HepG2 cell line. Gene 2013; 518(2): 335-45.
[http://dx.doi.org/10.1016/j.gene.2012.12.106] [PMID: 23357223]
[29]
Kawai HF, Kaneko S, Honda M, Shirota Y, Kobayashi K. alpha-fetoprotein-producing hepatoma cell lines share common expression profiles of genes in various categories demonstrated by cDNA microarray analysis. Hepatology 2001; 33(3): 676-91.
[http://dx.doi.org/10.1053/jhep.2001.22500] [PMID: 11230749]
[30]
Kuang R, Jahangiri A, Mascharak S, et al. GLUT3 upregulation promotes metabolic reprogramming associated with antiangiogenic therapy resistance. JCI Insight 2017; 2(2): e88815.
[http://dx.doi.org/10.1172/jci.insight.88815] [PMID: 28138554]
[31]
Ancey PB, Contat C, Meylan E. Glucose transporters in cancer - from tumor cells to the tumor microenvironment. FEBS J 2018; 285(16): 2926-43.
[http://dx.doi.org/10.1111/febs.14577] [PMID: 29893496]
[32]
Easwaran V, Lee SH, Inge L, et al. beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res 2003; 63(12): 3145-53.
[PMID: 12810642]
[33]
Zhang X, Gaspard JP, Chung DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 2001; 61(16): 6050-4.
[PMID: 11507052]
[34]
Sumner G, Georgaros C, Rafique A, et al. Anti-VEGF drug interference with VEGF quantitation in the R&D systems human quantikine VEGF ELISA kit. Bioanalysis 2019; 11(5): 381-92.
[http://dx.doi.org/10.4155/bio-2018-0096] [PMID: 30892063]
[35]
Zhou W, Gross KM, Kuperwasser C. Molecular regulation of Snai2 in development and disease. J Cell Sci 2019; 132(23): jcs235127.
[http://dx.doi.org/10.1242/jcs.235127] [PMID: 31792043]
[36]
Kim M, Jang K, Miller P, et al. VEGFA links self-renewal and metastasis by inducing Sox2 to repress miR-452, driving Slug. Oncogene 2017; 36(36): 5199-211.
[http://dx.doi.org/10.1038/onc.2017.4] [PMID: 28504716]
[37]
Wu ZQ, Li XY, Hu CY, Ford M, Kleer CG, Weiss SJ. Canonical Wnt signaling regulates Slug activity and links epithelial-mesenchymal transition with epigenetic Breast Cancer 1, Early Onset (BRCA1) repression. Proc Natl Acad Sci USA 2012; 109(41): 16654-9.
[http://dx.doi.org/10.1073/pnas.1205822109] [PMID: 23011797]
[38]
Lambertini E, Franceschetti T, Torreggiani E, et al. SLUG: A new target of lymphoid enhancer factor-1 in human osteoblasts. BMC Mol Biol 2010; 11: 13.
[http://dx.doi.org/10.1186/1471-2199-11-13] [PMID: 20128911]
[39]
Toiyama Y, Yasuda H, Saigusa S, et al. Increased expression of Slug and Vimentin as novel predictive biomarkers for lymph node metastasis and poor prognosis in colorectal cancer. Carcinogenesis 2013; 34(11): 2548-57.
[http://dx.doi.org/10.1093/carcin/bgt282] [PMID: 24001454]
[40]
Deferme L, Briedé JJ, Claessen SM, Cavill R, Kleinjans JC. Cell line-specific oxidative stress in cellular toxicity: A toxicogenomics-based comparison between liver and colon cell models. Toxicol In Vitro 2015; 29(5): 845-55.
[http://dx.doi.org/10.1016/j.tiv.2015.03.007] [PMID: 25800948]
[41]
Lindholm EM, Ragle Aure M, Haugen MH, et al. miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol Oncol 2019; 13(10): 2278-96.
[http://dx.doi.org/10.1002/1878-0261.12561] [PMID: 31402562]
[42]
Wu Z, Li X, Cai X, Huang C, Zheng M. miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug. Tumour Biol 2016; 37(6): 7939-50.
[http://dx.doi.org/10.1007/s13277-015-4665-7] [PMID: 26700673]
[43]
Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mrna abundance. Cell 2016; 165(3): 535-50.
[http://dx.doi.org/10.1016/j.cell.2016.03.014] [PMID: 27104977]
[44]
Kendrick N. A gene's mRNA level does not usually predict its protein level 2014.
[45]
El-Bahrawy M, Poulsom R, Rowan AJ, Tomlinson IT, Alison MR. Characterization of the E-cadherin/catenin complex in colorectal carcinoma cell lines. Int J Exp Pathol 2004; 85(2): 65-74.
[http://dx.doi.org/10.1111/j.0959-9673.2004.0371.x] [PMID: 15154912]
[46]
Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 2001; 1(1): 55-67.
[http://dx.doi.org/10.1038/35094067] [PMID: 11900252]
[47]
Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF. β-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 1997; 94(19): 10330-4.
[http://dx.doi.org/10.1073/pnas.94.19.10330] [PMID: 9294210]
[48]
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol 2016; 7: 378.
[http://dx.doi.org/10.3389/fimmu.2016.00378] [PMID: 27713747]
[49]
Nejak-Bowen K, Kikuchi A, Monga SP. Beta-catenin-NF-κB interactions in murine hepatocytes: A complex to die for. Hepatology 2013; 57(2): 763-74.
[http://dx.doi.org/10.1002/hep.26042] [PMID: 22941935]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy