Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease

Author(s): Heber Victor Tolomeu and Carlos Alberto Manssour Fraga*

Volume 21, Issue 2, 2022

Published on: 20 August, 2021

Page: [188 - 205] Pages: 18

DOI: 10.2174/1871527320666210820092220

Price: $65

Abstract

Background: Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease.

Objective: In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease.

Methods: The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors.

Results: We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds.

Conclusion: We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.

Keywords: Alzheimer’s disease, Neurodegenerative diseases, Kinase inhibitors, Rho kinase 2, ROCK2, ROCK2 inhibitor.

« Previous
Graphical Abstract

[1]
Ward RA, Goldberg FW. Kinase drug discovery. Royal Society of Chemistry 2012.
[2]
Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science 2002; 298(5600): 1912-34.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[3]
Fedorov O, Müller S, Knapp S. The (un)targeted cancer kinome. Nat Chem Biol 2010; 6(3): 166-9.
[http://dx.doi.org/10.1038/nchembio.297] [PMID: 20154661]
[4]
Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 1995; 9(8): 576-96.
[http://dx.doi.org/10.1096/fasebj.9.8.7768349] [PMID: 7768349]
[5]
Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351(Pt 1): 95-105.
[http://dx.doi.org/10.1042/bj3510095] [PMID: 10998351]
[6]
Fabian MA, Biggs WH III, Treiber DK, et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 2005; 23(3): 329-36.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[7]
Bain J, Plater L, Elliott M, et al. The selectivity of protein kinase inhibitors: a further update. Biochem J 2007; 408(3): 297-315.
[http://dx.doi.org/10.1042/BJ20070797] [PMID: 17850214]
[8]
Fedorov O, Marsden B, Pogacic V, et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 2007; 104(51): 20523-8.
[http://dx.doi.org/10.1073/pnas.0708800104] [PMID: 18077363]
[9]
Karaman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 2008; 26(1): 127-32.
[http://dx.doi.org/10.1038/nbt1358] [PMID: 18183025]
[10]
Bamborough P, Drewry D, Harper G, Smith GK, Schneider K. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J Med Chem 2008; 51(24): 7898-914.
[http://dx.doi.org/10.1021/jm8011036] [PMID: 19035792]
[11]
Posy SL, Hermsmeier MA, Vaccaro W, et al. Trends in kinase selectivity: insights for target class-focused library screening. J Med Chem 2011; 54(1): 54-66.
[http://dx.doi.org/10.1021/jm101195a] [PMID: 21128601]
[12]
Hardman JG, Gilman AG, Limbird LE. Goodman & Gilman’s: The pharmacological basis of therapeutics. McGraw-Hill Education 2018.
[13]
Chen J, Sun Z, Jin M, et al. Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J Neuroimmunol 2017; 305: 108-14.
[http://dx.doi.org/10.1016/j.jneuroim.2017.02.010] [PMID: 28284330]
[14]
Rajmohan R, Reddy PH. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimers Dis 2017; 57(4): 975-99.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[15]
2015 Alzheimer’s disease facts and figures. Alzheimers Dement 2015; 11(3): 332-84.
[http://dx.doi.org/10.1016/j.jalz.2015.02.003] [PMID: 25984581]
[16]
Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res 2012; 43(8): 600-8.
[http://dx.doi.org/10.1016/j.arcmed.2012.11.003] [PMID: 23159715]
[17]
Cummings J, Morstorf T, Lee G. Alzheimer’s drug-development pipeline: 2016. Alzheimers Dement (N Y) 2016; 2(4): 222-32.
[http://dx.doi.org/10.1016/j.trci.2016.07.001] [PMID: 29067309]
[18]
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014; 6(4): 37.
[http://dx.doi.org/10.1186/alzrt269] [PMID: 25024750]
[19]
Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimers Dement 2017; 3(3): 367-84.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[20]
Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N Y) 2018; 4: 195-214.
[http://dx.doi.org/10.1016/j.trci.2018.03.009] [PMID: 29955663]
[21]
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y) 2019; 5: 272-93.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[22]
Bruno Dubois MD. Masitinib in patients with mild to moderate Alzheimer's diseaseNCT01872598, 2020.
[23]
Christopher H van Dyck, Paul Aisen. A phase iia multi-center study of 18F-FDG PET, safety, and tolerability of azd0530 in mild alzheimer's disease. NCT02167256, . 2019.
[24]
Neurotrope bioscience, Inc A study assessing bryostatin in the treatment of moderately severe to severe alzheimer's disease NCT02431468, 2018.
[25]
Gevorkyan Hakop. Clinical pharmacology of p38 MAP kinase inhibitor, VX-745, in mild cognitive impairment due to Alzheimer's disease (AD) or mild AD. NCT02423200,. 2018.
[26]
Scheltens Philip. A PET study of the effects of p38 MAP kinase inhibitor, VX-745, on amyloid plaque load in alzheimer's disease (AD). NCT02423122,. 2019.
[27]
Raymond S T. Charbel Moussa, Charbel E M, Charbel E Moussa Impact of nilotinib on safety, biomarkers and clinical outcomes in mild to moderate Alzheimer's disease (AD) NCT02947893, 2019.
[28]
Macfarlane Stephen. Phase 2a dose finding, PK/PD and 12 month exploratory efficacy study of ANAVEX2-73 in patients with alzheimer's disease (ANAVEX). NCT02244541,. 2018.
[29]
Anavex Life Sciences CorpAn extension study of ANAVEX2-73 in patients with mild to moderate alzheimer's diseaseNCT02756858, 2019.
[30]
Alam J. Proof-of-concept study of a selective p38 MAPK alpha inhibitor, neflamapimod, in subjects with mild Alzheimer's disease (REVERSE-SD). NCT03402659. 2019.
[31]
II Dong Pharmaceutical Co Ltd Evaluate the efficacy and safety of ID1201 for dose-finding in mild Alzheimer's diseaseNCT03363269 2019.
[32]
Anavex Life Sciences Corp, Anavex Australia Pty Ltd, Anavex Germany GmbH, Anavex Canada Ltd. ANAVEX2-73 for treatment of early Alzheimer's disease. NCT03790709,. 2020.
[33]
Tuchman A. A study of bryostatin in moderately severe to severe Alzheimer's disease subjects not on memantineNCT03560245, 2020.
[34]
Denali Therapeutics IncStudy to evaluate DNL747 in subjects with Alzheimer's diseaseNCT03757325, 2020.
[35]
Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 1996; 392(2): 189-93.
[http://dx.doi.org/10.1016/0014-5793(96)00811-3] [PMID: 8772201]
[36]
Koch JC, Tatenhorst L, Roser AE, Saal KA, Tönges L, Lingor P. ROCK inhibition in models of neurodegeneration and its potential for clinical translation. Pharmacol Ther 2018; 189: 1-21.
[http://dx.doi.org/10.1016/j.pharmthera.2018.03.008] [PMID: 29621594]
[37]
Jacobs M, Hayakawa K, Swenson L, et al. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem 2006; 281(1): 260-8.
[http://dx.doi.org/10.1074/jbc.M508847200] [PMID: 16249185]
[38]
Yamaguchi H, Kasa M, Amano M, Kaibuchi K, Hakoshima T. Molecular mechanism for the regulation of rho-kinase by dimerization and its inhibition by fasudil. Structure 2006; 14(3): 589-600.
[http://dx.doi.org/10.1016/j.str.2005.11.024] [PMID: 16531242]
[39]
Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR. Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem 2004; 279(8): 7098-104.
[http://dx.doi.org/10.1074/jbc.M311911200] [PMID: 14660612]
[40]
Shimizu T, Ihara K, Maesaki R, Amano M, Kaibuchi K, Hakoshima T. Parallel coiled-coil association of the RhoA-binding domain in Rho-kinase. J Biol Chem 2003; 278(46): 46046-51.
[http://dx.doi.org/10.1074/jbc.M306458200] [PMID: 12954645]
[41]
Blumenstein L, Ahmadian MR. Models of the cooperative mechanism for Rho effector recognition: implications for RhoA-mediated effector activation. J Biol Chem 2004; 279(51): 53419-26.
[http://dx.doi.org/10.1074/jbc.M409551200] [PMID: 15475352]
[42]
Wen W, Liu W, Yan J, Zhang M. Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. J Biol Chem 2008; 283(38): 26263-73.
[http://dx.doi.org/10.1074/jbc.M803417200] [PMID: 18640982]
[43]
Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 1996; 16(10): 5313-27.
[http://dx.doi.org/10.1128/MCB.16.10.5313] [PMID: 8816443]
[44]
Liu B, Chang R, Duan Z, et al. The level of ROCK1 and ROCK2 in patients with pulmonary hypertension in plateau area. Sci Rep 2018; 8(1): 9356.
[http://dx.doi.org/10.1038/s41598-018-27321-4] [PMID: 29921927]
[45]
Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 1995; 270(49): 29051-4.
[http://dx.doi.org/10.1074/jbc.270.49.29051] [PMID: 7493923]
[46]
Sin WC, Chen XQ, Leung T, Lim L. RhoA-binding kinase α translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol Cell Biol 1998; 18(11): 6325-39.
[http://dx.doi.org/10.1128/MCB.18.11.6325] [PMID: 9774649]
[47]
Chevrier V, Piel M, Collomb N, et al. The Rho-associated protein kinase p160ROCK is required for centrosome positioning. J Cell Biol 2002; 157(5): 807-17.
[http://dx.doi.org/10.1083/jcb.200203034] [PMID: 12034773]
[48]
Tanaka T, Nishimura D, Wu RC, et al. Nuclear Rho kinase, ROCK2, targets p300 acetyltransferase. J Biol Chem 2006; 281(22): 15320-9.
[http://dx.doi.org/10.1074/jbc.M510954200] [PMID: 16574662]
[49]
Yoshikawa H, Yoshioka K, Nakase T, Itoh K. Stimulation of ectopic bone formation in response to BMP-2 by Rho kinase inhibitor: a pilot study. Clin Orthop Relat Res 2009; 467(12): 3087-95.
[http://dx.doi.org/10.1007/s11999-009-0976-6] [PMID: 19609629]
[50]
Hashimoto R, Nakamura Y, Kosako H, et al. Distribution of Rho-kinase in the bovine brain. Biochem Biophys Res Commun 1999; 263(2): 575-9.
[http://dx.doi.org/10.1006/bbrc.1999.1409] [PMID: 10491334]
[51]
Hirose M, Ishizaki T, Watanabe N, et al. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 1998; 141(7): 1625-36.
[http://dx.doi.org/10.1083/jcb.141.7.1625] [PMID: 9647654]
[52]
Yugawa T, Nishino K, Ohno S, et al. Noncanonical NOTCH signaling limits self-renewal of human epithelial and induced pluripotent stem cells through ROCK activation. Mol Cell Biol 2013; 33(22): 4434-47.
[http://dx.doi.org/10.1128/MCB.00577-13] [PMID: 24019071]
[53]
Hyvelin JM, Howell K, Nichol A, Costello CM, Preston RJ, McLoughlin P. Inhibition of Rho-kinase attenuates hypoxia-induced angiogenesis in the pulmonary circulation. Circ Res 2005; 97(2): 185-91.
[http://dx.doi.org/10.1161/01.RES.0000174287.17953.83] [PMID: 15961717]
[54]
Toshima Y, Satoh S, Ikegaki I, Asano T. A new model of cerebral microthrombosis in rats and the neuroprotective effect of a Rho-kinase inhibitor. Stroke 2000; 31(9): 2245-50.
[http://dx.doi.org/10.1161/01.STR.31.9.2245] [PMID: 10978059]
[55]
Sawada N, Itoh H, Ueyama K, et al. Inhibition of rho-associated kinase results in suppression of neointimal formation of balloon-injured arteries. Circulation 2000; 101(17): 2030-3.
[http://dx.doi.org/10.1161/01.CIR.101.17.2030] [PMID: 10790342]
[56]
Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389(6654): 990-4.
[http://dx.doi.org/10.1038/40187] [PMID: 9353125]
[57]
Chitaley K, Wingard CJ, Clinton Webb R, et al. Antagonism of Rho-kinase stimulates rat penile erection via a nitric oxide-independent pathway. Nat Med 2001; 7(1): 119-22.
[http://dx.doi.org/10.1038/83258] [PMID: 11135626]
[58]
Honjo M, Tanihara H, Inatani M, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci 2001; 42(1): 137-44.
[PMID: 11133858]
[59]
Ohnaka K, Shimoda S, Nawata H, et al. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 2001; 287(2): 337-42.
[http://dx.doi.org/10.1006/bbrc.2001.5597] [PMID: 11554731]
[60]
Wang YX, da Cunha V, Martin-McNulty B, et al. Inhibition of Rho-kinase by fasudil attenuated angiotensin II-induced cardiac hypertrophy in apolipoprotein E deficient mice. Eur J Pharmacol 2005; 512(2-3): 215-22.
[http://dx.doi.org/10.1016/j.ejphar.2005.02.024] [PMID: 15840407]
[61]
Zhou H, Li YJ, Wang M, et al. Involvement of RhoA/ROCK in myocardial fibrosis in a rat model of type 2 diabetes. Yao Xue Xue Bao 2011; 32(8): 999-1008.
[http://dx.doi.org/10.1038/aps.2011.54] [PMID: 21743486]
[62]
Guan SJ, Ma ZH, Wu YL, et al. Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food Chem Toxicol 2012; 50(6): 1874-82.
[http://dx.doi.org/10.1016/j.fct.2012.03.006] [PMID: 22429817]
[63]
Arita R, Hata Y, Nakao S, et al. Rho kinase inhibition by fasudil ameliorates diabetes-induced microvascular damage. Diabetes 2009; 58(1): 215-26.
[http://dx.doi.org/10.2337/db08-0762] [PMID: 18840783]
[64]
Cantoni S, Cavalli S, Pastore F, et al. Pharmacological characterization of a highly selective Rho kinase (ROCK) inhibitor and its therapeutic effects in experimental pulmonary hypertension. Eur J Pharmacol 2019; 850: 126-34.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.009] [PMID: 30753868]
[65]
Mallat Z, Gojova A, Sauzeau V, et al. Rho-associated protein kinase contributes to early atherosclerotic lesion formation in mice. Circ Res 2003; 93(9): 884-8.
[http://dx.doi.org/10.1161/01.RES.0000099062.55042.9A] [PMID: 14525807]
[66]
Stockton RA, Shenkar R, Awad IA, Ginsberg MH. Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity. J Exp Med 2010; 207(4): 881-96.
[http://dx.doi.org/10.1084/jem.20091258] [PMID: 20308363]
[67]
Sharma P, Roy K. ROCK-2-selective targeting and its therapeutic outcomes. Drug Discov Today 2020; 25(2): 446-55.
[http://dx.doi.org/10.1016/j.drudis.2019.11.017] [PMID: 31837997]
[68]
Herskowitz JH, Feng Y, Mattheyses AL, et al. Pharmacologic inhibition of ROCK2 suppresses amyloid-β production in an Alzheimer’s disease mouse model. J Neurosci 2013; 33(49): 19086-98.
[http://dx.doi.org/10.1523/JNEUROSCI.2508-13.2013] [PMID: 24305806]
[69]
Herskowitz JH, Seyfried NT, Gearing M, et al. Rho kinase II phosphorylation of the lipoprotein receptor LR11/SORLA alters amyloid-β production. J Biol Chem 2011; 286(8): 6117-27.
[http://dx.doi.org/10.1074/jbc.M110.167239] [PMID: 21147781]
[70]
Henderson BW, Gentry EG, Rush T, et al. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer’s disease and ROCK1 depletion reduces amyloid-β levels in brain. J Neurochem 2016; 138(4): 525-31.
[http://dx.doi.org/10.1111/jnc.13688] [PMID: 27246255]
[71]
Jack CR Jr, Wiste HJ, Weigand SD, et al. Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50-89 years: a cross-sectional study. Lancet Neurol 2014; 13(10): 997-1005.
[http://dx.doi.org/10.1016/S1474-4422(14)70194-2] [PMID: 25201514]
[72]
Gentry EG, Henderson BW, Arrant AE, et al. Rho kinase inhibition as a therapeutic for progressive supranuclear palsy and corticobasal degeneration. J Neurosci 2016; 36(4): 1316-23.
[http://dx.doi.org/10.1523/JNEUROSCI.2336-15.2016] [PMID: 26818518]
[73]
Koch JC, Tönges L, Barski E, Michel U, Bähr M, Lingor P. ROCK2 is a major regulator of axonal degeneration, neuronal death and axonal regeneration in the CNS. Cell Death Dis 2014; 5e1225
[http://dx.doi.org/10.1038/cddis.2014.191] [PMID: 24832597]
[74]
Katoh H, Aoki J, Ichikawa A, Negishi M. p160 RhoA-binding kinase ROKalpha induces neurite retraction. J Biol Chem 1998; 273(5): 2489-92.
[http://dx.doi.org/10.1074/jbc.273.5.2489] [PMID: 9446546]
[75]
Greathouse KM, Boros BD, Deslauriers JF, et al. Distinct and complementary functions of rho kinase isoforms ROCK1 and ROCK2 in prefrontal cortex structural plasticity. Brain Struct Funct 2018; 223(9): 4227-41.
[http://dx.doi.org/10.1007/s00429-018-1748-4] [PMID: 30196430]
[76]
Henderson BW, Greathouse KM, Ramdas R, et al. Pharmacologic inhibition of LIMK1 provides dendritic spine resilience against β-amyloid. Sci Signal 2019; 12(587): 12.
[http://dx.doi.org/10.1126/scisignal.aaw9318] [PMID: 31239325]
[77]
Skucas E, Liu KG, Kim JI, Poyurovsky MV, Mo R. Inhibitors of rho associated coiled-coil containing protein kinase WO2019018853, 2020.
[78]
Pan J, Yin Y, Zhao L, Feng Y. Discovery of (S)-6-methoxy-chroman-3-carboxylic acid (4-pyridin-4-yl-phenyl)-amide as potent and isoform selective ROCK2 inhibitors. Bioorg Med Chem 2019; 27(7): 1382-90.
[http://dx.doi.org/10.1016/j.bmc.2019.02.047] [PMID: 30819619]
[79]
Dahmann G, Hickey ER, Li X, et al. Rho kinase inhibitors WO2008086047, 2008.
[80]
Akritopoulou-Zanze I, Wakefield BD, Gasiecki A, et al. Scaffold oriented synthesis. Part 4: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing heterocycle forming and multicomponent reactions. Bioorg Med Chem Lett 2011; 21(5): 1480-3.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.001] [PMID: 21288717]
[81]
Akritopoulou-Zanze I, Wakefield BD, Gasiecki A, et al. Scaffold oriented synthesis. Part 3: design, synthesis and biological evaluation of novel 5-substituted indazoles as potent and selective kinase inhibitors employing [2+3] cycloadditions. Bioorg Med Chem Lett 2011; 21(5): 1476-9.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.007] [PMID: 21282054]
[82]
Kirrane JrTM, Marshall DR, Sibley R, Snow RJ, Soleymanzadeh F, Sorcek RJ. Rho kinase inhibitors. WO2012054367, 2012..
[83]
Pi R, Tu Y, Shiun WS, Yang X, Chang X, Chen J. Compounds for treating degenerative disease of central nervous system and application of compounds CN105949180, 2018.
[84]
Wu P, Nielsen TE, Clausen MH. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discov Today 2016; 21(1): 5-10.
[http://dx.doi.org/10.1016/j.drudis.2015.07.008] [PMID: 26210956]
[85]
Roskoski R Jr. Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2019; 144: 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[86]
Feng Y, LoGrasso PV, Defert O, Li R. Rho kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem 2016; 59(6): 2269-300.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00683] [PMID: 26486225]
[87]
Kornev AP, Haste NM, Taylor SS, Eyck LF. Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci USA 2006; 103(47): 17783-8.
[http://dx.doi.org/10.1073/pnas.0607656103] [PMID: 17095602]
[88]
Kornev AP, Taylor SS, Ten ELF. A helix scaffold for the assembly of active protein kinases. Proc Natl Acad Sci USA 2008; 105(38): 14377-82.
[http://dx.doi.org/10.1073/pnas.0807988105] [PMID: 18787129]
[89]
Meharena HS, Chang P, Keshwani MM, et al. Deciphering the structural basis of eukaryotic protein kinase regulation. PLoS Biol 2013; 11(10)e1001680
[http://dx.doi.org/10.1371/journal.pbio.1001680] [PMID: 24143133]
[90]
Liu Y, Shah K, Yang F, Witucki L, Shokat KM. A molecular gate which controls unnatural ATP analogue recognition by the tyrosine kinase v-Src. Bioorg Med Chem 1998; 6(8): 1219-26.
[http://dx.doi.org/10.1016/S0968-0896(98)00099-6] [PMID: 9784863]
[91]
Dar AC, Shokat KM. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 2011; 80: 769-95.
[http://dx.doi.org/10.1146/annurev-biochem-090308-173656] [PMID: 21548788]
[92]
Ung PMU, Rahman R, Schlessinger A. Redefining the protein kinase conformational space with machine learning. Cell Chem Biol 2018; 25(7): 916-924.e2.
[http://dx.doi.org/10.1016/j.chembiol.2018.05.002] [PMID: 29861272]
[93]
Lin CW, Sherman B, Moore LA, et al. Discovery and preclinical development of netarsudil, a novel ocular hypotensive agent for the treatment of glaucoma. J Ocul Pharmacol Ther 2018; 34(1-2): 40-51.
[http://dx.doi.org/10.1089/jop.2017.0023] [PMID: 28609185]
[94]
Feng Y, Yin Y, Weiser A, et al. Discovery of substituted 4-(pyrazol-4-yl)-phenylbenzodioxane-2-carboxamides as potent and highly selective Rho kinase (ROCK-II) inhibitors. J Med Chem 2008; 51(21): 6642-5.
[http://dx.doi.org/10.1021/jm800986w] [PMID: 18834107]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy