Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

A Systematic Review on the Role of Arachidonic Acid Pathway in Multiple Sclerosis

Author(s): Malvina Hoxha*, Erila Spahiu, Emanuela Prendi and Bruno Zappacosta

Volume 21, Issue 2, 2022

Published on: 25 August, 2020

Page: [160 - 187] Pages: 28

DOI: 10.2174/1871527319666200825164123

Price: $65

Abstract

Background and Objective: Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by destruction of oligodendrocytes, immune cell infiltration and demyelination. Inflammation plays a significant role in MS, and the inflammatory mediators such as eicosanoids, leukotrienes, and superoxide radicals are involved in pro-inflammatory responses in MS. In this systematic review, we tried to define and discuss all the findings of in vivo animal studies and human clinical trials on the potential association between arachidonic acid (AA) pathway and multiple sclerosis.

Methods: A systematic literature search across Pubmed, Scopus, Embase and Cochrane database was conducted. This systematic review was performed according to PRISMA guidelines.

Results: A total of 146 studies were included, of which 34 were conducted on animals, 58 on humans, and 60 studies reported the role of different compounds that target AA mediators or their corresponding enzymes/receptors, and can have a therapeutic effect in MS. These results suggest that eicosanoids have significant roles in Experimental Autoimmune Encephalomyelitis (EAE) and MS. The data from animal and human studies elucidated that PGI2, PGFI, PGDI2, isoprostanes, PGEI2, PLAI2, and LTs are increased in MS. PLAI2 inhibition modulates the progression of the disease. PGE1 analogues can be a useful option in the treatment of MS.

Conclusion: All studies reported the beneficial effects of COX and LOX inhibitors in MS. The hybrid compounds, such as COX-2 inhibitors/TP antagonists and 5-LOX inhibitors, can be an innovative approach for multiple sclerosis treatment. Future work in MS should shed light on synthesizing new compounds targeting the arachidonic acid pathway.

Keywords: Arachidonic acid, multiple sclerosis, prostaglandins, leukotrienes, eicosanoids, thromboxane.

Graphical Abstract

[1]
Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med 2018; 378(2): 169-80.
[http://dx.doi.org/10.1056/NEJMra1401483] [PMID: 29320652]
[2]
Xu J, Zhang Y, Xiao Y, et al. Inhibition of 12/15-lipoxygenase by baicalein induces microglia PPARβ/δ: a potential therapeutic role for CNS autoimmune disease. Cell Death Dis 2013; 4(4): e569-9.
[http://dx.doi.org/10.1038/cddis.2013.86] [PMID: 23559003]
[3]
Pace S, Sautebin L, Werz O. Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem Pharmacol 2017; 145: 1-11.
[http://dx.doi.org/10.1016/j.bcp.2017.06.128] [PMID: 28647490]
[4]
Manterola A, Bernal-Chico A, Cipriani R, et al. Deregulation of the endocannabinoid system and therapeutic potential of ABHD6 blockade in the cuprizone model of demyelination. Biochem Pharmacol 2018; 157: 189-201.
[http://dx.doi.org/10.1016/j.bcp.2018.07.042] [PMID: 30075103]
[5]
Skripuletz T, Gudi V, Hackstette D, Stangel M. De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 2011; 26(12): 1585-97.
[PMID: 21972097]
[6]
Gudi V, Gingele S, Skripuletz T, Stangel M. Glial response during cuprizone-induced de- and remyelination in the CNS: lessons learned. Front Cell Neurosci 2014; 8: 73.
[http://dx.doi.org/10.3389/fncel.2014.00073] [PMID: 24659953]
[7]
Wen J, Jones M, Tanaka M, et al. WWL70 protects against chronic constriction injury-induced neuropathic pain in mice by cannabinoid receptor-independent mechanisms. Journal of neuroinflammation 2018; 15(1): 9.
[http://dx.doi.org/10.1186/s12974-017-1045-9]
[8]
Watkins LR, Maier SF. Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov 2003; 2(12): 973-85.
[http://dx.doi.org/10.1038/nrd1251] [PMID: 14654796]
[9]
Palumbo S. athogenesis and progression of multiple sclerosis: the role of arachidonic acid–mediated neuroinflammation Multiple Sclerosis: Perspectives in Treatment and Pathogenesis 2017
[http://dx.doi.org/10.15586/codon.multiplesclerosis.2017.ch7]
[10]
Hoxha M, Rovati GE, Cavanillas AB. The leukotriene receptor antagonist montelukast and its possible role in the cardiovascular field. Eur J Clin Pharmacol 2017; 73(7): 799-809.
[http://dx.doi.org/10.1007/s00228-017-2242-2] [PMID: 28374082]
[11]
Kita Y, Ohto T, Uozumi N, Shimizu T. Biochemical properties and pathophysiological roles of cytosolic phospholipase A2s. Biochim Biophys Acta 2006; 1761(11): 1317-22.
[http://dx.doi.org/10.1016/j.bbalip.2006.08.001] [PMID: 16962823]
[12]
Kihara Y. The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases, Advances in Experimental Medicine and Biology 1161, Springer Nature Switzerland AG 2019.
[13]
Rajda C, Pukoli D, Bende Z, Majláth Z, Vécsei L. Excitotoxins, mitochondrial and redox disturbances in multiple sclerosis. Int J Mol Sci 2017; 18(2): 353.
[http://dx.doi.org/10.3390/ijms18020353] [PMID: 28208701]
[14]
Burman J, Svensson E, Fransson M, et al. The cerebrospinal fluid cytokine signature of multiple sclerosis: a homogenous response that does not conform to the Th1/Th2/Th17 convention. J Neuroimmunol 2014; 277(1-2): 153-9.
[http://dx.doi.org/10.1016/j.jneuroim.2014.10.005] [PMID: 25457841]
[15]
Carlson NG, Hill KE, Tsunoda I, Fujinami RS, Rose JW. The pathologic role for COX-2 in apoptotic oligodendrocytes in virus induced demyelinating disease: implications for multiple sclerosis. J Neuroimmunol 2006; 174(1-2): 21-31.
[http://dx.doi.org/10.1016/j.jneuroim.2006.01.008] [PMID: 16516308]
[16]
Carlson NG, Rojas MA, Redd JW, et al. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation 2010; 7: 25.
[http://dx.doi.org/10.1186/1742-2094-7-25] [PMID: 20388219]
[17]
Rose JW, Hill KE, Watt HE, Carlson NG. Inflammatory cell expression of cyclooxygenase-2 in the multiple sclerosis lesion. J Neuroimmunol 2004; 149(1-2): 40-9.
[http://dx.doi.org/10.1016/j.jneuroim.2003.12.021] [PMID: 15020063]
[18]
Yagami T, Koma H, Yamamoto Y. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol Neurobiol 2016; 53(7): 4754-71.
[http://dx.doi.org/10.1007/s12035-015-9355-3] [PMID: 26328537]
[19]
Palumbo S, Bosetti F. Alterations of brain eicosanoid synthetic pathway in multiple sclerosis and in animal models of demyelination: role of cyclooxygenase-2. Prostaglandins Leukot Essent Fatty Acids 2013; 89(5): 273-8.
[http://dx.doi.org/10.1016/j.plefa.2013.08.008] [PMID: 24095587]
[20]
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. The cyclooxygenase-2 pathway via the PGE2 EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem 2012; 121(3): 418-27.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07363.x] [PMID: 21699540]
[21]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 2009; 151(4)W65-94
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00136] [PMID: 19622512]
[22]
Lucchinetti C, Brück W, Noseworthy J. Multiple sclerosis: recent developments in neuropathology, pathogenesis, magnetic resonance imaging studies and treatment. Curr Opin Neurol 2001; 14(3): 259-69.
[http://dx.doi.org/10.1097/00019052-200106000-00002] [PMID: 11371747]
[23]
Kipp M, Clarner T, Dang J, Copray S, Beyer C. The cuprizone animal model: new insights into an old story. Acta Neuropathol 2009; 118(6): 723-36.
[http://dx.doi.org/10.1007/s00401-009-0591-3] [PMID: 19763593]
[24]
Stohlman SA, Hinton DR. Viral induced demyelination. Brain Pathol 2001; 11(1): 92-106.
[http://dx.doi.org/10.1111/j.1750-3639.2001.tb00384.x] [PMID: 11145206]
[25]
Ansari KA, Shoeman DW. Arachidonic and docosahexanoic acid content of bovine brain myelin: implications for the pathogenesis of multiple sclerosis. Neurochem Res 1990; 15(1): 7-11.
[http://dx.doi.org/10.1007/BF00969177] [PMID: 2109266]
[26]
Kalyvas A, David S. Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 2004; 41(3): 323-35.
[http://dx.doi.org/10.1016/S0896-6273(04)00003-0] [PMID: 14766173]
[27]
Marusic S, Leach MW, Pelker JW, et al. Cytosolic phospholipase A2 α-deficient mice are resistant to experimental autoimmune encephalomyelitis. J Exp Med 2005; 202(6): 841-51.
[http://dx.doi.org/10.1084/jem.20050665] [PMID: 16172261]
[28]
Kihara Y, Matsushita T, Kita Y, et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci USA 2009; 106(51): 21807-12.
[http://dx.doi.org/10.1073/pnas.0906891106] [PMID: 19995978]
[29]
Kalyvas A, Baskakis C, Magrioti V, et al. Differing roles for members of the phospholipase A2 superfamily in experimental autoimmune encephalomyelitis. Brain 2009; 132(Pt 5): 1221-35.
[http://dx.doi.org/10.1093/brain/awp002] [PMID: 19218359]
[30]
Kihara Y, Yanagida K, Masago K, et al. Platelet-activating factor production in the spinal cord of experimental allergic encephalomyelitis mice via the group IVA cytosolic phospholipase A2-lyso-PAFAT axis. J Immunol 2008; 181(7): 5008-14.
[http://dx.doi.org/10.4049/jimmunol.181.7.5008] [PMID: 18802104]
[31]
Ong WY, Farooqui T, Kokotos G, Farooqui AA. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders. ACS Chem Neurosci 2015; 6(6): 814-31.
[http://dx.doi.org/10.1021/acschemneuro.5b00073] [PMID: 25891385]
[32]
Sevastou I, Kaffe E, Mouratis MA, Aidinis V. Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim Biophys Acta 2013; 1831(1): 42-60.
[http://dx.doi.org/10.1016/j.bbalip.2012.07.019] [PMID: 22867755]
[33]
Thakker P, Marusic S, Stedman NL, et al. Cytosolic phospholipase A2α blockade abrogates disease during the tissue-damage effector phase of experimental autoimmune encephalomyelitis by its action on APCs. J Immunol 2011; 187(4): 1986-97.
[http://dx.doi.org/10.4049/jimmunol.1002789] [PMID: 21746963]
[34]
Pinto F, Brenner T, Dan P, Krimsky M, Yedgar S. Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation. Glia 2003; 44(3): 275-82.
[http://dx.doi.org/10.1002/glia.10296] [PMID: 14603468]
[35]
Farooqui AA, Ong WY, Horrocks LA. Inhibitors of brain phospholipase A2 activity: their neuropharmacological effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 2006; 58(3): 591-620.
[http://dx.doi.org/10.1124/pr.58.3.7] [PMID: 16968951]
[36]
Cunningham TJ, Yao L, Oetinger M, Cort L, Blankenhorn EP, Greenstein JI. Secreted phospholipase A2 activity in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroinflammation 2006; 3: 26.
[http://dx.doi.org/10.1186/1742-2094-3-26] [PMID: 16965627]
[37]
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination. Prostaglandins Leukot Essent Fatty Acids 2011; 85(1): 29-35.
[http://dx.doi.org/10.1016/j.plefa.2011.04.001] [PMID: 21530210]
[38]
Deininger MH, Schluesener HJ. Cyclooxygenases-1 and -2 are differentially localized to microglia and endothelium in rat EAE and glioma. J Neuroimmunol 1999; 95(1-2): 202-8.
[http://dx.doi.org/10.1016/S0165-5728(98)00257-4] [PMID: 10229132]
[39]
Ayoub SS, Wood EG, Hassan SU, Bolton C. Cyclooxygenase expression and prostaglandin levels in central nervous system tissues during the course of chronic relapsing experimental autoimmune encephalomyelitis (EAE). Inflamm Res 2011; 60(10): 919-28.
[http://dx.doi.org/10.1007/s00011-011-0352-3] [PMID: 21667309]
[40]
Schiffmann S, Weigert A, Männich J, et al. PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol 2014; 87(4): 625-35.
[http://dx.doi.org/10.1016/j.bcp.2013.12.006] [PMID: 24355567]
[41]
Takemiya T, Takeuchi C, Kawakami M. Microsomal prostaglandin E Synthase-1 facilitates an intercellular interaction between CD4(+) T cells through IL-1beta Autocrine function in experimental autoimmune encephalomyelitis. Int J Mol Sci 2017; 18(12): 2758.
[http://dx.doi.org/10.3390/ijms18122758] [PMID: 29257087]
[42]
Takeuchi C, Matsumoto Y, Kohyama K, et al. Microsomal prostaglandin E synthase-1 aggravates inflammation and demyelination in a mouse model of multiple sclerosis. Neurochem Int 2013; 62(3): 271-80.
[http://dx.doi.org/10.1016/j.neuint.2012.12.007] [PMID: 23266396]
[43]
Molina-Holgado E, Arévalo-Martín A, Ortiz S, Vela JM, Guaza C. Theiler’s virus infection induces the expression of cyclooxygenase-2 in murine astrocytes: inhibition by the anti-inflammatory cytokines interleukin-4 and interleukin-10. Neurosci Lett 2002; 324(3): 237-41.
[http://dx.doi.org/10.1016/S0304-3940(02)00209-4] [PMID: 12009531]
[44]
Bolton C, Gordon D, Turk JL. A longitudinal study of the prostaglandin content of the CNS tissues from guinea pigs with EAE. Int J Immopha 1984; 51550161
[45]
Bolton C, Parker D, McLeod J, Turk JL. A study of the prostaglandin and thromboxane content of the central nervous tissues with the development of chronic relapsing allergic encephalomyelitis. J Neuroimmunol 1986; 10(3): 201-8.
[http://dx.doi.org/10.1016/0165-5728(86)90102-5] [PMID: 3455693]
[46]
Esaki Y, Li Y, Sakata D, et al. Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2010; 107(27): 12233-8.
[http://dx.doi.org/10.1073/pnas.0915112107] [PMID: 20566843]
[47]
Yao C, Sakata D, Esaki Y, et al. Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 2009; 15(6): 633-40.
[http://dx.doi.org/10.1038/nm.1968] [PMID: 19465928]
[48]
Mirshafiey A, Jadidi-Niaragh F. Prostaglandins in pathogenesis and treatment of multiple sclerosis. Immunopharmacol Immunotoxicol 2010; 32(4): 543-54.
[http://dx.doi.org/10.3109/08923971003667627] [PMID: 20233088]
[49]
Zhou W, Dowell DR, Huckabee MM, et al. Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis. PLoS One 2012; 7(5)e33518
[http://dx.doi.org/10.1371/journal.pone.0033518] [PMID: 22590492]
[50]
Bö L, Dawson TM, Wesselingh S, Möurk S, Choi S, Kong PA, et al. Annals of Neurology. Official Journal of the American Neurological Association and the Child Neurology Society 1994; 36(5): 778-86.
[http://dx.doi.org/10.1002/ana.410360515]
[51]
van der Goes A, Brouwer J, Hoekstra K, Roos D, van den Berg TK, Dijkstra CD. Reactive oxygen species are required for the phagocytosis of myelin by macrophages. J Neuroimmunol 1998; 92(1-2): 67-75.
[http://dx.doi.org/10.1016/S0165-5728(98)00175-1] [PMID: 9916881]
[52]
Diab A, Deng C, Smith JD, et al. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002; 168(5): 2508-15.
[http://dx.doi.org/10.4049/jimmunol.168.5.2508] [PMID: 11859145]
[53]
Diab A, Hussain RZ, Lovett-Racke AE, Chavis JA, Drew PD, Racke MK. Ligands for the peroxisome proliferator-activated receptor-γ and the retinoid X receptor exert additive anti-inflammatory effects on experimental autoimmune encephalomyelitis. J Neuroimmunol 2004; 148(1-2): 116-26.
[http://dx.doi.org/10.1016/j.jneuroim.2003.11.010] [PMID: 14975592]
[54]
Storer PD, Xu J, Chavis JA, Drew PD. Cyclopentenone prostaglandins PGA2 and 15-deoxy-δ12,14 PGJ2 suppress activation of murine microglia and astrocytes: implications for multiple sclerosis. J Neurosci Res 2005; 80(1): 66-74.
[http://dx.doi.org/10.1002/jnr.20413] [PMID: 15723383]
[55]
Chearwae W, Bright JJ. 15-deoxy-Δ(12,14)-prostaglandin J(2) and curcumin modulate the expression of toll-like receptors 4 and 9 in autoimmune T lymphocyte. J Clin Immunol 2008; 28(5): 558-70.
[http://dx.doi.org/10.1007/s10875-008-9202-7] [PMID: 18463970]
[56]
Xiang Z, Lin T, Reeves SA. 15d-PGJ2 induces apoptosis of mouse oligodendrocyte precursor cells. J Neuroinflammation 2007; 4(1): 18.
[http://dx.doi.org/10.1186/1742-2094-4-18] [PMID: 17634127]
[57]
Zhuang H, Kim YS, Namiranian K, Doré S. Prostaglandins of J series control heme oxygenase expression: potential significance in modulating neuroinflammation. Ann N Y Acad Sci 2003; 993(1): 208-16.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07531.x] [PMID: 12853315]
[58]
van der Veen RC, Roberts LJ II. Contrasting roles for nitric oxide and peroxynitrite in the peroxidation of myelin lipids. J Neuroimmunol 1999; 95(1-2): 1-7.
[http://dx.doi.org/10.1016/S0165-5728(98)00239-2] [PMID: 10229110]
[59]
Yoshikawa K, Palumbo S, Toscano CD, Bosetti F. Inhibition of 5-lipoxygenase activity in mice during cuprizone-induced demyelination attenuates neuroinflammation, motor dysfunction and axonal damage. Prostaglandins Leukot Essent Fatty Acids 2011; 85(1): 43-52.
[http://dx.doi.org/10.1016/j.plefa.2011.04.022] [PMID: 21555210]
[60]
Neu I, Mallinger J, Wildfeuer A, Mehlber L. Leukotrienes in the cerebrospinal fluid of multiple sclerosis patients. Acta Neurol Scand 1992; 86(6): 586-7.
[http://dx.doi.org/10.1111/j.1600-0404.1992.tb05491.x] [PMID: 1336293]
[61]
Neu IS, Metzger G, Zschocke J, Zelezny R, Mayatepek E. Leukotrienes in patients with clinically active multiple sclerosis. Acta Neurol Scand 2002; 105(1): 63-6.
[http://dx.doi.org/10.1034/j.1600-0404.2002.00070.x] [PMID: 11903112]
[62]
Whitney LW, Ludwin SK, McFarland HF, Biddison WE. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol 2001; 121(1-2): 40-8.
[http://dx.doi.org/10.1016/S0165-5728(01)00438-6] [PMID: 11730938]
[63]
Simmons RD, Hugh AR, Willenborg DO, Cowden WB. Suppression of active but not passive autoimmune encephalomyelitis by dual cyclo-oxygenase and 5-lipoxygenase inhibition. Acta Neurol Scand 1992; 85(3): 197-9.
[http://dx.doi.org/10.1111/j.1600-0404.1992.tb04027.x] [PMID: 1575003]
[64]
Kihara Y, Yokomizo T, Kunita A, et al. The leukotriene B4 receptor, BLT1, is required for the induction of experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 2010; 394(3): 673-8.
[http://dx.doi.org/10.1016/j.bbrc.2010.03.049] [PMID: 20226760]
[65]
Das UN. Lipoxins as biomarkers of lupus and other inflammatory conditions. Lipids Health Dis 2011; 10(1): 76.
[http://dx.doi.org/10.1186/1476-511X-10-76] [PMID: 21569625]
[66]
Emerson MR, LeVine SM. Experimental allergic encephalomyelitis is exacerbated in mice deficient for 12/15-lipoxygenase or 5-lipoxygenase. Brain Res 2004; 1021(1): 140-5.
[http://dx.doi.org/10.1016/j.brainres.2004.06.045] [PMID: 15328042]
[67]
Craelius W, Gurmankin RS, Rosenheck DM, Schaefer DC. Free fatty acid patterns in normal and multiple sclerosis white matter. Acta Neurol Scand 1981; 63(3): 197-203.
[http://dx.doi.org/10.1111/j.1600-0404.1981.tb00772.x] [PMID: 7211185]
[68]
Neu I, Woelk H. Investigations of the lipid metabolism of the white matter in multiple sclerosis: changes in glycero-phosphatides and lipid-splitting enzymes. Neurochem Res 1982; 7(6): 727-35.
[http://dx.doi.org/10.1007/BF00965525] [PMID: 7121719]
[69]
Neu IS. Essential fatty acids in the serum and cerebrospinal fluid of multiple sclerosis patients. Acta Neurol Scand 1983; 67(3): 151-63.
[http://dx.doi.org/10.1111/j.1600-0404.1983.tb04558.x] [PMID: 6868953]
[70]
Cherayil GD. Effects of in vitro hyperthermia on fatty acids of red blood cells and plasma lipids from patients with multiple sclerosis. J Neurol Sci 1990; 95(2): 141-51.
[http://dx.doi.org/10.1016/0022-510X(90)90237-H] [PMID: 2324765]
[71]
Navarro X, Segura R. Plasma lipids and their fatty acid composition in multiple sclerosis. Acta Neurol Scand 1988; 78(2): 152-7.
[http://dx.doi.org/10.1111/j.1600-0404.1988.tb03637.x] [PMID: 3176888]
[72]
Huterer SJ, Tourtellotte WW, Wherrett JR. Alterations in the activity of phospholipases A2 in postmortem white matter from patients with multiple sclerosis. Neurochem Res 1995; 20(11): 1335-43.
[http://dx.doi.org/10.1007/BF00992509] [PMID: 8786820]
[73]
Lin LL, Lin AY, Knopf JL. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 1992; 89(13): 6147-51.
[http://dx.doi.org/10.1073/pnas.89.13.6147] [PMID: 1631101]
[74]
Ramesha CS, Ives DL. Detection of arachidonoyl-selective phospholipase A2 in human neutrophil cytosol. Biochim Biophys Acta 1993; 1168(1): 37-44.
[http://dx.doi.org/10.1016/0005-2760(93)90263-9] [PMID: 8504140]
[75]
Adibhatla RM, Hatcher JF. Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep 2008; 41(8): 560-7.
[http://dx.doi.org/10.5483/BMBRep.2008.41.8.560] [PMID: 18755070]
[76]
Morel A, Miller E, Bijak M, Saluk J. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients. Mol Cell Biochem 2016; 420(1-2): 85-94.
[http://dx.doi.org/10.1007/s11010-016-2770-6] [PMID: 27507559]
[77]
Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol 2004; 63(9): 901-10.
[http://dx.doi.org/10.1093/jnen/63.9.901] [PMID: 15453089]
[78]
Dore-Duffy P, Ho SY, Donovan C. Cerebrospinal fluid eicosanoid levels: Endogenous PGD2 and LTC4 synthesis by antigen-presenting cells that migrate to the central nervous system. Neurology 1991; 41(2): 322-4.
[79]
Bolton C, Turner AM, Turk JL. Prostaglandin levels in cerebrospinal fluid from multiple sclerosis patients in remission and relapse. J Neuroimmunol 1984; 6(3): 151-9.
[http://dx.doi.org/10.1016/0165-5728(84)90002-X] [PMID: 6586729]
[80]
Dore-Duffy P, Donaldson JO, Koff T, Longo M, Perry W. Prostaglandin release in multiple sclerosis: correlation with disease activity. Neurology 1986; 36(12): 1587-90.
[http://dx.doi.org/10.1212/WNL.36.12.1587] [PMID: 3785673]
[81]
Kirby PJ, Morley J, Ponsford JR, McDonald WI. Defective PGE reactivity in leucocytes of multiple sclerosis patients. Prostaglandins 1976; 11(4): 621-30.
[http://dx.doi.org/10.1016/0090-6980(76)90065-4] [PMID: 959566]
[82]
Shivastava KC, Fog T, Clausen J. The synthesis of prostaglandins in platelets from patients with multiple sclerosis. Acta Neurol Scand 1975; 51(3): 193-9.
[http://dx.doi.org/10.1111/j.1600-0404.1975.tb07600.x] [PMID: 1146498]
[83]
Goodwin JS, Messner RP. Prostaglandin E inhibition of mitogen stimulation in patients with multiple sclerosis. Prostaglandins 1978; 15(2): 281-6.
[http://dx.doi.org/10.1016/0090-6980(78)90167-3] [PMID: 635219]
[84]
Willoughby EW, Dupont B, Good RA. Prostaglandin effect on lymphokine production in multiple sclerosis. Ann Neurol 1979; 5(4): 391-3.
[http://dx.doi.org/10.1002/ana.410050415] [PMID: 375809]
[85]
DuBois JH, Cuzner ML. Regulation of lymphocyte activation by PGE2 in multiple sclerosis. J Neurol Sci 1984; 65(2): 211-9.
[http://dx.doi.org/10.1016/0022-510X(84)90085-6] [PMID: 6384431]
[86]
Merrill JE, Strom SR, Ellison GW, Myers LW. In vitro study of mediators of inflammation in multiple sclerosis. J Clin Immunol 1989; 9(2): 84-96.
[http://dx.doi.org/10.1007/BF00916935] [PMID: 2541163]
[87]
Merrill JE, Myers LW, Ellison GW. Cytotoxic cells in peripheral blood and cerebrospinal fluid of multiple sclerosis patients. Ann N Y Acad Sci 1984; 436: 192-205.
[http://dx.doi.org/10.1111/j.1749-6632.1984.tb14790.x] [PMID: 6598012]
[88]
Merrill JE, Myers LW, Ellison GW. Regulation of natural killer cell cytotoxicity by prostaglandin E in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. Part 2. Effect of exogenous PGE1 on spontaneous and interferon-induced natural killer. J Neuroimmunol 1983; 4(3): 239-51.
[http://dx.doi.org/10.1016/0165-5728(83)90038-3] [PMID: 6189856]
[89]
Aberg JA, Demers LM, Romano PJ, Tenser RB. Prostaglandin production in chronic progressive multiple sclerosis. J Clin Lab Anal 1990; 4(4): 246-50.
[http://dx.doi.org/10.1002/jcla.1860040403] [PMID: 2391581]
[90]
Gusev EI, Demina TL, Boiko AN, Pinegin BV. Prolonged dynamic clinico-immunological observation of 85 patients with definite multiple sclerosis: first steps towards monitoring process activity. J Neurol 1994; 241(8): 500-10.
[http://dx.doi.org/10.1007/BF00919713] [PMID: 7964920]
[91]
Rudick RA, Ransohoff RM. Cytokine secretion by multiple sclerosis monocytes. Relationship to disease activity. Arch Neurol 1992; 49(3): 265-70.
[http://dx.doi.org/10.1001/archneur.1992.00530270079022] [PMID: 1536629]
[92]
Zafranskaya M, Nizheharodava D, Yurkevich M, et al. PGE2 contributes to in vitro MSC-mediated inhibition of non-specific and antigen-specific T cell proliferation in MS patients. Scand J Immunol 2013; 78(5): 455-62.
[http://dx.doi.org/10.1111/sji.12102] [PMID: 23944654]
[93]
Mattsson N, Yaong M, Rosengren L, et al. Elevated cerebrospinal fluid levels of prostaglandin E2 and 15-(S)-hydroxyeicosatetraenoic acid in multiple sclerosis. J Intern Med 2009; 265(4): 459-64.
[http://dx.doi.org/10.1111/j.1365-2796.2008.02035.x] [PMID: 19019188]
[94]
Sierra A, Ferrer I, Arbizu T, Buendía E. Multiple sclerosis: IL-2, IFN-tau and PGE2 secretion in mononuclear cell cultures stimulated with PHA and the effect of these cytokines on oligodendroglial cells. Neurologia 1992; 7(9): 247-53.
[PMID: 1332734]
[95]
Saso L, Leone MG, Sorrentino C, Giacomelli S, Silvestrini B, Grima J, et al. IUBMB Life 1998; 46(4): 643-56.
[http://dx.doi.org/10.1080/15216549800204172]
[96]
Melegos DN, Freedman MS, Diamandis EP. Prostaglandin D synthase concentration in cerebrospinal fluid and serum of patients with neurological disorders. Prostaglandins 1997; 54(1): 463-74.
[http://dx.doi.org/10.1016/S0090-6980(97)00062-2] [PMID: 9271784]
[97]
Huang YC, Lyu RK, Tseng MY, et al. Decreased intrathecal synthesis of prostaglandin D2 synthase in the cerebrospinal fluid of patients with acute inflammatory demyelinating polyneuropathy. J Neuroimmunol 2009; 206(1-2): 100-5.
[http://dx.doi.org/10.1016/j.jneuroim.2008.10.011] [PMID: 19049845]
[98]
Kagitani-Shimono K, Mohri I, Oda H, et al. Lipocalin-type prostaglandin D synthase (β-trace) is upregulated in the alphaB-crystallin-positive oligodendrocytes and astrocytes in the chronic multiple sclerosis. Neuropathol Appl Neurobiol 2006; 32(1): 64-73.
[http://dx.doi.org/10.1111/j.1365-2990.2005.00690.x] [PMID: 16409554]
[99]
Harrington MG, Fonteh AN, Biringer RG. R Hühmer AF, Cowan RP. Prostaglandin D synthase isoforms from cerebrospinal fluid vary with brain pathology. Dis Markers 2006; 22(1-2): 73-81.
[http://dx.doi.org/10.1155/2006/241817] [PMID: 16410653]
[100]
Greco A, Minghetti L, Puopolo M, et al. Cerebrospinal fluid isoprostanes are not related to inflammatory activity in relapsing-remitting multiple sclerosis. J Neurol Sci 2004; 224(1-2): 23-7.
[http://dx.doi.org/10.1016/j.jns.2004.05.016] [PMID: 15450767]
[101]
Hunter MIS, Nlemadim BC, Davidson DLW. Lipid peroxidation products and antioxidant proteins in plasma and cerebrospinal fluid from multiple sclerosis patients. Neurochem Res 1985; 10(12): 1645-52.
[http://dx.doi.org/10.1007/BF00988606] [PMID: 4088434]
[102]
Naidoo R, Knapp ML. Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin Chem 1992; 38(12): 2449-54.
[http://dx.doi.org/10.1093/clinchem/38.12.2449] [PMID: 1458583]
[103]
Guan JZ, Guan WP, Maeda T, Guoqing X. GuangZhi W, Makino N. Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol Cell Biochem 2015; 400(1-2): 183-7.
[http://dx.doi.org/10.1007/s11010-014-2274-1] [PMID: 25424527]
[104]
Gilgun-Sherki Y, Melamed E, Offen D. The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 2004; 251(3): 261-8.
[http://dx.doi.org/10.1007/s00415-004-0348-9] [PMID: 15015004]
[105]
LeVine SM. The role of reactive oxygen species in the pathogenesis of multiple sclerosis. Med Hypotheses 1992; 39(3): 271-4.
[http://dx.doi.org/10.1016/0306-9877(92)90121-R] [PMID: 1335545]
[106]
Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol 2007; 2(4): 403-22.
[http://dx.doi.org/10.2217/17460875.2.4.403] [PMID: 18176634]
[107]
Lam MA, Maghzal GJ, Khademi M, et al. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS. Neurol Neuroimmunol Neuroinflamm 2016; 3(4)e256
[http://dx.doi.org/10.1212/NXI.0000000000000256] [PMID: 27386506]
[108]
Miller E, Mrowicka M, Saluk-Juszczak J, Ireneusz M. The level of isoprostanes as a non-invasive marker for in vivo lipid peroxidation in secondary progressive multiple sclerosis. Neurochem Res 2011; 36(6): 1012-6.
[http://dx.doi.org/10.1007/s11064-011-0442-1] [PMID: 21399906]
[109]
Mir F, Lee D, Ray H, Sadiq SA. CSF isoprostane levels are a biomarker of oxidative stress in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 2014; 1(2)e21
[http://dx.doi.org/10.1212/NXI.0000000000000021] [PMID: 25340073]
[110]
Gonzalo H, Brieva L, Tatzber F, et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J Neurochem 2012; 123(4): 622-34.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07934.x] [PMID: 22924648]
[111]
Greco A, Minghetti L, Sette G, Fieschi C, Levi G. Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology 1999; 53(8): 1876-9.
[http://dx.doi.org/10.1212/WNL.53.8.1876] [PMID: 10563647]
[112]
Egg D, Herold M, Rumpl E, Günther R. Prostaglandin F2 α levels in human cerebrospinal fluid in normal and pathological conditions. J Neurol 1980; 222(4): 239-48.
[http://dx.doi.org/10.1007/BF00313153] [PMID: 6154783]
[113]
Mattsson N, Haghighi S, Andersen O, et al. Elevated cerebrospinal fluid F2-isoprostane levels indicating oxidative stress in healthy siblings of multiple sclerosis patients. Neurosci Lett 2007; 414(3): 233-6.
[http://dx.doi.org/10.1016/j.neulet.2006.12.044] [PMID: 17227694]
[114]
Comabella M, Pradillo JM, Fernández M, et al. Plasma levels of 15d-PGJ are not altered in multiple sclerosis. Eur J Neurol 2009; 16(11): 1197-201.
[http://dx.doi.org/10.1111/j.1468-1331.2009.02696.x] [PMID: 19538219]
[115]
Teunissen CE, Sombekke M, Van Winsen L, et al. Mult Scler J 2012; 18(8): 1092-8.
[http://dx.doi.org/10.1177/1352458511433306]
[116]
Arthur AT, Armati PJ, Bye C, et al. Southern MS Genetics Consortium. Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission. BMC Med Genet 2008; 9: 17.
[http://dx.doi.org/10.1186/1471-2350-9-17] [PMID: 18366677]
[117]
Ghosh A, Chen F, Thakur A, Hong H. Cysteinyl leukotrienes and their receptors: emerging therapeutic targets in central nervous system disorders. CNS Neurosci Ther 2016; 22(12): 943-51.
[http://dx.doi.org/10.1111/cns.12596] [PMID: 27542570]
[118]
Neu I, Mallinger J, Prossiegel M, Wildfeuer A, Mehlber L, Ruhenstroth-Bauer G. Multiple sclerosis: leukotrienes in the spinal fluid. Munch Med Wochenschr 1988; 130: 80-1.
[119]
Prosiegel M, Neu I, Wildfeuer A, Mehlber L, Mallinger J, Ruhenstroth-Bauer G. Leukotrienes B4 and C4 in MS. Acta Neurol Scand 1987; 75(5): 361-3.
[http://dx.doi.org/10.1111/j.1600-0404.1987.tb05460.x] [PMID: 3039781]
[120]
Prüss H, Rosche B, Sullivan AB, et al. Proresolution lipid mediators in multiple sclerosis - differential, disease severity-dependent synthesis - a clinical pilot trial. PLoS One 2013; 8(2)e55859
[http://dx.doi.org/10.1371/journal.pone.0055859] [PMID: 23409068]
[121]
Wang X, Jiao W, Lin M, et al. Resolution of inflammation in neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2019; 27: 34-41.
[http://dx.doi.org/10.1016/j.msard.2018.09.040] [PMID: 30300851]
[122]
Kooij G, Troletti CD, Leuti A, Norris PC, Riley I, Albanese M, et al. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica 2019.
[123]
Marusic S, Thakker P, Pelker JW, et al. Blockade of cytosolic phospholipase A2 alpha prevents experimental autoimmune encephalomyelitis and diminishes development of Th1 and Th17 responses. J Neuroimmunol 2008; 204(1-2): 29-37.
[http://dx.doi.org/10.1016/j.jneuroim.2008.08.012] [PMID: 18829119]
[124]
Vana AC, Li S, Ribeiro R, Tchantchou F, Zhang Y. Arachidonyl trifluoromethyl ketone ameliorates experimental autoimmune encephalomyelitis via blocking peroxynitrite formation in mouse spinal cord white matter. Exp Neurol 2011; 231(1): 45-55.
[http://dx.doi.org/10.1016/j.expneurol.2011.05.014] [PMID: 21683698]
[125]
Miyamoto K, Miyake S, Mizuno M, Oka N, Kusunoki S, Yamamura T. Selective COX-2 inhibitor celecoxib prevents experimental autoimmune encephalomyelitis through COX-2-independent pathway. Brain 2006; 129(Pt 8): 1984-92.
[http://dx.doi.org/10.1093/brain/awl170] [PMID: 16835249]
[126]
Reder AT, Thapar M, Sapugay AM, Jensen MA. Prostaglandins and inhibitors of arachidonate metabolism suppress experimental allergic encephalomyelitis. J Neuroimmunol 1994; 54(1-2): 117-27.
[http://dx.doi.org/10.1016/0165-5728(94)90238-0] [PMID: 7523442]
[127]
Muthian G, Raikwar HP, Johnson C, et al. COX-2 inhibitors modulate IL-12 signaling through JAK-STAT pathway leading to Th1 response in experimental allergic encephalomyelitis. J Clin Immunol 2006; 26(1): 73-85.
[http://dx.doi.org/10.1007/s10875-006-8787-y] [PMID: 16418805]
[128]
Ni J, Shu YY, Zhu YN, et al. COX-2 inhibitors ameliorate experimental autoimmune encephalomyelitis through modulating IFN-gamma and IL-10 production by inhibiting T-bet expression. J Neuroimmunol 2007; 186(1-2): 94-103.
[http://dx.doi.org/10.1016/j.jneuroim.2007.03.012] [PMID: 17442406]
[129]
Lleo A, Galea E, Sastre M. Molecular targets of non-steroidal anti-inflammatory drugs in neurodegenerative diseases. Cell Mol Life Sci 2007; 64(11): 1403-18.
[http://dx.doi.org/10.1007/s00018-007-6516-1] [PMID: 17447008]
[130]
Prosiegel M, Neu I, Mallinger J, et al. Suppression of experimental autoimmune encephalomyelitis by dual cyclo-oxygenase and 5-lipoxygenase inhibition. Acta Neurol Scand 1989; 79(3): 223-6.
[http://dx.doi.org/10.1111/j.1600-0404.1989.tb03742.x] [PMID: 2541593]
[131]
Weber F, Meyermann R, Hempel K. Experimental allergic encephalomyelitis-prophylactic and therapeutic treatment with the cyclooxygenase inhibitor piroxicam (Feldene). Int Arch Allergy Appl Immunol 1991; 95(2-3): 136-41.
[http://dx.doi.org/10.1159/000235418] [PMID: 1937915]
[132]
Reess J, Haas J, Gabriel K, Fuhlrott A, Fiola M. Both paracetamol and ibuprofen are equally effective in managing flu-like symptoms in relapsing-remitting multiple sclerosis patients during interferon beta-1a (AVONEX) therapy. Mult Scler 2002; 8(1): 15-8.
[http://dx.doi.org/10.1191/1352458502ms771sr] [PMID: 11936482]
[133]
Leuschen MP, Filipi M, Healey K. A randomized open label study of pain medications (naproxen, acetaminophen and ibuprofen) for controlling side effects during initiation of IFN beta-1a therapy and during its ongoing use for relapsing-remitting multiple sclerosis. Mult Scler 2004; 10(6): 636-42.
[http://dx.doi.org/10.1191/1352458504ms1114oa] [PMID: 15584488]
[134]
Wingerchuk DM, Benarroch EE, O’Brien PC, et al. A randomized controlled crossover trial of aspirin for fatigue in multiple sclerosis. Neurology 2005; 64(7): 1267-9.
[http://dx.doi.org/10.1212/01.WNL.0000156803.23698.9A] [PMID: 15824361]
[135]
Miller H, Newell DJ, Ridley A. Multiple sclerosis. Trials of maintenance treatment with prednisolone and soluble aspirin. Lancet 1961; 1(7169): 127-9.
[http://dx.doi.org/10.1016/S0140-6736(61)91308-3] [PMID: 13770773]
[136]
Miller HG, Foster JB, Newell DJ, Barwick DD, Brewis RA. Multiple sclerosis: therapeutic trials of chloroquine, soluble aspirin, and gammaglobulin. BMJ 1963; 2(5370): 1436-9.
[http://dx.doi.org/10.1136/bmj.2.5370.1436] [PMID: 14063049]
[137]
Kolb LC, Karlson AG, Sayre GP. Prevention of experimental allergic encephalomyelitis by various agents. Trans Am Neurol Assoc 1952; 56(77th Meeting): 117-21.
[PMID: 13038807]
[138]
Tsau S, Emerson MR, Lynch SG, LeVine SM. Aspirin and multiple sclerosis. BMC Med 2015; 13: 153.
[http://dx.doi.org/10.1186/s12916-015-0394-4] [PMID: 26123634]
[139]
Good RA, Campbell B, Good TA. Prophylactic and therapeutic effect of para-aminobenzoic acid and sodium salicylate on experimental allergic encephalomyelitis. Proc Soc Exp Biol Med 1949; 72(2): 341-7.
[http://dx.doi.org/10.3181/00379727-72-17426] [PMID: 15408344]
[140]
Mondal S, Jana M, Dasarathi S, Roy A, Pahan K. Aspirin ameliorates experimental autoimmune encephalomyelitis through interleukin-11-mediated protection of regulatory T cells. Sci Signal 2018; 11(558): 8278.
[http://dx.doi.org/10.1126/scisignal.aar8278] [PMID: 30482850]
[141]
Offner H, Danneskiold-Samsøe B, Dore-Duffy P. Effect of prostaglandins and aspirin on active E-rosette formation in patients with multiple sclerosis. Clin Immunol Immunopathol 1982; 22(2): 159-67.
[http://dx.doi.org/10.1016/0090-1229(82)90034-4] [PMID: 6286189]
[142]
Dore-Duffy P, Zurier RB. E-rosette formation in normals and patients with multiple sclerosis: effect of prostaglandin and aspirin. Clin Immunol Immunopathol 1979; 13(3): 261-8.
[http://dx.doi.org/10.1016/0090-1229(79)90071-0] [PMID: 455803]
[143]
Schmitz K, de Bruin N, Bishay P, et al. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice. EMBO Mol Med 2014; 6(11): 1398-422.
[http://dx.doi.org/10.15252/emmm.201404168] [PMID: 25269445]
[144]
Mirshafiey A, Mortazavi-Jahromi SS, Taeb M, Cuzzocrea S, Esposito E. Evaluation of the effect of α-L-guluronic acid (G2013) on COX-1, COX-2 activity and gene expression for introducing this drug as a novel NSAID with immunomodulatory property. Recent Pat Inflamm Allergy Drug Discov 2018; 12(2): 162-8.
[http://dx.doi.org/10.2174/1872213X12666180607121809] [PMID: 29879894]
[145]
Afraei S, Azizi G, Zargar SJ, Sedaghat R, Mirshafiey A. New therapeutic approach by G2013 in experimental model of multiple sclerosis. Acta Neurol Belg 2015; 115(3): 259-66.
[http://dx.doi.org/10.1007/s13760-014-0392-x] [PMID: 25388635]
[146]
Reder AT, Arnason BG. Trigeminal neuralgia in multiple sclerosis relieved by a prostaglandin E analogue. Neurology 1995; 45(6): 1097-100.
[http://dx.doi.org/10.1212/WNL.45.6.1097] [PMID: 7783870]
[147]
DMKG study group. Misoprostol in the treatment of trigeminal neuralgia associated with multiple sclerosis. J Neurol 2003; 250(5): 542-5.
[http://dx.doi.org/10.1007/s00415-003-1032-1] [PMID: 12736732]
[148]
Evers S, Masur H, Sörös P, Brilla R, Husstedt IW. Prostaglandin analog mechanisms are not effective in refractory chronic cluster headache. Headache 1998; 38(8): 618-20.
[http://dx.doi.org/10.1046/j.1526-4610.1998.3808618.x] [PMID: 11398306]
[149]
Porrini AM, Reder AT. IFN-gamma, IFN-beta, and PGE1 affect monokine secretion: relevance to monocyte activation in multiple sclerosis. Cell Immunol 1994; 157(2): 428-38.
[http://dx.doi.org/10.1006/cimm.1994.1239] [PMID: 8069925]
[150]
Landtblom AM. Treatment of erectile dysfunction in multiple sclerosis. Expert Rev Neurother 2006; 6(6): 931-5.
[http://dx.doi.org/10.1586/14737175.6.6.931] [PMID: 16784415]
[151]
Jung S, Donhauser T, Toyka KV, Hartung HP. Propentofylline and iloprost suppress the production of TNF-α by macrophages but fail to ameliorate experimental autoimmune encephalomyelitis in Lewis rats. J Autoimmun 1997; 10(6): 519-29.
[http://dx.doi.org/10.1006/jaut.1997.0159] [PMID: 9451591]
[152]
Muramatsu R, Kuroda M, Matoba K, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem 2015; 290(18): 11515-25.
[http://dx.doi.org/10.1074/jbc.M114.587253] [PMID: 25795781]
[153]
Iwasa K, Yamamoto S, Takahashi M, et al. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model. Prostaglandins Leukot Essent Fatty Acids 2014; 91(5): 175-82.
[http://dx.doi.org/10.1016/j.plefa.2014.08.004] [PMID: 25224839]
[154]
Sakata D, Yao C, Narumiya S. Prostaglandin E2, an immunoactivator. J Pharmacol Sci 2010; 112(1): 1-5.
[http://dx.doi.org/10.1254/jphs.09R03CP] [PMID: 20051652]
[155]
Wang L, Du C, Lv J, Wei W, Cui Y, Xie X. Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 2011; 187(5): 2336-45.
[http://dx.doi.org/10.4049/jimmunol.1100333] [PMID: 21804021]
[156]
Yokomizo T. Leukotriene B4 receptors: novel roles in immunological regulations. Adv Enzyme Regul 2011; 51(1): 59-64.
[http://dx.doi.org/10.1016/j.advenzreg.2010.08.002] [PMID: 21035496]
[157]
Gladue RP, Carroll LA, Milici AJ, et al. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. J Exp Med 1996; 183(4): 1893-8.
[http://dx.doi.org/10.1084/jem.183.4.1893] [PMID: 8666945]
[158]
Fretland DJ, Widomski DL, Shone RL, Levin S. Effect of the leukotriene B, receptor antagonist, SC-41930, on experimental allergic encephamyelitis in the guinea pig. Agents Actions in press
[159]
Lee W, Su Kim H, Lee GR. Leukotrienes induce the migration of Th17 cells. Immunol Cell Biol 2015; 93(5): 472-9.
[http://dx.doi.org/10.1038/icb.2014.104] [PMID: 25512344]
[160]
Kong W, Hooper KM, Ganea D. The natural dual cyclooxygenase and 5-lipoxygenase inhibitor flavocoxid is protective in EAE through effects on Th1/Th17 differentiation and macrophage/microglia activation. Brain Behav Immun 2016; 53: 59-71.
[http://dx.doi.org/10.1016/j.bbi.2015.11.002] [PMID: 26541818]
[161]
DiMartino MJ, Wolff CE, Campbell GK Jr, Hanna N. Inhibition of experimental allergic encephalomyelitis by a new anti-inflammatory compound--SK&F 86002. Ann N Y Acad Sci 1988; 540(1): 578-80.
[http://dx.doi.org/10.1111/j.1749-6632.1988.tb27179.x] [PMID: 3264684]
[162]
Brenner T, Boneh A, Shohami E, Abramsky O, Weidenfeld J. Glucocorticoid regulation of eicosanoid production by glial cells under basal and stimulated conditions. J Neuroimmunol 1992; 40(2-3): 273-9.
[http://dx.doi.org/10.1016/0165-5728(92)90143-9] [PMID: 1430157]
[163]
Kirk PF, Williams JD, Petersen MM, Compston DAS. The effect of methylprednisolone on monocyte eicosanoid production in patients with multiple sclerosis. J Neurol 1994; 241(7): 427-31.
[http://dx.doi.org/10.1007/BF00900960] [PMID: 7931443]
[164]
Pollak Y, Ovadia H, Orion E, Yirmiya R. The EAE-associated behavioral syndrome: II. Modulation by anti-inflammatory treatments. J Neuroimmunol 2003; 137(1-2): 100-8.
[http://dx.doi.org/10.1016/S0165-5728(03)00073-0] [PMID: 12667653]
[165]
Pelletier D, Hafler DA. Fingolimod for multiple sclerosis. N Engl J Med 2012; 366(4): 339-47.
[http://dx.doi.org/10.1056/NEJMct1101691] [PMID: 22276823]
[166]
Payne SG, Oskeritzian CA, Griffiths R, et al. The immunosuppressant drug FTY720 inhibits cytosolic phospholipase A2 independently of sphingosine-1-phosphate receptors. Blood 2007; 109(3): 1077-85.
[http://dx.doi.org/10.1182/blood-2006-03-011437] [PMID: 17008548]
[167]
Al Alam N, Kreydiyyeh SI. Signaling pathway involved in the inhibitory effect of FTY720P on the Na+/K+ ATPase in HepG2 cells. J Cell Commun Signal 2017; 11(4): 309-16.
[http://dx.doi.org/10.1007/s12079-016-0369-z] [PMID: 28197966]
[168]
Fiedler SE, Kerns AR, Tsang C, Tsang V, Bourdette D, Salinthone S. Dimethyl fumarate activates the prostaglandin EP2 receptor and stimulates cAMP signaling in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 2016; 475(1): 19-24.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.021] [PMID: 27157139]
[169]
Dore-Duffy P, Zurier RB. Lymphocyte adherence in multiple sclerosis: role of the cytoskeleton and prostaglandin E. Prostaglandins Leukot Med 1986; 23(2-3): 277-87.
[http://dx.doi.org/10.1016/0262-1746(86)90195-2] [PMID: 3464022]
[170]
Natarajan C, Bright JJ. Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1 differentiation. Genes Immun 2002; 3(2): 59-70.
[http://dx.doi.org/10.1038/sj.gene.6363832] [PMID: 11960303]
[171]
Storer PD, Xu J, Chavis J, Drew PD. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 2005; 161(1-2): 113-22.
[http://dx.doi.org/10.1016/j.jneuroim.2004.12.015] [PMID: 15748950]
[172]
Bolton C, Wood EG, Ayoub SS. N-Methyl-D-aspartate (NMDA) receptor involvement in central nervous system prostaglandin production during the relapse phase of chronic relapsing experimental autoimmune encephalomyelitis (CR EAE). Fundam Clin Pharmacol 2013; 27(5): 535-43.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01050.x] [PMID: 22742874]
[173]
Mestre L, Correa F, Docagne F, Clemente D, Guaza C. The synthetic cannabinoid WIN 55,212-2 increases COX-2 expression and PGE2 release in murine brain-derived endothelial cells following Theiler’s virus infection. Biochem Pharmacol 2006; 72(7): 869-80.
[http://dx.doi.org/10.1016/j.bcp.2006.06.037] [PMID: 16914119]
[174]
Tanaka M, Moran S, Wen J, et al. WWL70 attenuates PGE2 production derived from 2-arachidonoylglycerol in microglia by ABHD6-independent mechanism. J Neuroinflammation 2017; 14(1): 7.
[http://dx.doi.org/10.1186/s12974-016-0783-4] [PMID: 28086912]
[175]
Askari VR, Fereydouni N, Baradaran Rahimi V, et al. β-Amyrin, the cannabinoid receptors agonist, abrogates mice brain microglial cells inflammation induced by lipopolysaccharide/interferon-γ and regulates Mφ1/Mφ2 balances. Biomed Pharmacother 2018; 101: 438-46.
[http://dx.doi.org/10.1016/j.biopha.2018.02.098] [PMID: 29501766]
[176]
Salinthone S, Schillace RV, Marracci GH, Bourdette DN, Carr DW. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells. J Neuroimmunol 2008; 199(1-2): 46-55.
[http://dx.doi.org/10.1016/j.jneuroim.2008.05.003] [PMID: 18562016]
[177]
Rozenberg A, Rezk A, Boivin MN, et al. Human Mesenchymal Stem Cells Impact Th17 and Th1 Responses Through a Prostaglandin E2 and Myeloid-Dependent Mechanism. Stem Cells Transl Med 2016; 5(11): 1506-14.
[http://dx.doi.org/10.5966/sctm.2015-0243] [PMID: 27400792]
[178]
Prosiegel M, Neu I, Vogl S, Hoffmann G, Wildfeuer A, Ruhenstroth-Bauer G. Suppression of experimental autoimmune encephalomyelitis by sulfasalazine. Acta Neurol Scand 1990; 81(3): 237-8.
[http://dx.doi.org/10.1111/j.1600-0404.1990.tb00973.x] [PMID: 1972308]
[179]
Patejdl R, Zettl UK. Spasticity in multiple sclerosis: Contribution of inflammation, autoimmune mediated neuronal damage and therapeutic interventions. Autoimmun Rev 2017; 16(9): 925-36.
[http://dx.doi.org/10.1016/j.autrev.2017.07.004] [PMID: 28698092]
[180]
Dore-Duffy P, Zurier RB. Lymphocyte adherence in multiple sclerosis: effect of aspirin. J Clin Invest 1979; 63(1): 154-7.
[http://dx.doi.org/10.1172/JCI109271] [PMID: 762244]
[181]
Vervliet G, Deckmyn H, Carton H, Billiau A. Influence of prostaglandin E2 and indomethacin on interferon-γ production by cultured peripheral blood leukocytes of multiple sclerosis patients and healthy donors. J Clin Immunol 1985; 5(2): 102-8.
[http://dx.doi.org/10.1007/BF00915007] [PMID: 3921560]
[182]
Penberthy WT. Nicotinic acid-mediated activation of both membrane and nuclear receptors towards therapeutic glucocorticoid mimetics for treating multiple sclerosis. PPAR Res 2009; 2009853707
[http://dx.doi.org/10.1155/2009/853707] [PMID: 19461950]
[183]
Raikwar HP, Muthian G, Rajasingh J, Johnson CN, Bright JJ. PPARgamma antagonists reverse the inhibition of neural antigen-specific Th1 response and experimental allergic encephalomyelitis by Ciglitazone and 15-deoxy-Δ12,14-prostaglandin J2. J Neuroimmunol 2006; 178(1-2): 76-86.
[http://dx.doi.org/10.1016/j.jneuroim.2006.05.013] [PMID: 16844232]
[184]
Baker D, Pryce G, Croxford JL, et al. Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 2001; 15(2): 300-2.
[http://dx.doi.org/10.1096/fj.00-0399fje] [PMID: 11156943]
[185]
Maresz K, Pryce G, Ponomarev ED, et al. Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nat Med 2007; 13(4): 492-7.
[http://dx.doi.org/10.1038/nm1561] [PMID: 17401376]
[186]
Ortega-Gutiérrez S, Molina-Holgado E, Arévalo-Martín A, et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J 2005; 19(10): 1338-40.
[http://dx.doi.org/10.1096/fj.04-2464fje] [PMID: 15941768]
[187]
Nomura DK, Morrison BE, Blankman JL, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 2011; 334(6057): 809-13.
[http://dx.doi.org/10.1126/science.1209200] [PMID: 22021672]
[188]
Chen R, Zhang J, Wu Y, et al. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep 2012; 2(5): 1329-39.
[http://dx.doi.org/10.1016/j.celrep.2012.09.030] [PMID: 23122958]
[189]
Piro JR, Benjamin DI, Duerr JM, et al. A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 2012; 1(6): 617-23.
[http://dx.doi.org/10.1016/j.celrep.2012.05.001] [PMID: 22813736]
[190]
Fumagalli M, Lecca D, Coppolino GT, Parravicini C, Abbracchio MP. Pharmacological properties and biological functions of the GPR17 receptor, a potential target for neuro-regenerative medicine Protein Reviews. Singapore: Springer 2017; pp. 169-92.
[http://dx.doi.org/10.1007/5584_2017_92]
[191]
Jahan-Abad AJ, Karima S, Shateri S, et al. Serum pro-inflammatory and anti-inflammatory cytokines and the pathogenesis of experimental autoimmune encephalomyelitis. Neuropathology 2020; 40(1): 84-92.
[http://dx.doi.org/10.1111/neup.12612] [PMID: 31709666]
[192]
Safizadeh B, Hoshyar R, Mehrpour M, et al. The role of expression and activity of 15-Lipoxygenase isoforms and related cytokines in patients with Multiple Sclerosis and healthy controls. J Neuroimmunol 2018; 325: 32-42.
[http://dx.doi.org/10.1016/j.jneuroim.2018.10.009] [PMID: 30368068]
[193]
Håkansson I, Gouveia-Figueira S, Ernerudh J, et al. Oxylipins in cerebrospinal fluid in clinically isolated syndrome and relapsing remitting multiple sclerosis. Prostaglandins Other Lipid Mediat 2018; 138: 41-7.
[http://dx.doi.org/10.1016/j.prostaglandins.2018.08.003] [PMID: 30118859]
[194]
Cherayil GD. Sialic acid and fatty acid concentrations in lymphocytes, red blood cells and plasma from patients with multiple sclerosis. J Neurol Sci 1984; 63(1): 1-10.
[http://dx.doi.org/10.1016/0022-510X(84)90104-7] [PMID: 6699649]
[195]
Dore-Duffy P, Zurier RB. Lymphocyte adherence in multiple sclerosis. Role of monocytes and increased sensitivity of MS lymphocytes to prostaglandin E. Clin Immunol Immunopathol 1981; 19(3): 303-13.
[http://dx.doi.org/10.1016/0090-1229(81)90072-6] [PMID: 7249416]
[196]
pijkers LJ, Alewijnse AE, Peters SL. FTY720 (fingolimod) increases vascular tone and blood pressure in spontaneously hypertensive rats via inhibition of sphingosine kinase. Br J Pharmacol 2012; 166(4): 1411-8..
[http://dx.doi.org/10.1111/j.1476-5381.2012.01865.x] [PMID: 22251137]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy