Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Review Article

C-Methylation Of Organic Substrates. A Comprehensive Overview. Part IVa. Methylating Agents Other Than Methane, Methanol, and Methyl Metals

Author(s): Saad Moulay*

Volume 2, Issue 1, 2022

Published on: 04 August, 2021

Article ID: e040821195251 Pages: 40

DOI: 10.2174/2666001601666210804114443

Price: $65

Abstract

C-Methylation of organic substrates was accomplished with a number of methylating agents other than methane, methanol, and methyl metals. They include methyl halides (MeX, X = I, Br, Cl, F), methyl-containing halogenated reagents, methyl peroxides, dimethyl carbonate (DMC), dimethylsulfoxide (DMSO), N,N-dimethyl formamide (DMF), diazomethane, formate salts, trioxane, CO/H2, CO2/H2, and dimethyl ether (DME). Under particular conditions, some methyl- containing molecules such as polymethylbenzenes, methylhydrazine, tris(diethylamino) sulfonium difluorotrimethylsilicate, methyl tosylate, long-chain alkyl alcohols, and acetic acid unexpectedly C-methylated a variety of organic substrates. A few cases of C-methylation were only reported to occur in the absence of catalysts. Otherwise, transition metal complexes as catalysts in conjunction with specific ligands and bases were ubiquitously present in most C-methylation reactions. Of the reactions, Suzuki-Miyaura-type cross-coupling remained of paramount importance in making 11CH3-bearing positron emission tomography tracers (PETs), one of the best applications of such methylation. Methylation proceeded at C(aromatic)-X, C(sp3)-X C(sp2)-X, and C(sp)-X of substrates (X = H, halogen). Ortho-methylation was regioselectively observed with aromatic substrates when they bear moieties such as pyridyl, pyrimidyl, amide, and imine functionalities, which were accordingly coined ‘ortho-directing groups’.

Keywords: Dimethyl carbonate, dimethyl ether, methylation, methyl halides, peroxides, polymethylbenzenes.

Graphical Abstract

[1]
Brahmachari, G. Design for carbon-carbon bond forming reactions under ambient conditions. RSC Advances, 2016, 6(69), 64676-64725.
[http://dx.doi.org/10.1039/C6RA14399G]
[2]
Nicolaou, K.C.; Vourloumis, D.; Winssinger, N.; Baran, P.S. The art and science of total synthesis at the dawn of the twenty-first century. Angew. Chem. Int. Ed. Engl., 2000, 39(1), 44-122.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000103)39:1<44:AID-ANIE44>3.0.CO;2-L] [PMID: 10649349]
[3]
Moulay, S. C-Methylation of organic substrates: A comprehensive overview. Part I. Methane as a methylating agent. Mini Rev. Org. Chem., 2020, 17(7), 805-813.
[http://dx.doi.org/10.2174/1570193X16666191023143652]
[4]
Jin, J.; MacMillan, D.W.C. Alcohols as alkylating agents in heteroarene C-H functionalization. Nature, 2015, 525(7567), 87-90.
[http://dx.doi.org/10.1038/nature14885] [PMID: 26308895]
[5]
Moulay, S. C-methylation of organic substrates: A comprehensive overview. Part III. Methanol as a methylating agent other than methane, methanol, and methyl metals. Curr. Chinese Chem., 2021, 1(2), e040821195251.
[6]
Moulay, S. C-Methylation of organic substrates: A comprehensive overview. Part II. Methyl metals as methylating agents. Chem. Africa, 2020, 3, 845-880.
[http://dx.doi.org/10.1007/s42250-020-00172-1]
[7]
Moulay, S. O-Methylation of hydroxyl-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2018, 22(20), 1986-2016.
[http://dx.doi.org/10.2174/1385272822666180910140543]
[8]
Moulay, S. N-methylation of nitrogen-containing organic substrates: A comprehensive overview. Curr. Org. Chem., 2019, 23(16), 1695-1737.
[http://dx.doi.org/10.2174/1385272823666190823114547]
[9]
Dongol, K.G.; Koh, H.; Sau, M.; Chai, C.L.L. Iron‐catalysed sp3-sp3 cross‐coupling reactions of unactivated alkyl halides with alkyl Grignard reagents. Adv. Synth. Catal., 2007, 349(7), 1015-1018.
[http://dx.doi.org/10.1002/adsc.200600383]
[10]
Yan, G.; Borah, A.J.; Wang, L.; Yang, M. Recent advances in transition metal‐catalyzed methylation reactions. Adv. Synth. Catal., 2015, 357(7), 1333-1350.
[http://dx.doi.org/10.1002/adsc.201400984]
[11]
Giri, R.; Thapa, S.; Kafle, A. Palladium‐catalysed, directed C-H coupling with organometallics. Adv. Synth. Catal., 2014, 356(7), 1395-1411.
[http://dx.doi.org/10.1002/adsc.201400105]
[12]
Jianbo, D.; Yuegang, C.; Zhiwei, Z. Recent progress of photocatalytic methylation of arenes. Youji Huaxue, 2020, 40(11), 3646-3655.
[http://dx.doi.org/10.6023/cjoc202006079]
[13]
Hu, A.; Guo, J-J.; Pan, H.; Zuo, Z. Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis. Science, 2018, 361(6403), 668-672.
[http://dx.doi.org/10.1126/science.aat9750] [PMID: 30049785]
[14]
Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M.F.; Wencel-Delord, J.; Besset, T.; Maes, B.U.W.; Schnürch, M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem. Soc. Rev., 2018, 47(17), 6603-6743.
[http://dx.doi.org/10.1039/C8CS00201K] [PMID: 30033454]
[15]
Hu, L.; Liu, Y.A.; Liao, X. Recent progress in methylation of (hetero) arenes by cross-coupling or C-H activation. Synlett, 2018, 29(4), 375-382.
[http://dx.doi.org/10.1055/s-0037-1609093]
[16]
Khake, S.M.; Chatani, N. Chelation-assisted nickel-catalyzed C-H functionalizations. Trends Chem., 2019, 1(5), 524-539.
[http://dx.doi.org/10.1016/j.trechm.2019.06.002]
[17]
Ano, Y.; Chatani, N. Ortho-directed C-H alkylation of substituted benzenes. Organic Reactions; John Wiley & Sons: Hoboken, 2019, 100, pp. 622-650.
[18]
Ghorbani‐Choghamarani, A.; Aghavandi, H.; Mohammadi, M. Boehmite@SiO2@ Tris (hydroxymethyl)aminomethane‐Cu(I): A novel, highly efficient and reusable nanocatalyst for the C‐C bond formation and the synthesis of 5‐substituted 1H‐tetrazoles in green media. Appl. Organomet. Chem., 2020, 34(10), e5804.
[http://dx.doi.org/10.1002/aoc.5804]
[19]
Tamoradi, T.; Mousavi, S.M.; Mohammadi, M. C-C and C-S Coupling catalyzed by supported Cu(II) on nano CoFe2O4. ChemistrySelect, 2020, 5(17), 5077-5081.
[http://dx.doi.org/10.1002/slct.202000084]
[20]
Mohammadi, M.; Ghorbani-Choghamarani, A. L-Methionine-Pd complex supported on hercynite as a highly efficient and reusable nanocatalyst for C-C cross-coupling reactions. New J. Chem., 2020, 44(7), 2919-2929.
[http://dx.doi.org/10.1039/C9NJ05325E]
[21]
Mohammdi, M.; Khodamorady, M.; Tahmasbi, B.; Bahrami, K.; Ghorbani-Choghamarani, A. Boehmite nanoparticles as versatile support for organic–inorganic hybrid materials: Synthesis, functionalization, and applications in eco-friendly catalysis. J. Ind. Eng. Chem., 2021, 97, 1-78.
[http://dx.doi.org/10.1016/j.jiec.2021.02.001]
[22]
Newberne, P.M.; Rogers, A.E. Labile methyl groups and the promotion of cancer. Annu. Rev. Nutr., 1986, 6, 407-432.
[http://dx.doi.org/10.1146/annurev.nu.06.070186.002203] [PMID: 2425831]
[23]
Wajed, S.A.; Laird, P.W.; DeMeester, T.R. DNA methylation: an alternative pathway to cancer. Ann. Surg., 2001, 234(1), 10-20.
[http://dx.doi.org/10.1097/00000658-200107000-00003] [PMID: 11420478]
[24]
Murakami, A.; Koshimizu, K.; Ohigashi, H.; Kuwahara, S.; Kuki, W.; Takahashi, Y.; Hosotani, K.; Kawahara, S.; Matsuoka, Y. Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. Biofactors, 2002, 16(3-4), 73-82.
[http://dx.doi.org/10.1002/biof.5520160303] [PMID: 14530595]
[25]
Morley, K.L.; Ferguson, P.J.; Koropatnick, J. Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett., 2007, 251(1), 168-178.
[http://dx.doi.org/10.1016/j.canlet.2006.11.016] [PMID: 17197076]
[26]
Thakker, D.R.; Creveling, C.R. O-methylation.Conjugation reactions in drug metabolism: an integrated approach; Gerard, J.M., Ed.; Taylor & Francis: New York, 1990, pp. 191-230.
[27]
Barreiro, E.J.; Kümmerle, A.E.; Fraga, C.A.M. The methylation effect in medicinal chemistry. Chem. Rev., 2011, 111(9), 5215-5246.
[http://dx.doi.org/10.1021/cr200060g] [PMID: 21631125]
[28]
Schönherr, H.; Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(47), 12256-12267.
[http://dx.doi.org/10.1002/anie.201303207] [PMID: 24151256]
[29]
Rose, K.D.; Francisco, M.A. Characterization of acidic heteroatoms in heavy petroleum fractions by phase-transfer methylation and NMR spectroscopy. Energy Fuels, 1987, 1(3), 233-239.
[http://dx.doi.org/10.1021/ef00003a001]
[30]
Svelle, S.; Kolboe, S.; Olsbye, U.; Swan, O. A theoretical investigation of the methylation of methylbenzenes and alkenes by halomethanes over acidic zeolites. J. Phys. Chem. B, 2003, 107(22), 5251-5260.
[http://dx.doi.org/10.1021/jp030101u]
[31]
Bradley, W.; Robinson, R. The hydrolytic fission of some substituted dibenzoylmethanes. J. Chem. Soc., 1926, 129, 2356-2367.
[http://dx.doi.org/10.1039/JR9262902356]
[32]
Weygand, C. Über eine verbesserte methode zur C‐methylierung von 1.3‐diketonen (mit H. Forkel) und über das methyl‐p‐methoxy‐dibenzoylmethan (1‐p‐methoxyphenyl‐2‐methyl‐3‐phenyl‐propan‐dion‐1.3). Ber. Dtsch. Chem. Ges., 1928, 61(4), 687-690.
[http://dx.doi.org/10.1002/cber.19280610416]
[33]
Peak, D.A.; Robinson, R. Experiments on the synthesis of substances related to the sterols. Part XVIII. J. Chem. Soc., 1937, 1581-1591.
[http://dx.doi.org/10.1039/jr9370001581]
[34]
Cook, J.W.; Lawrence, C.A. The synthesis of polyterpenoid compounds. Part III. J. Chem. Soc., 1937, 817-827.
[http://dx.doi.org/10.1039/jr9370000817]
[35]
McGinnis, N.A.; Robinson, R. Experiments on the synthesis of substances related to the sterols. Part XXXIV. Some thiopyranophenanthrene derivatives. J. Chem. Soc., 1941, 404-408.
[http://dx.doi.org/10.1039/jr9410000404]
[36]
Johnson, W.S. Introduction of the angular methyl group. The preparation of cis- and trans-9-methyldecalone-1. J. Am. Chem. Soc., 1943, 65(7), 1317-1324.
[http://dx.doi.org/10.1021/ja01247a018]
[37]
Bickel, C.L. The methylation of p-methoxy dibenzoylmethane. J. Am. Chem. Soc., 1945, 67(11), 2045-2046.
[http://dx.doi.org/10.1021/ja01227a503]
[38]
McArthur, C.R.; Worster, P.M.; Jiang, J-L.; Leznoff, C.C. Polymer supported enantioselective reactions. II. α-Methylation of cyclohexanone. Can. J. Chem., 1982, 60(14), 1836-1841.
[http://dx.doi.org/10.1139/v82-254]
[39]
Doomes, E.; Cromwell, N.H. Azetidinyl ketone chemistry. C‐Methylation reactions and stereostructure‐spectra relationships. J. Heterocycl. Chem., 1969, 6(2), 153-158.
[http://dx.doi.org/10.1002/jhet.5570060202]
[40]
Kato, K.; Kikuchi, T.; Nengaki, N.; Arai, T.; Zhang, M-R. Tetrabutylammonium fluoride-promoted α-[11C]methylation of α-arylesters: A simple and robust method for the preparation of 11C-labeled ibuprofen. Tetrahedron Lett., 2010, 51(45), 5908-5911.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.007]
[41]
Mahmood, A.; Teixeira, E.S.; Longo, R.L. Understanding the reactivity and regioselectivity of methylation of nitronates [R1 R2 CNO2]− by CH3I in the gas phase. J. Org. Chem., 2015, 80(16), 8198-8205.
[http://dx.doi.org/10.1021/acs.joc.5b01273] [PMID: 26181145]
[42]
Olah, G.A.; DeMember, J.R.; Mo, Y.K.; Svoboda, J.J.; Schilling, P.; Olah, J.A. Onium ions. VII. Dialkylhalonium ions. J. Am. Chem. Soc., 1974, 96(3), 884-892.
[http://dx.doi.org/10.1021/ja00810a038]
[43]
Olah, G.A. The role of carbocations in cationic polymerization (polycondensation) of π‐, σ‐, and n‐donor monomers. Makromol. Chem., 1974, 175(4), 1039-1069.
[http://dx.doi.org/10.1002/macp.1974.021750402]
[44]
Olah, G.A. Olah, J.A. Aromatic substitution. XXXVII. Stannic and aluminum chloride catalyzed Friedel-Crafts alkylation of naphthalene with alkyl halides. Differentiation of kinetically and thermodynamically controlled product compositions, and the isomerization of alkylnaphthalenes. J. Am. Chem. Soc., 1976, 98(7), 1839-1842.
[http://dx.doi.org/10.1021/ja00423a032]
[45]
Tremont, S.J.; Rahman, H.U. Ortho-alkylation of acetanilides using alkyl halides and palladium acetate. J. Am. Chem. Soc., 1984, 106(19), 5759-5760.
[http://dx.doi.org/10.1021/ja00331a073]
[46]
McCallum, J.S.; Gasdaska, J.R.; Liebeskind, L.S.; Tremont, S.J. Palladium-mediated 2,6-dialkylation of N-benzilidine imines: Preparation of 2,6-dialkylbenzaldehydes. Tetrahedron Lett., 1989, 30(31), 4085-4088.
[http://dx.doi.org/10.1016/S0040-4039(00)99328-6]
[47]
Jang, M.J.; Youn, S.W. Pd-catalyzed ortho-methylation of acetanilides via directed C-H activation. Bull. Korean Chem. Soc., 2011, 32(8), 2865-2866.
[http://dx.doi.org/10.5012/bkcs.2011.32.8.2865]
[48]
Wang, X.; Niu, S.; Xu, L.; Zhang, C.; Meng, L.; Zhang, X.; Ma, D. Pd-catalyzed dimethylation of tyrosine-derived picolinamide for synthesis of (S)-N-boc-2,6-dimethyltyrosine and its analogues. Org. Lett., 2017, 19(1), 246-249.
[http://dx.doi.org/10.1021/acs.orglett.6b03548] [PMID: 28026185]
[49]
McLean, S.; Haynes, P. Substitution in the cyclopentadienide anion series: Methylation of the cyclopentadienide and methylcyclopentadienide anions. Tetrahedron, 1965, 21(9), 2313-2327.
[http://dx.doi.org/10.1016/S0040-4020(01)93886-4]
[50]
Toyota, K.; Abe, K.; Horikawa, K.; Yoshifuji, M. Preparation, methylation, and coupling reaction of 1,2-dithienyl-3,4-bis[(2,4,6-tri-t-butylphenyl)phosphinidene]cyclobutenes. Bull. Chem. Soc. Jpn., 2004, 77(7), 1377-1388.
[http://dx.doi.org/10.1246/bcsj.77.1377]
[51]
Levitin, I.Y.; Volkova, L.G.; Ushakova, T.M.; Sigan, A.L.; Vol’pin, M.E. Methylation of olefins with organic reagents in the presence of rhodium compounds. Russ. Chem. Bull., 1973, 22, 1156-1156.
[http://dx.doi.org/10.1007/BF00854286]
[52]
Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Palladium-catalyzed alkyl-alkyl cross-coupling reaction of 9-alkyl-9-BBN derivatives with iodoalkanes possessing β-hydrogens. Chem. Lett., 1992, 21(4), 691-694.
[http://dx.doi.org/10.1246/cl.1992.691]
[53]
Terao, J.; Kambe, N. Cross-coupling reaction of alkyl halides with organometallic reagents using transition-metal catalysts J. Synt. Org. Chem., 2004, 62(12), 1192-1204.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.62.1192]
[54]
Pretze, M.; Grosse-Gehling, P.; Mamat, C. Cross-coupling reactions as valuable tool for the preparation of PET radiotracers. Molecules, 2011, 16(2), 1129-1165.
[http://dx.doi.org/10.3390/molecules16021129] [PMID: 21270732]
[55]
Itsenko, O.; Goméz-Vallejo, V.; Llop, J.; Koziorowski, J. On 11C chemistry reviews - Surveying and filling the gaps. Curr. Org. Chem., 2013, 17(19), 2067-2096.
[http://dx.doi.org/10.2174/13892029113149990101]
[56]
Gomzina, N.A.; Kuznetsova, O.F.; Vaulina, D.D. Methylation as a method for synthesis of radiopharmaceuticals for positron emission tomography. Russ. Chem. Bull., 2015, 64(7), 1536-1546.
[http://dx.doi.org/10.1007/s11172-015-1038-8]
[57]
Andersson, Y.; Cheng, A.; Långström, B. Palladium-promoted coupling reactions of [11C]methyl iodide with organotin and organoboron compounds. Acta Chem. Scand., 1995, 49, 683-688.
[http://dx.doi.org/10.3891/acta.chem.scand.49-0683]
[58]
Suzuki, M.; Doi, H.; Björkman, M.; Andersson, Y.; Långström, B.; Watanabe, Y.; Noyori, R. Rapid coupling of methyl iodide with aryltributylstannanes mediated by palladium(0) complexes: A general protocol for the synthesis of 11CH3‐labeled PET tracers. Chemistry, 1997, 3(12), 2039-2042.
[http://dx.doi.org/10.1002/chem.19970031219]
[59]
Hosoya, T.; Wakao, M.; Kondo, Y.; Doi, H.; Suzuki, M. Rapid methylation of terminal acetylenes by the Stille coupling of methyl iodide with alkynyltributylstannanes: a general protocol potentially useful for the synthesis of short-lived 11CH3-labeled PET tracers with a 1-propynyl group. Org. Biomol. Chem., 2004, 2(1), 24-27.
[http://dx.doi.org/10.1039/b311532a] [PMID: 14737654]
[60]
Hosoya, T.; Sumi, K.; Doi, H.; Wakao, M.; Suzuki, M. Rapid methylation on carbon frameworks useful for the synthesis of 11CH3-incorporated PET tracers: Pd(0)-mediated rapid coupling of methyl iodide with an alkenyltributylstannane leading to a 1-methylalkene. Org. Biomol. Chem., 2006, 4(3), 410-415.
[http://dx.doi.org/10.1039/b515215a] [PMID: 16446798]
[61]
Suzuki, M.; Sumi, K.; Koyama, H.; Siqin, H.; Hosoya, T.; Takashima-Hirano, M.; Doi, H. Palladium(0)-mediated rapid coupling between methyl iodide and heteroarylstannanes: an efficient and of a positron-emitting 11C radionuclide into heteroaromatic frameworks. Chemistry, 2009, 15(45), 12489-12495.
[http://dx.doi.org/10.1002/chem.200901145] [PMID: 19821458]
[62]
Suzuki, M.; Hosoya, T. Method of rapid methylation of alkene compound and kit for PET tracer preparation using the same. US Patent 2009/0238759 A1 2009.
[63]
Suzuki, M.; Doi, H. Pd0-mediated rapid C-[11C]methylations and C-[18F]fluoromethylations: Revolutionary new methodologies for the synthesis of short-lived PET molecular probes. J. Synth. Org. Chem. Jpn., 2010, 68(11), 1195-1206.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.68.1195]
[64]
Suzuki, M.; Koyama, H.; Takashima-Hirano, M.; Doi, H. Pd0-mediated rapid C-11C]methylation and C-[18F]fluoromethylation: Revolutionary advanced methods for general incorporation of short-lived positron-emitting 11C and 18F radionuclides in an organic framework. In: Positron Emission Tomography-Current Clinical and Research Aspects; Hsieh, C.-H., Ed.; InTech, 2012, pp. 115-152.
[65]
Suzuki, M.; Doi, H.; Koyama, H.; Zhang, Z.; Hosoya, T.; Onoe, H.; Watanabe, Y. Pd0-mediated rapid cross-coupling reactions, the rapid C-[11C]methylations, revolutionarily advancing the syntheses of short-lived PET molecular probes. Chem. Rec., 2014, 14(3), 516-541.
[http://dx.doi.org/10.1002/tcr.201400002] [PMID: 24946731]
[66]
Suzuki, M.; Doi, H.; Koyama, H. Method for rapidly methylating heteroaromatic arene and method for producing tracer for use in PET. US Patent 9.012,632 B2, 2015.
[67]
Bourdier, T.; Huiban, M.; Huet, A.; Sobrio, F.; Fouquet, E.; Perrio, C.; Barre, L. Tetra- and monoorganotin reagents in palladium-mediated cross-coupling reactions for the labeling with carbon-11 of PET tracers. Synthesis, 2008, 6, 978-984.
[68]
Doi, H. Pd-mediated rapid cross-couplings using [(11) C]methyl iodide: groundbreaking labeling methods in (11) C radiochemistry. J. Labelled Comp. Radiopharm., 2015, 58(3), 73-85.
[http://dx.doi.org/10.1002/jlcr.3253] [PMID: 25712596]
[69]
Wuest, F.; Berndt, M.; Kniess, T. Carbon-11 labeling chemistry based upon [11C]methyl iodide. Ernst Schering Res. Found. Workshop, 2007, 62, 183-273.
[70]
Wuest, F.R.; Berndt, M. 11C–C bond formation by palladium-mediated cross-coupling of alkenylzirconocenes with [11C]methyl iodide. J. Labelled Comp. Radiopharm., 2006, 49(2), 91-100.
[http://dx.doi.org/10.1002/jlcr.1044]
[71]
Nakajima, S.; Takaya, H.; Nakamura, M. Iron-catalyzed methylation of arylboron compounds with iodomethane. Chem. Lett., 2017, 46(5), 711-714.
[http://dx.doi.org/10.1246/cl.170079]
[72]
Haydl, A.M.; Hartwig, J.F. Palladium-catalyzed methylation of aryl, heteroaryl, and vinyl boronate esters. Org. Lett., 2019, 21(5), 1337-1341.
[http://dx.doi.org/10.1021/acs.orglett.9b00025] [PMID: 30763109]
[73]
Castle, P.L.; Widdowson, D.A. New developments in palladium catalysed cross coupling: The coupling of alkyl iodides with alkyl Grignard reagents. Tetrahedron Lett., 1986, 27(49), 6013-6016.
[http://dx.doi.org/10.1016/S0040-4039(00)85386-1]
[74]
Hossain, K.M.; Takagi, K. Novel Rh(I)-catalyzed reaction of arylzinc compounds with methyl halides. Chem. Lett., 1999, 28(11), 1241-1242.
[http://dx.doi.org/10.1246/cl.1999.1241]
[75]
Kealey, S.; Passchier, J.; Huiban, M. Negishi coupling reactions as a valuable tool for [11C]methyl-arene formation; first proof of principle. Chem. Commun. (Camb.), 2013, 49(96), 11326-11328.
[http://dx.doi.org/10.1039/c3cc47203e] [PMID: 24158034]
[76]
Hu, L.; Liu, X.; Liao, X. Nickel-catalyzed methylation of aryl halides with deuterated methyl iodide. Angew. Chem. Int. Ed. Engl., 2016, 55(33), 9743-9747.
[http://dx.doi.org/10.1002/anie.201604406] [PMID: 27381725]
[77]
Jungk, H.; Smoot, C.R.; Brown, H.C. Kinetics of methylation and ethylation of benzene and toluene in 1,2,4-trichlorobenzene under the influence of aluminum bromide; Mechanism of the alkylation reaction. J. Am. Chem. Soc., 1956, 78(10), 2185-2190.
[http://dx.doi.org/10.1021/ja01591a045]
[78]
Hückel, W.; Wartini, M. Reduktionen in flüssigem ammoniak, XVII. 2-Methyl-naphthalin und 1.2.4-trimethyl-naphthalin. Liebigs Ann. Chem., 1965, 686(1), 40-50.
[http://dx.doi.org/10.1002/jlac.19656860106]
[79]
Hückel, W.; Wolfering, J. Reduktionen in flüssigem ammoniak, XVI. Dimethyldihydronaphtaline. Liebigs Ann. Chem., 1965, 686(1), 34-39.
[http://dx.doi.org/10.1002/jlac.19656860105]
[80]
Rabideau, P.W. Harvey, R.G. Metal-ammonia reduction. IX. A novel metal effect in the reductive methylation of naphthalene. Tetrahedron Lett., 1970, 11(48), 4139-4142.
[http://dx.doi.org/10.1016/S0040-4039(01)98687-3]
[81]
Harvey, R.G.; Fu, P.P. Rabideau. P.W. Metal-ammonia reduction. 15. Regioselectivity of reduction and reductive methylation in the fluorene series. J. Org. Chem., 1976, 41(16), 2706-2710.
[http://dx.doi.org/10.1021/jo00878a010]
[82]
Zhang, Y-Y.; Li, Y-F.; Chen, L.; Au, C-T.; Yin, S-F. A new catalytic process for the synthesis of para-xylene through benzene methylation with CH3Br. Catal. Commun., 2014, 54, 6-10.
[http://dx.doi.org/10.1016/j.catcom.2014.05.013]
[83]
Zhang, P.; Le, C.C.; MacMillan, D.W.C. Silyl radical activation of alkyl halides in metallaphotoredox catalysis: A unique pathway for cross-electrophile coupling. J. Am. Chem. Soc., 2016, 138(26), 8084-8087.
[http://dx.doi.org/10.1021/jacs.6b04818] [PMID: 27263662]
[84]
Miller, V.A.; Lovell, W.G. Methylation of olefins with methyl chloride. Ind. Eng. Chem., 1948, 40(6), 1138-1150.
[http://dx.doi.org/10.1021/ie50462a030]
[85]
Kutz, W.M.; Corson, B.B. Vapor phase methylation of aromatic hydrocarbons over solid catalysts. J. Am. Chem. Soc., 1945, 67(8), 1312-1315.
[http://dx.doi.org/10.1021/ja01224a032]
[86]
DeHaan, F.P.; Brown, H.C.; Hill, J.C. Catalytic halides. XXXII. Directive effects in aromatic substitution. 60. Kinetics of the gallium chloride-catalyzed methylation of toluene and the xylenes in excess methyl chloride. Partial rate factors for the methylation reaction. J. Am. Chem. Soc., 1969, 91(17), 4850-4854.
[http://dx.doi.org/10.1021/ja01045a045]
[87]
DeHaan, F.P.; Brown, H.C. Kinetics of the gallium chloride-catalyzed methylation of benzene in excess methyl chloride. J. Am. Chem. Soc., 1969, 91(17), 4844-4850.
[http://dx.doi.org/10.1021/ja01045a044]
[88]
Li, J.Z.; Qi, Y.; Zhang, D.Z.; Liu, Z.M. Propylene production by co-reaction of ethylene and chloromethane over SAPO-34. Stud. Surf. Sci. Catal., 2007, 170, 1578-1582.
[http://dx.doi.org/10.1016/S0167-2991(07)81033-0]
[89]
Li, J.; Qi, Y.; Liu, Z.; Liu, G.; Zhang, D. Co-reaction of ethene and methylation agents over SAPO-34 and ZSM-22. Catal. Lett., 2008, 121, 303-310.
[http://dx.doi.org/10.1007/s10562-007-9338-8]
[90]
Olah, G.A.; DeMember, J.R.; Schlosberg, R.H.; Halpern, Y. Friedel-Crafts chemistry. VII. Methyl and ethyl fluoride-antimony pentafluoride complexes. Structure and alkylating ability. Evidence for the intermediacy of the ethyl cation. J. Am. Chem. Soc., 1972, 94(1), 156-164.
[http://dx.doi.org/10.1021/ja00756a027]
[91]
Olah, G.A. Halonium ions; Wiley-Interscience: New York, 1975.
[92]
Alder, R.W.; Phillips, J.G.E. Dimethyliodonium hexafluoroantimonate. Encyclopedia of reagents for organic synthesis; Paquette, L.A., Ed.; John Wiley & Sons, 1995, 3, pp. 2087-2088.
[93]
Hämmerling, S.; Thiele, G.; Steinhauer, S.; Beckers, H.; Müller, C.; Riedel, S. A very strong methylation agent [Me2Cl]. [Al(OTeF5)4]. Angew. Chem. Int. Ed. Engl., 2019, 58(29), 9807-9810.
[http://dx.doi.org/10.1002/anie.201904007] [PMID: 31050103]
[94]
Speranza, M.; Pepe, N.; Cipollini, R. Gas-phase alkylation and halogenomethylation by free dialkylhalogenonium and halogenomethylium ions. J. Chem. Soc. Perkin Trans. II, 1979, 9, 1179-1186.
[http://dx.doi.org/10.1039/p29790001179]
[95]
Pepe, N.; Speranza, M. Gas-phase methylation of phenol and anisole by CH3XCH3+(X = F, Cl, or Br) ions. J. Chem. Soc. Perkin Trans. II, 1981, 11, 1430-1436.
[http://dx.doi.org/10.1039/p29810001430]
[96]
Stone, J.A.; Lin, M.S.; Varah, J. The gas phase reactivity of the dimethylchloronium ion with alkylbenzenes. Can. J. Chem., 1981, 59(15), 2412-2416.
[http://dx.doi.org/10.1139/v81-348]
[97]
Sen Sharma, D.K.; Kebarle, P. Chloronium ions as alkylating agents in the gas-phase ion-molecule reactions with negative temperature dependence. J. Am. Chem. Soc., 1982, 104(1), 19-24.
[http://dx.doi.org/10.1021/ja00365a005]
[98]
Colosimo, M.; Bucci, R. Gas-phase methylation of toluene with tritium labelled dimethylhalogenonium ions. Bull. Soc. Chim. Belg., 1982, 91(5), 415-415.
[http://dx.doi.org/10.1002/bscb.19820910574]
[99]
Colosimo, M.; Bucci, R. The reactions of cyclopropyl(methyl)bromonium ion with benzene in the gas phase. J. Chem. Soc. Perkin Trans. II, 1982, 4, 461-464.
[http://dx.doi.org/10.1039/p29820000461]
[100]
Colosimo, M.; Bucci, R. Gas-phase methylation of toluene by CT3YCH3+ (Y = F, CI, and Br) ions. J. Chem. Soc. Perkin Trans. II, 1983, 7, 933-936.
[http://dx.doi.org/10.1039/p29830000933]
[101]
Isern-Flecha, I.; Cooks, I.R.G.; Wood, K.V. Gas phase methylation of the dihydroxybenzenes. Int. J. Mass Spectrom. Ion Process., 1984, 62(1), 73-87.
[http://dx.doi.org/10.1016/0168-1176(84)80070-1]
[102]
Cacace, F.; De Petris, G.; Fornarini, S.; Giacomello, P. Gas-phase cationic methylation of biphenyl and methylbiphenyls. A mass spectrometric and radiolytic study. J. Am. Chem. Soc., 1986, 108(24), 7495-7501.
[http://dx.doi.org/10.1021/ja00284a010] [PMID: 22283248]
[103]
O’Hair, R.A.J.; Freitas, M.A.; Schmidt, J.A.R.; Hatley, M.E. Gas-phase methylation of the 2-hydroxypyridine/2-pyridone system by the dimethylchlorinium ion. Eur. Mass Spectrom., 1995, 1(5), 457-463.
[http://dx.doi.org/10.1255/ejms.105]
[104]
Zhdankin, V.V.; Stang, P.J. Chemistry of polyvalent iodine. Chem. Rev., 2008, 108(12), 5299-5358.
[http://dx.doi.org/10.1021/cr800332c] [PMID: 18986207]
[105]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, 2009(1), 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[106]
Singh, F.V.; Wirth, T. Hypervalent iodine-catalyzed oxidative functionalizations including stereoselective reactions. Chem. Asian J., 2014, 9(4), 950-971.
[http://dx.doi.org/10.1002/asia.201301582] [PMID: 24523252]
[107]
Yoshimura, A.; Zhdankin, V.V. Advances in synthetic applications of hypervalent iodine compounds. Chem. Rev., 2016, 116(5), 3328-3435.
[http://dx.doi.org/10.1021/acs.chemrev.5b00547] [PMID: 26861673]
[108]
Wu, T.; Zhang, H.G.; Liu, G. Organocatalyzed arylalkylation of activated alkenes via decarboxylation of PhI(O2CR)2: Efficient synthesis of oxindoles. Tetrahedron, 2012, 68(26), 5229-5233.
[http://dx.doi.org/10.1016/j.tet.2012.03.051]
[109]
Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. A room temperature decarboxylation/C-H functionalization cascade by visible-light photoredox catalysis. Chem. Commun. (Camb.), 2013, 49(50), 5672-5674.
[http://dx.doi.org/10.1039/c3cc42672f] [PMID: 23682360]
[110]
Xue, W.; Su, Y.; Wang, K-H.; Zhang, R.; Feng, Y.; Cao, L.; Huang, D.; Hu, Y. Visible-light induced decarboxylative alkylation of quinoxalin-2(1H)-ones at the C3-position. Org. Biomol. Chem., 2019, 17(27), 6654-6661.
[http://dx.doi.org/10.1039/C9OB01169B] [PMID: 31237605]
[111]
Xie, L-Y.; Jiang, L-L.; Tan, J.X.; Wang, Y.; Xu, X-Q.; Zhang, B.; Cao, Z.; He, W-M. Visible-light-initiated decarboxylative alkylation of quinoxalin-2(1H)-ones with phenyliodine(III) dicarboxylates in recyclable Ruthenium(II) catalytic system. ACS Sustain. Chem.& Eng., 2019, 7(16), 14153-14160.
[http://dx.doi.org/10.1021/acssuschemeng.9b02822]
[112]
Lu, S-C.; Li, H-S.; Gong, Y-L.; Zhang, S.P.; Zhang, J.G.; Xu, S. Combination of PhI(OAc)2 and 2-nitropropane as the source of methyl radical in room-temperature metal-free oxidative decarboxylation/cyclization: Construction of 6-methyl phenanthridines and 1-methyl isoquinolines. J. Org. Chem., 2018, 83(24), 15415-15425.
[http://dx.doi.org/10.1021/acs.joc.8b02701] [PMID: 30463409]
[113]
Kent, J.A.; Norman, R.O.C. The homolytic methylation of naphthalene. J. Chem. Soc., 1959, 1724-1726.
[http://dx.doi.org/10.1039/jr9590001724]
[114]
Cowley, B.R.; Norman, R.O.C.; Waters, W.A. A quantitative study of homolytic methylation of some monosubstituted benzenes. J. Chem. Soc., 1959, 1799-1803.
[http://dx.doi.org/10.1039/jr9590001799]
[115]
Zhang, Y.; Feng, J.; Li, C-J. Palladium-catalyzed methylation of aryl C-H bond by using peroxides. J. Am. Chem. Soc., 2008, 130(10), 2900-2901.
[http://dx.doi.org/10.1021/ja0775063] [PMID: 18269282]
[116]
Abramovitch, R.A.; Kenaschu, K. Aromatic substitution. XV. The homolytic methylation of pyridine and 3- and 4-picoline. Can. J. Chem., 1967, 45(5), 509-513.
[http://dx.doi.org/10.1139/v67-086]
[117]
Bass, K.C.; Nababsing, P. Homolytic substitution of heteroaromatic compounds. Part II. Homolytic methylation of pyridine, quinoline, and isoquinoline in acidic and non-acidic media. J. Chem. Soc. C, 1970, 16, 2169-2172.
[http://dx.doi.org/10.1039/j39700002169]
[118]
Li, G.; Yang, S.; Lv, B.; Han, Q.; Ma, X.; Sun, K.; Wang, Z.; Zhao, F.; Lv, Y.; Wu, H. Metal-free methylation of a pyridine N-oxide C-H bond by using peroxides. Org. Biomol. Chem., 2015, 13(46), 11184-11188.
[http://dx.doi.org/10.1039/C5OB01900A] [PMID: 26478119]
[119]
Guo, S.; Wang, Q.; Jiang, Y.; Yu, J.T. tert -Butyl peroxybenzoate-promoted α -methylation of 1,3-dicarbonyl compounds. J. Org. Chem., 2014, 79(22), 11285-11289.
[http://dx.doi.org/10.1021/jo502204a] [PMID: 25331571]
[120]
Rong, G.; Liu, D.; Lu, L.; Yan, H.; Zheng, Y.; Chen, J.; Mao, J. Iron-catalyzed decarboxylative methylation of α,β-unsaturated acids under ligand-free conditions. Tetrahedron, 2014, 70(34), 5033-5037.
[http://dx.doi.org/10.1016/j.tet.2014.06.014]
[121]
Bao, X.; Yokoe, T.; Ha, T.M.; Wang, Q.; Zhu, J. Copper-catalyzed methylative difunctionalization of alkenes. Nat. Commun., 2018, 9, 3725.
[http://dx.doi.org/10.1038/s41467-018-06246-6]
[122]
Dai, Q.; Yu, J.; Jiang, Y.; Guo, S.; Yang, H.; Cheng, J. The carbomethylation of arylacrylamides leading to 3-ethyl-3-substituted indolin-2-one by cascade radical addition/cyclization. Chem. Commun. (Camb.), 2014, 50(29), 3865-3867.
[http://dx.doi.org/10.1039/c4cc01053a] [PMID: 24589915]
[123]
Dai, Q.; Yu, J-T.; Feng, X.; Jiang, Y.; Yang, H. Di Cheng, J. -tert butyl peroxide-promoted sequential methylation and intramolecular aromatization of isonitriles. Adv. Synth. Catal., 2014, 356(16), 3341-3346.
[http://dx.doi.org/10.1002/adsc.201400660]
[124]
Xu, Z.; Yan, C.; Liu, Z-Q. A free-radical cascade methylation/cyclization of N-arylacrylamides and isocyanides with dicumyl peroxide. Org. Lett., 2014, 16(21), 5670-5673.
[http://dx.doi.org/10.1021/ol502738a] [PMID: 25318059]
[125]
Fan, J.H.; Zhou, M.B.; Liu, Y.; Wei, W.T.; Ouyang, X.H.; Song, R.J.; Li, J.H. Iron-catalyzed oxidative arylmethylation of activated alkenes using a peroxide as the methyl source. Synlett, 2014, 25(5), 0657-0660.
[http://dx.doi.org/10.1002/chin.201437124]
[126]
Tan, F-L.; Song, R-J.; Hu, M.; Li, J-H. Metal-free oxidative 1,2-arylmethylation cascades of n-(arylsulfonyl)acrylamides using peroxides as the methyl resource. Org. Lett., 2016, 18(13), 3198-3201.
[http://dx.doi.org/10.1021/acs.orglett.6b01419] [PMID: 27286238]
[127]
Li, Z-L.; Cai, C. Pd/Ni-catalyzed selective N-H/C-H methylation of amides by using peroxides as the methylating reagents via a radical process. Org. Chem. Front., 2017, 4(11), 2207-2210.
[http://dx.doi.org/10.1039/C7QO00625J]
[128]
Li, Z-L.; Wu, P-W.; Cai, C. Cobalt-catalyzed regioselective C-H methylation/acetoxylation of anilides: new routes for C-C and C-O bond formation. Org. Chem. Front., 2019, 6(12), 2043-2047.
[http://dx.doi.org/10.1039/C9QO00411D]
[129]
Kubo, T.; Chatani, N. Dicumyl peroxide as a methylating reagent in the Ni-catalyzed methylation of ortho C-H bonds in aromatic amides. Org. Lett., 2016, 18(7), 1698-1701.
[http://dx.doi.org/10.1021/acs.orglett.6b00658] [PMID: 26991045]
[130]
Li, Q.; Li, Y.; Hu, W.; Hu, R.; Li, G.; Lu, H. Cobalt-catalyzed C(sp2)-H methylation by using dicumyl peroxide as both the methylating reagent and hydrogen acceptor. Chemistry, 2016, 22(35), 12286-12289.
[http://dx.doi.org/10.1002/chem.201602445] [PMID: 27272646]
[131]
Minisci, F.; Galli, R.; Cecere, M.; Malatesta, V.; Caronna, T. Nucleophilic character of alkyl radicals: New syntheses by alkyl radicals generated in redox processes. Tetrahedron Lett., 1968, 9(54), 5609-5612.
[http://dx.doi.org/10.1016/S0040-4039(00)70732-5]
[132]
Minisci, F. Novel applications of free-radical reactions in preparative organic chemistry. Synthesis, 1973, 1, 1-24.
[http://dx.doi.org/10.1055/s-1973-22123]
[133]
Minisci, F. Recent aspects of homolytic aromatic substitutions. Synthetic and mechanistic organic chemistry. Topics in Current Chemistry; Eds. Minisci, F.; Hendrickson, J.B.; Wentrup, C. Springer: Heidelberg, 1976, 62, pp. 1-48.
[http://dx.doi.org/10.1007/BFb0046046]
[134]
Giordano, C.; Minisci, F.; Fortelli, V.; Vismara, E. Polar effects in the homolytic methylation of pyrimidine: orientation and polysubstitution. J. Chem. Soc. Perkin Trans. II, 1984, 2, 293-295.
[http://dx.doi.org/10.1039/p29840000293]
[135]
Minisci, F.; Vismara, E.; Fontana, F. Homolytic alkylation of protonated heteroaromatic bases by alkyl iodides, hydrogen peroxide, and dimethyl sulfoxide. J. Org. Chem., 1989, 54(22), 5224-5227.
[http://dx.doi.org/10.1021/jo00283a011]
[136]
Punta, C.; Minisci, F. Minisci reaction: a Friedel-Crafts type process with opposite reactivity and selectivity. Selective homolytic alkylation, acylation, carboxylation and carbamoylation of heterocyclic aromatic bases. Trends Heterocycl. Chem., 2008, 13, 1-68.
[137]
Duncton, M.A.J. Minisci reactions: Versatile CH-functionalizations for medicinal chemists. MedChemComm, 2011, 2(12), 1135-1161.
[http://dx.doi.org/10.1039/c1md00134e]
[138]
Rong, X.; Jin, L.; Gu, Y.; Liang, G.; Xia, Q. Transition-metal-free radical C-H methylation of quinoxalinones with TBHP. Asian J. Org. Chem., 2020, 2020, 9.
[http://dx.doi.org/10.1002/ajoc.201900758]
[139]
Dirocco, D.A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D.V.; Tudge, M. Late-stage functionalization of biologically active heterocycles through photoredox catalysis. Angew. Chem. Int. Ed. Engl., 2014, 53(19), 4802-4806.
[http://dx.doi.org/10.1002/anie.201402023] [PMID: 24677697]
[140]
Zhang, P-Z.; Li, J-A.; Zhang, L.; Shoberu, A.; Zou, J-P.; Zhang, W. Metal-free radical C-H methylation of pyrimidinones and pyridinones with dicumyl peroxide. Green Chem., 2017, 19(4), 919-923.
[http://dx.doi.org/10.1039/C6GC03355E]
[141]
Itokawa, H.; Kameyama, S.; Inaba, T.; Tazaki, T.; Haruta, R.; Kawazoe, Y.; Maeda, M. Radical methylation and radical hydroxymethylation of n -substituted quinoline derivatives. Chem. Pharm. Bull. (Tokyo), 1978, 26(4), 1015-1020.
[http://dx.doi.org/10.1248/cpb.26.1015]
[142]
Itokawa, H.; Inaba, T.; Haruta, R.; Kameyama, S. Radical methylation and radical hydroxymethylation of nicotine and quinine. Chem. Pharm. Bull. (Tokyo), 1978, 26(4), 1295-1297.
[http://dx.doi.org/10.1248/cpb.26.1295]
[143]
Maeda, M.; Nushi, K.; Kawazoe, Y. Studies on chemical alterations of nucleic acids and their components-VII: C-Alkylation of purine bases through free radical process catalyzed by ferrous ion. Tetrahedron, 1974, 30(16), 2677-2682.
[http://dx.doi.org/10.1016/S0040-4020(01)97428-9]
[144]
Araki, M.; Maeda, M.; Kawazoe, Y. Chemical alteration of nucleic acids and their components-XIII: Reaction of nucleosides with diacyl peroxides. Tetrahedron, 1976, 32(3), 337-340.
[http://dx.doi.org/10.1016/0040-4020(76)80046-4]
[145]
Zady, M.F.; Wong, J.L. Kinetics and mechanism of carbon-8 methylation of purine bases and nucleosides by methyl radical. J. Am. Chem. Soc., 1977, 99(15), 5096-5101.
[http://dx.doi.org/10.1021/ja00457a033] [PMID: 17622]
[146]
Zylber, J.; Ouazzani-Chahdi, L.; Chiaroni, A.; Riche, C. Controlled C-5 methylation of caffeine by benzoyloxy radical addition at C-8. Tetrahedron Lett., 1988, 29(17), 2055-2057.
[http://dx.doi.org/10.1016/S0040-4039(00)87833-8]
[147]
Lamoureux, G.; Agüero, C. A comparison of several modern alkylating agents. ARKIVOC, 2009, 2009(1), 251-264.
[http://dx.doi.org/10.3998/ark.5550190.0010.108]
[148]
Aricò, F.; Tundo, P. Dimethyl carbonate: A modern green reagent and solvent. Russ. Chem. Rev., 2010, 79(6), 479-489.
[http://dx.doi.org/10.1070/RC2010v079n06ABEH004113]
[149]
Kim, K.H.; Lee, E.Y. Environmentally-benign dimethyl carbonate-mediated production of chemicals and biofuels from renewable bio-oil. Energies, 2017, 10(11), 1-15.
[http://dx.doi.org/10.3390/en10111790]
[150]
Tundo, P.; Musolino, M.; Aricò, F. The reactions of dimethyl carbonate and its derivatives. Green Chem., 2018, 20(1), 28-85.
[http://dx.doi.org/10.1039/C7GC01764B]
[151]
Fiorani, G.; Perosa, A.; Selva, M. Dimethyl carbonate: A versatile reagent for a sustainable valorization of renewables. Green Chem., 2018, 20(2), 288-322.
[http://dx.doi.org/10.1039/C7GC02118F]
[152]
Chaemchuen, S.; Semyonov, O.V.; Dingemans, J.; Xu, W.; Zhuiykov, S.; Khan, A.; Verpoort, F. Progress on catalyst development for direct synthesis of dimethyl carbonate from CO2 and methanol. Chem. Africa, 2019, 2, 533-549.
[http://dx.doi.org/10.1007/s42250-019-00082-x]
[153]
Taleb, A.B.; Jenner, G. Scope of the N-alkylation of amides and the C-alkylation of malonates by methyl formate and dimethyl carbonate. J. Mol. Catal., 1993, 84(2), L131-L136.
[http://dx.doi.org/10.1016/0304-5102(93)85044-T]
[154]
Selva, M.; Marques, C.A.; Tundo, P. Selective mono-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate. J. Chem. Soc. Perkin Trans. I, 1994, 10, 1323-1328.
[http://dx.doi.org/10.1039/p19940001323]
[155]
Bomben, A.; Marques, C.A.; Selva, M.; Tundo, P. A new synthesis of 2-aryloxypropionic acids derivatives via selective mono- C -methylation of methyl aryloxyacetates and aryloxyacetonitriles with dimethyl carbonate. Tetrahedron, 1995, 51(42), 11573-11580.
[http://dx.doi.org/10.1016/0040-4020(95)00718-N]
[156]
Tundo, P.; Selva, M.; Marques, C.A. Green Chemistry; Anastas, P.; Williamson, T.C., Eds.; ACS Symposium SeriesAmerican Chemical Society: Washington, DC, 1996, pp. 81-91.
[157]
Bomben, A.; Selva, M.; Tundo, P. Dimethyl carbonate as a methylating agent. the selective mono-C-methylation of alkyl aryl sulfones. J. Chem. Res. (S), 1997, 12, 448-449.
[http://dx.doi.org/10.1039/a703510a]
[158]
Tundo, P.; Selva, M.; Bomben, A. Mono-C-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate: a general method for the synthesis of pure 2-arylpropionic acids. 2-phenylpropionic acid. Org. Synth., 1999, 76, 169-175.
[http://dx.doi.org/10.15227/orgsyn.076.0169]
[159]
Tundo, P. Selective monomethylation reactions of methylene-active compounds with dimethylcarbonate. An example of clean synthesis. Pure Appl. Chem., 2000, 72(9), 1793-1797.
[http://dx.doi.org/10.1351/pac200072091793]
[160]
Tundo, P.; Selva, M.; Perosa, A.; Memoli, S. Selective mono-C-methylations of arylacetonitriles and arylacetates with dimethylcarbonate: a mechanistic investigation. J. Org. Chem., 2002, 67(4), 1071-1077.
[http://dx.doi.org/10.1021/jo0057699] [PMID: 11846646]
[161]
Campelo, J.M.; Luna, D.; Luque, R.; Marinas, J.M.; Romero, A.A. Cyclohexene conversion and toluene methylation with dimethyl carbonate over AI-MCM-41 catalysts. Studies in Surface Science and Catalysis; Čejka, J.; Žilkovà, N.; P. Nachtigall, P., 2005, 158, pp. 1383-1390.
[162]
Xue, B.; Li, Y.; Deng, L. Selective synthesis of p-xylene by alkylation of toluene with dimethyl carbonate over MgO-modified MCM-22. Catal. Commun., 2009, 10(12), 1609-1614.
[http://dx.doi.org/10.1016/j.catcom.2009.04.028]
[163]
Algueró, M.; Bosch, J.; Castañer, J.; Castellá, J.; Castells, J.; Mestres, R.; Pascual, J.; Serratosa, F. The reaction of diazomethane with double bonds-I: Direct methylation of trisubstituted ethylenes. Tetrahedron, 1962, 18(12), 1381-1394.
[http://dx.doi.org/10.1016/S0040-4020(01)99293-2]
[164]
Argabright, P.A.; Hofmann, J.E.; Schriesheim, A. Methylation of simple unsaturated hydrocarbons by dimethyl sulfoxide. J. Org. Chem., 1965, 30(9), 3233-3235.
[http://dx.doi.org/10.1021/jo01020a525]
[165]
Russell, G.A.; Weiner, S.A. Methylation of aromatic hydrocarbons by dimethyl sulfoxide in the presence of base. J. Org. Chem., 1966, 31(1), 248-251.
[http://dx.doi.org/10.1021/jo01339a056]
[166]
Thapliyal, P.C. Selective methylation of 1, 4-quinones & coumarins using dimethyl sulfoxide. Indian J. Chem. Sect. B, 1999, 38B(6), 726-727.
[167]
Garza-Sanchez, R.A.; Patra, T.; Tlahuext-Aca, A.; Strieth-Kalthoff, F.; Glorius, F. DMSO as a switchable alkylating agent in heteroarene C-H functionalization. Chemistry, 2018, 24(40), 10064-10068.
[http://dx.doi.org/10.1002/chem.201802352] [PMID: 29750378]
[168]
Caporaso, R.; Manna, S.; Zinken, S.; Kochnev, A.R.; Lukyanenko, E.R.; Kurkin, A.V.; Antonchick, A.P. Radical trideuteromethylation with deuterated dimethyl sulfoxide in the synthesis of heterocycles and labelled building blocks. Chem. Commun. (Camb.), 2016, 52(84), 12486-12489.
[http://dx.doi.org/10.1039/C6CC07196A] [PMID: 27711354]
[169]
Zhang, R.; Shi, X.; Yan, Q.; Li, Z.; Wang, Z.; Yu, H.; Wang, X.; Qi, J.; Jiang, M. Free-radical initiated cascade methylation or trideuteromethylation of isocyanides with dimethyl sulfoxides. RSC Advances, 2017, 7(62), 38830-38833.
[http://dx.doi.org/10.1039/C7RA08484F]
[170]
Li, Z-J.; Cui, X.; Niu, L.; Ren, Y.; Bian, M.; Yang, X.; Yang, B.; Yan, Q-Q.; Zhao, J. An iron(II) chloride-promoted radical cascade methylation or α-chloro-β-methylation of N-arylacrylamides with dimethyl sulfoxide. Adv. Synth. Catal., 2017, 359(2), 246-249.
[http://dx.doi.org/10.1002/adsc.201601001]
[171]
Metzger, H.; Konig, H.; Seelert, K. Methylierung mit dimethyl-oxo-sulfoniummethylid. Tetrahedron Lett., 1964, 5(15), 867-868.
[http://dx.doi.org/10.1016/S0040-4039(00)90397-6]
[172]
Traynelis, V.J.; McSweeney, J.V., Sr Ylide methylation of aromatic nitro compounds. J. Org. Chem., 1966, 31(1), 243-247.
[http://dx.doi.org/10.1021/jo01339a055]
[173]
Kitano, M.; Ohashi, N. Synthesis of 3,6-disubstituted-2-nitrotoluenes by methylation of aromatic nitrocompounds with dimethylsulfonium methylide. Synth. Commun., 2000, 30(23), 4247-4254.
[http://dx.doi.org/10.1080/00397910008087046]
[174]
Haiss, P.; Zeller, K-P. The mechanism of the ortho-methylation of nitrobenzenes by dimethylsulfonium methylide. Eur. J. Org. Chem., 2011, 2, 295.
[http://dx.doi.org/10.1002/ejoc.201001091]
[175]
Trost, B.M. An unusual aromatic substitution reaction. Tetrahedron Lett., 1966, 7(46), 5761-5766.
[http://dx.doi.org/10.1016/S0040-4039(01)84192-7]
[176]
Liu, Y-Y.; Yang, X-H.; Huang, X-C.; Wei, W-T.; Song, R-J.; Li, J-H. Palladium-catalyzed methylation of alkynyl C(sp)-H bonds with dimethyl sulfonium ylides. J. Org. Chem., 2013, 78(20), 10421-10426.
[http://dx.doi.org/10.1021/jo401851m] [PMID: 24053535]
[177]
Simkó, D.C.; Elekes, P.; Pázmándi, V.; Novák, Z. Sulfonium salts as alkylating agents for palladium-catalyzed direct ortho-alkylation of anilides and aromatic ureas. Org. Lett., 2018, 20(3), 676-679.
[http://dx.doi.org/10.1021/acs.orglett.7b03813] [PMID: 29327592]
[178]
Li, Y.; Xue, D.; Lu, W.; Wang, C.; Liu, Z-T.; Xiao, J. DMF as carbon source: Rh-catalyzed α-methylation of ketones. Org. Lett., 2014, 16(1), 66-69.
[http://dx.doi.org/10.1021/ol403040g] [PMID: 24295498]
[179]
Xia, H-M.; Zhang, F-L.; Ye, T.; Wang, Y-F. Selective α -monomethylation by an amine-borane/N, N -dimethylformamide system as the methyl source. Angew. Chem. Int. Ed. Engl., 2018, 57(36), 11770-11775.
[http://dx.doi.org/10.1002/anie.201804794] [PMID: 29968283]
[180]
Sekiya, M.; Yanaihara, C. Formic acid reduction. III. Barbituric acid derivatives. New 5-methylation reaction of barbituric acid derivatives with formate and course of the reaction. Chem. Pharm. Bull. (Tokyo), 1969, 17(4), 738-746.
[http://dx.doi.org/10.1248/cpb.17.738]
[181]
Watanabe, Y.; Shimizu, Y.; Takatsuki, K.; Takegami, Y. Rhodium catalyzed α-methylation of ketones with carbon monoxide-water-formaldehyde system. Chem. Lett., 1978, 7(2), 215-216.
[http://dx.doi.org/10.1246/cl.1978.215]
[182]
Fujita, S-I.; Hiyoshi, N.; Takezawa, N. Vapor phase methylation of pyridine with CO-H2 over metal catalysts. Appl. Catal. A Gen., 1999, 185(2), 323-327.
[http://dx.doi.org/10.1016/S0926-860X(99)00189-1]
[183]
Fujita, S-i.; Hiyoshi, N.; Takezawa, N. Vapor phase methylation of pyridine with CO-H2 and CO2-H2 over a Ni catalyst. React. Kinet. Catal. Lett., 1999, 67(1), 9-12.
[http://dx.doi.org/10.1007/BF02475820]
[184]
Li, Y.; Yan, T.; Junge, K.; Beller, M. Catalytic methylation of C-H bonds using CO2 and H2. Angew. Chem. Int. Ed. Engl., 2014, 53(39), 10476-10480.
[http://dx.doi.org/10.1002/anie.201405779] [PMID: 25078761]
[185]
Chen, S-J.; Hua, R. InCl3·4H2O-catalyzed trioxane as a new methylating agent for multi-methylated aromatics affording hexamethyl benzene. Lett. Org. Chem., 2010, 7(1), 61-63.
[http://dx.doi.org/10.2174/157017810790533959]
[186]
Wang, P.; Nishimura, D.; Komatsu, T.; Kobiro, K. Simple, non-catalytic permethylation of catechol derivatives in subcritical and supercritical water. J. Supercrit. Fluids, 2011, 58(3), 360-364.
[http://dx.doi.org/10.1016/j.supflu.2011.07.009]
[187]
Svelle, S.; Kolboe, S.; Swang, O.; Olsbye, U. Methylation of alkenes and methylbenzenes by dimethyl ether or methanol on acidic zeolites. J. Phys. Chem. B, 2005, 109(26), 12874-12878.
[http://dx.doi.org/10.1021/jp051125z] [PMID: 16852598]
[188]
Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.; Limtrakul, J. Reaction mechanisms of the methylation of ethene with methanol and dimethyl ether over H-ZSM-5: An ONIOM study. J. Phys. Chem. C, 2009, 113(16), 6654-6662.
[http://dx.doi.org/10.1021/jp809746a]
[189]
Hill, I.M.; Al Hashimi, S.; Bhan, A. Kinetics and mechanism of olefin methylation reactions on zeolites. J. Catal., 2012, 285(1), 115-123.
[http://dx.doi.org/10.1016/j.jcat.2011.09.018]
[190]
Hill, I.; Malek, A.; Bhan, A. kinetics and mechanism of benzene, toluene, and xylene methylation over H-MFI. ACS Catal., 2013, 3(9), 1992-2001.
[http://dx.doi.org/10.1021/cs400377b]
[191]
DeLuca, M.; Kravchenko, P.; Hoffman, A.; Hibbitts, D. Mechanism and kinetics of methylating C6-C12 methylbenzenes with methanol and DME in H-MFI zeolites. ACS Catal., 2019, 9(7), 6444-6460.
[http://dx.doi.org/10.1021/acscatal.9b00650]
[192]
Cerfontain, H.; Koeberg-Telde, A. Methylation of polymethylbenzenesulfonic acids by hexamethylbenzene and pentamethylbenzenesulfonic acid in concentrated sulfuric acid. Can. J. Chem., 1988, 66(1), 162-167.
[http://dx.doi.org/10.1139/v88-025]
[193]
Alexander, R.; Bastow, T.P.; Fisher, S.J.; Kagi, R.I. Geosynthesis of organic compounds: II. Methylation of phenanthrene and alkylphenanthrenes. Geochim. Cosmochim. Acta, 1995, 59(20), 4259-4266.
[http://dx.doi.org/10.1016/0016-7037(95)00285-8]
[194]
Bastow, T.P.; Alexander, R.; Kagi, R.I. Geosynthesis of organic compounds IV. Methylation of 1,2,7-trimethylnaphthalene. Polycycl. Aromat. Compd., 1996, 9(1-4), 177-183.
[http://dx.doi.org/10.1080/10406639608031216]
[195]
Bastow, T.P.; Alexander, R.; Fisher, S.J.; Singh, R.K. van, Aarssen; Ben, G.K.; Kagi, R.I. Geosynthesis of organic compounds. Part V-Methylation of alkylnaphthalenes. Org. Geochem., 2000, 31(6), 523-534.
[http://dx.doi.org/10.1016/S0146-6380(00)00038-3]
[196]
Ellis, L.; Singh, R.K.; Alexander, R.; Kagi, R.I. Geosynthesis of organic compounds: IlI Formation of alkyltoluenes and alkylxylenes in sediments. Geochim. Cosmochim. Acta, 1995, 59(24), 5133-5140.
[http://dx.doi.org/10.1016/0016-7037(95)00352-5]
[197]
Hagen, G.P.; Hung, D.T. Selective production of 2,6-dimethylnaphthalene. US Patent 5,670,704, 1997.
[198]
Brechtelsbauer, C.; Emig, G. Transalkylation of biphenyl over zeolites: Optimizing the reaction conditions and kinetic modeling. Chem. Eng. Technol., 1997, 20(9), 582-588.
[http://dx.doi.org/10.1002/ceat.270200903]
[199]
Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Nucleophilic character of alkyl radicals-VI: A new convenient selective alkylation of heteroaromatic bases. Tetrahedron, 1971, 27(15), 3575-3579.
[http://dx.doi.org/10.1016/S0040-4020(01)97768-3]
[200]
Bertini, F.; Caronna, T.; Galli, R.; Minisci, F.; Porta, O. New processes for the homolytic alkylation of protonated heteroaromatic bases. Chim. Ind. (Milan), 1972, 54, 425-426.
[201]
Minisci, F.; Porta, O. Advances in homolytic substitution of heteroaromatic compounds. Adv. Heterocycl. Chem., 1974, 16, 123-180.
[http://dx.doi.org/10.1016/S0065-2725(08)60461-4]
[202]
Pan, F.; Lei, Z-Q.; Wang, H.; Li, H.; Sun, J.; Shi, Z.J. Rhodium(I)-catalyzed redox-economic cross-coupling of carboxylic acids with arenes directed by N-containing groups. Angew. Chem. Int. Ed. Engl., 2013, 52(7), 2063-2067.
[http://dx.doi.org/10.1002/anie.201208362] [PMID: 23307746]
[203]
Zhang, L.; Xue, X.; Xu, C.; Pan, Y.; Zhang, G.; Xu, L.; Li, H.; Shi, Z. Rhodium-catalyzed decarbonylative direct C2-arylation of indoles with aryl carboxylic acids. ChemCatChem, 2014, 6(11), 3069-3074.
[http://dx.doi.org/10.1002/cctc.201402534]
[204]
Huang, Q.; Zard, S.Z. Inexpensive radical methylation and related alkylations of heteroarenes. Org. Lett., 2018, 20(5), 1413-1416.
[http://dx.doi.org/10.1021/acs.orglett.8b00190] [PMID: 29441790]
[205]
Reinecke, M.G.; Kray, L.R. The α-methylation of pyridines by primary alcohols and raney nickel. J. Am. Chem. Soc., 1964, 86(23), 5355-5356.
[http://dx.doi.org/10.1021/ja01077a077]
[206]
Bröring, M.; Kleeberg, C. The α-methylation of pyridines by primary alcohols and raney nickel. Synth. Commun., 2008, 38(21), 3672-3682.
[207]
Manansala, C.; Tranmer, G.K. Flow synthesis of 2-Methylpyridines via. Molecules, 2015, 20(9), 15797-15806.
[http://dx.doi.org/10.3390/molecules200915797] [PMID: 26334262]
[208]
Sun, Q.; Yoshikai, N. Cobalt-catalyzed directed ortho-methylation of arenes with methyl tosylate. Org. Chem. Front., 2018, 5(14), 2214-2218.
[http://dx.doi.org/10.1039/C8QO00438B]
[209]
Xiao, T.; Li, L.; Lin, G.; Wang, Q.; Zhang, P.; Mao, Z-W.; Zhou, L. Synthesis of 6-substituted phenanthridines by metal-free, visible-light induced aerobic oxidative cyclization of 2-isocyanobiphenyls with hydrazines. Green Chem., 2014, 16(5), 2418-2421.
[http://dx.doi.org/10.1039/C3GC42517G]
[210]
Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H. Generation of alkyl radical through direct excitation of boracene-based alkylborate. J. Am. Chem. Soc., 2020, 142(22), 9938-9943.
[http://dx.doi.org/10.1021/jacs.0c04456] [PMID: 32396733]
[211]
Hatanaka, Y.; Hiyama, T. Pentacoordinate organosilicate as an alkylating reagent: Palladium catalyzed methylation of aryl halides. Tetrahedron Lett., 1988, 29(1), 97-98.
[http://dx.doi.org/10.1016/0040-4039(88)80026-1]
[212]
Uemura, T.; Yamaguchi, M.; Chatani, N. Phenyltrimethylammonium salts as methylation reagents in the nickel-catalyzed methylation of C-H bonds. Angew. Chem. Int. Ed. Engl., 2016, 55(9), 3162-3165.
[http://dx.doi.org/10.1002/anie.201511197] [PMID: 26821872]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy