Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Mini-Review Article

Carbon Nanotubes based Composites for Electromagnetic Absorption - A Review

Author(s): Navdeep Singh and Gagan Deep Aul*

Volume 1, Issue 1, 2022

Published on: 03 August, 2021

Article ID: e050821195213 Pages: 18

DOI: 10.2174/2666731201666210803110914

Abstract

Radar is a delicate detection device and since its evolution different techniques for reducing electromagnetic reflections have been discovered. This paper provides a concise review on fundamentals of absorption which reduce radar cross section from stealth target with which radar cross section affects the survivability and mission capability. The reduction of radar cross section depends on dielectric and magnetic properties of the material. The first section reviews the Radar Absorbing Material (RAM) in order to provide a background on fundamentals, various stealth techniques for absorption and its properties at microwave frequencies. The second section reviews the Multi-Walled Carbon Nanotubes and their different composites by encapsulation of other metals, polymers or epoxies into it and its microwave absorption properties were studies at microwave frequencies. Multi-Walled Carbon Nanotubes based composites for microwave absorption are reviewed on the basis of various factors; material composition, reflection loss performance, thickness, complex permittivity, complex permeability, dielectric tangent loss, magnetic tangent loss, bandwidth, and frequency band.

Keywords: Radar Absorbing Material (RAM), carbon nanotubes (CNTs), microwave absorption, reflection loss, thickness, bandwidth.

Graphical Abstract

[1]
Vinoy KJ, Jha RM. Radar Absorbing Materials: From theory to design and characterization.Springer Germany. 1996.
[2]
Uçar H. Radar cross section reduction. J Nav Sci Eng 2013; 9(2): 72-87.
[3]
Saville P. Review of radar absorbing materials defence r & d Canada – atlantic.Def Res Dev Canada. 2005; p. 62.
[4]
Retrieved from. Theory and application of rf/microwave absorbers Available from: http://www.eccosorb.com/resource-white-papers.htm
[5]
Pandey P, Dahiya M. Carbon nanotubes: Types, methods of preparation and applications. Int J Pharm Sci Res 2016; 1(4): 15-21.
[http://dx.doi.org/10.1016/j.amjsurg.2005.11.007]
[7]
Das S. A review on Carbon nano-tubes - A new era of nanotechnology. Int J Emerg Technol Adv Eng 2008; 3(3): 774-83.
[8]
Zakharychev EA, Razov EN, Semchivkov YD, et al. Radar absorbing properties of carbon nanotubes/polymer composites in the V-band. 2016. 39: pp. (2)451-6.
[http://dx.doi.org/10.1007/s12034-016-1168-0]
[9]
Kong J, Cassell AM, Dai H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 1998; 292(4–6): 567-74.
[http://dx.doi.org/10.1016/S0009-2614(98)00745-3]
[10]
Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and char-acterisation. Arab J Chem 2012; 5(1): 1-23.
[http://dx.doi.org/10.1016/j.arabjc.2010.08.022]
[11]
Kausar A, Rafique I, Muhammad B. Review of applications of polymer/carbon nanotubes and epoxy/cnt composites. Polym Plast Technol Eng 2016; 55(11): 1167-91.
[http://dx.doi.org/10.1080/03602559.2016.1163588]
[12]
Panwar R, Lee JR. Recent advances in thin and broadband layered microwave absorbing and shielding structures for commercial and defense applications. Funct Compos Struct 2019; 1(3): 032001.
[http://dx.doi.org/10.1088/2631-6331/ab2863]
[13]
Yusuf JY, Soleimani H, Sanusi YK, Adebayo LL, Sikiru S, Wahaab FA. Recent advances and prospect of cobalt based microwave absorbing materials Ceram Int 2020; 46(17)
[http://dx.doi.org/10.1016/j.ceramint.2020.07.244]
[14]
Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V. Recent advances in polymer and polymer composites for electromagnetic interference shielding: Review and future prospects. Polym Rev (Phila Pa) 2019; 59(4): 687-738.
[http://dx.doi.org/10.1080/15583724.2019.1625058]
[15]
Iqbal S, Ahmad S. Conducting polymer composites: An efficient EMI shielding material. Elsevier Inc. 2020.
[16]
Raveendran A, Sebastian MT, Raman S. Applications of microwave materials: A review. J Electron Mater 2019; 48(5): 2601-34.
[http://dx.doi.org/10.1007/s11664-019-07049-1]
[17]
Setua DK, Mordina B, Srivastava AK, Roy D, Eswara Prasad N. Carbon nanofibers-reinforced polymer nanocomposites as efficient microwave absorber. Micro Nano Technol 2020; 2020: 395-430.
[http://dx.doi.org/10.1016/B978-0-12-819904-6.00018-9]
[18]
Naito Y, Yin J, Mizumoto T. Electromagnetic wave absorbing properties of carbon‐rubber doped with ferrite. Electron Commun Japan (Part II Electron 1988; 71(7): 77-83.
[http://dx.doi.org/10.1002/ecjb.4420710710]
[19]
Naito Y, Suetake K. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Tech 1971; 19(1): 65-72.
[http://dx.doi.org/10.1109/TMTT.1971.1127446]
[20]
Balanis CA. Advanced engineering electromagnetics. second edition.. Wiley & Sons, Inc 2012.
[21]
Kasap S O. Principles of electronic materials & devices 2018.
[22]
Qi X, Xu J, Hu Q, et al. Metal-free carbon nanotubes: Synthesis, and enhanced intrinsic microwave absorption properties. Sci Rep 2016; 6: 28310.
[http://dx.doi.org/10.1038/srep28310] [PMID: 27324290]
[23]
Song WL, Zhang K-L, Chen M, et al. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon N Y 2017; 118: 86-97.
[http://dx.doi.org/10.1016/j.carbon.2017.03.016]
[24]
Green M, Chen X. Recent progress of nanomaterials for microwave absorption. J Mater 2019; 5(4): 503-41.
[http://dx.doi.org/10.1016/j.jmat.2019.07.003]
[25]
Zhao DL, Zhang JM, Li X, Shen ZM. Electromagnetic and microwave absorbing properties of Co-filled carbon nanotubes. J Alloys Compd 2010; 505(2): 712-6.
[http://dx.doi.org/10.1016/j.jallcom.2010.06.122]
[26]
Zhao DL, Li X, Shen ZM. Microwave absorbing property and complex permittivity and permeability of epoxy composites containing Ni-coated and Ag filled carbon nanotubes. Compos Sci Technol 2008; 68(14): 2902-8.
[http://dx.doi.org/10.1016/j.compscitech.2007.10.006]
[27]
Lin H, Zhu H, Guo H, Yu L. Microwave-absorbing properties of Co-filled carbon nanotubes. Mater Res Bull 2008; 43(10): 2697-702.
[http://dx.doi.org/10.1016/j.materresbull.2007.10.016]
[28]
Tianjiao B, Yan Z, Xiaofeng S, Yuexin D. A study of the electromagnetic properties of Cobalt-multiwalled carbon nanotubes (Co- MWCNTs) composites Mater Sci Eng B Solid-State Mater Adv Technol 2011; 176(12): 906-12.
[http://dx.doi.org/10.1016/j.mseb.2011.05.016]
[29]
Yi H, Wen F, Qiao L, Li F. Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles. J Appl Phys 2009; 106(10): 0-4.
[http://dx.doi.org/10.1063/1.3260234]
[30]
Deng L, Han M. Microwave absorbing performances of multiwalled carbon nanotube composites with negative permeability. Appl Phys Lett 2007; 91(2): 2005-8.
[http://dx.doi.org/10.1063/1.2755875]
[31]
Wen F, Zhang F, Liu Z. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers. J Phys Chem C 2011; 115(29): 14025-30.
[http://dx.doi.org/10.1021/jp202078p]
[32]
Zhao P-Y, Wang H-Y, Wang G-S. Enhanced electromagnetic absorption properties of commercial Ni/MWCNTs composites by adjusting dielectric properties. Front Chem 2020; 6(35): 1-17.
[http://dx.doi.org/10.1039/x0xx00000x]
[33]
Chen W, Zheng X, He X, et al. Achieving full effective microwave absorption in X band by double-layered design of glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs. Polym Test 2020; 86: 106448.
[http://dx.doi.org/10.1016/j.polymertesting.2020.106448]
[34]
Li Y, Zheng W, Zhang A, Wang D, Kong J. Effect of nickel shell thickness of Ni-microsphere on microwave absorption properties of Ni-microsphere@MWCNTs hybrids. J Magn Magn Mater 2020; 513(July): 167218.
[http://dx.doi.org/10.1016/j.jmmm.2020.167218]
[35]
Wu M, Qi X, Xie R, et al. Graphene oxide/carbon nanotubes/CoxFe3-xO4 ternary nanocomposites: Controllable synthesis and their ex-cellent microwave absorption capabilities. J Alloys Compd 2020; 813: 151996.
[http://dx.doi.org/10.1016/j.jallcom.2019.151996]
[36]
Su X, Wang J, Zhang X, et al. One-step preparation of CoFe2O4/FeCo/graphite nanosheets hybrid composites with tunable microwave absorption performance. Ceram Int 2020; 46(8): 12353-63.
[http://dx.doi.org/10.1016/j.ceramint.2020.01.286]
[37]
Peibo L, Yize S, Akinay Y. The influence of MWCNTs on microwave absorption properties of Co/C and Ba-Hexaferrite hybrid nano-composites. Synth Met 2020; 263(January): 116369.
[http://dx.doi.org/10.1016/j.synthmet.2020.116369]
[38]
Yin P, Zhang L, Wu H, et al. Two-step solvothermal synthesis of (Zn0.5Co0.5Fe2O4/Mn0.5Ni0.5Fe2o4)@C-MWCNTs hybrid with enhanced low frequency microwave absorbing performance. Nanomaterials (Basel) 2019; 9(11): 847-57.
[http://dx.doi.org/10.3390/nano9111601] [PMID: 31718034]
[39]
Yan J, Huang Y, Zhang Z, Liu X. Novel 3D microsheets contain cobalt particles and numerous interlaced carbon nanotubes for high-performance electromagnetic wave absorption. J Alloys Compd 2019; 785: 1206-14.
[http://dx.doi.org/10.1016/j.jallcom.2019.01.275]
[40]
Bhardwaj P, Kaushik S, Gairola P, Gairola SP. Designing of nickel cobalt molybdate/multiwalled carbon nanotube composites for sup-pression of electromagnetic radiation. SN Appl Sci 2019; 1(1): 113.
[http://dx.doi.org/10.1007/s42452-018-0115-7]
[41]
Tao Y, Yin P, Zhang L, et al. One-pot hydrothermal synthesis of Co3O4/MWCNTs/graphene composites with enhanced microwave ab-sorption in low frequency band. ChemNanoMat 2019; 5(6): 847-57.
[http://dx.doi.org/10.1002/cnma.201900173]
[42]
Peymanfar R, Javanshir S, Naimi-Jamal MR, Cheldavi A, Esmkhani M. Preparation and Characterization of MWCNT/Zn0.25Co0.75Fe2O4 Nanocomposite and Investigation of Its Microwave Absorption Properties at X-Band Frequency Using Silicone Rubber Polymeric Ma-trix. J Electron Mater 2019; 48: 3086-95.
[http://dx.doi.org/10.1007/s11664-019-07065-1]
[43]
Shu R, Wu Y, Li Z, et al. Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band. Compos Sci Technol 2019; 184(July): 107839.
[http://dx.doi.org/10.1016/j.compscitech.2019.107839]
[44]
Shu R, Zhang GS, Wang X, et al. Fabrication of 3D net-like MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem Eng J 2018; 337: 242-55.
[http://dx.doi.org/10.1016/j.cej.2017.12.106]
[45]
Yin Y, Liu X, Wei X, et al. Magnetically aligned co-c/mwcnts composite derived from mwcnt-interconnected zeolitic imidazolate frameworks for a lightweight and highly efficient electromagnetic wave absorber ACS Appl Mater Interfaces 2017; 9(36): 30850-61.
[http://dx.doi.org/10.1021/acsami.7b10067] [PMID: 28820573]
[46]
Shu R, Li W, Wu Y, Zhang J, Zhang G. Nitrogen-doped Co-C/MWCNTs nanocomposites derived from bimetallic metal–organic frame-works for electromagnetic wave absorption in the X-band. Chem Eng J 2019; 362: 513-24.
[http://dx.doi.org/10.1016/j.cej.2019.01.090]
[47]
Ashraf A, Tariq M, Naveed K, et al. Design of carbon/glass/epoxy-based radar absorbing composites: Microwaves attenuation proper-ties. Polym Eng Sci 2013; 1-8.
[http://dx.doi.org/10.1002/pen]
[48]
Zhang Z, Li T, Jing D, Zhuang Q. Absorption properties of radar absorbing structure laminate composites filled with carbon nanotubes. Carbon - Sci Technol 2009; 2(3): 117-9.
[49]
Lee SE, Kang JH, Kim CG. Fabrication and design of multi-layered radar absorbing structures of MWNT-filled glass/epoxy plain-weave composites. Compos Struct 2006; 76(4): 397-405.
[http://dx.doi.org/10.1016/j.compstruct.2005.11.036]
[50]
Park KY, Lee SE, Kim CG, Han JH. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich struc-tures. Compos Sci Technol 2006; 66(3–4): 576-84.
[http://dx.doi.org/10.1016/j.compscitech.2005.05.034]
[51]
Makeiff DA, Huber T. Microwave absorption by polyaniline-carbon nanotube composites. Synth Met 2006; 156(7–8): 497-505.
[http://dx.doi.org/10.1016/j.synthmet.2005.05.019]
[52]
Liu Z, Bai G, Huang Y, et al. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J Phys Chem C 2007; 111(37): 13696-700.
[http://dx.doi.org/10.1021/jp0731396]
[53]
Nam IW, Lee HK, Jang JH. Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Compos, Part A Appl Sci Manuf 2011; 42(9): 1110-8.
[http://dx.doi.org/10.1016/j.compositesa.2011.04.016]
[54]
da Silva LV, Pezzin SH, Rezende MC, Amico SC. Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials. Polym Compos 2016; 37(1): 1-8.
[http://dx.doi.org/10.1002/pc]
[55]
da Silva VA, Rezende MC. Effect of the morphology and structure on the microwave absorbing properties of multiwalled carbon nano-tube filled epoxy resin nanocomposites. Mater Res 2018; 21(5)
[http://dx.doi.org/10.1590/1980-5373-mr-2017-0977]
[56]
Zhao G-L. Study of electromagnetic wave absorption properties of carbon nanotubes-based composites 2012; 298(0704): 1-7.
[57]
Zhao T, Hou C, Zhang H, et al. Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Sci Rep 2014; 4: 5619.
[http://dx.doi.org/10.1038/srep05619] [PMID: 25007783]
[58]
Ye Z, Li Z, Roberts JA, Zhang P, Wang JT, Zhao GL. Electromagnetic wave absorption properties of carbon nanotubes-epoxy compo-sites at microwave frequencies. J Appl Phys 2010; 108(5): 1-7.
[http://dx.doi.org/10.1063/1.3477195]
[59]
Zhang H, Zeng G, Ge Y, Chen T, Hu L. Electromagnetic characteristic and microwave absorption properties of carbon nanotubes/epoxy composites in the frequency range from 2 to 6 GHz. J Appl Phys 2009; 105(5): 1-4.
[http://dx.doi.org/10.1063/1.3086630]
[60]
Lin H, Zhu H, Guo H, Yu L. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes. Mater Lett 2007; 61(16): 3547-50.
[http://dx.doi.org/10.1016/j.matlet.2007.01.077]
[61]
Silva VA, De Castro Folgueras L, Cândido GM, De Paula AL, Rezende MC, Costa ML. Nanostructured composites based on carbon nanotubes and epoxy resin for use as radar absorbing materials. Mater Res 2013; 16(6): 1299-308.
[http://dx.doi.org/10.1590/S1516-14392013005000146]
[62]
Fan Z, Luo G, Zhang Z, Zhou L, Wei F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/ polymer composites Mater Sci Eng B Solid-State Mater Adv Technol 2006; 132(1–2): 85-9.
[http://dx.doi.org/10.1016/j.mseb.2006.02.045]
[63]
Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB. Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A Mater Energy Sustain 2013; 1(32): 9138-49.
[http://dx.doi.org/10.1039/c3ta11611e]
[64]
Oh JH, Oh KS, Kim CG, Hong CS. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos, Part B Eng 2004; 35(1): 49-56.
[http://dx.doi.org/10.1016/j.compositesb.2003.08.011]
[65]
Chin WS, Lee DG. Development of the composite RAS (radar absorbing structure) for the X-band frequency range. Compos Struct 2007; 77(4): 457-65.
[http://dx.doi.org/10.1016/j.compstruct.2005.07.021]
[66]
Liu Q, Zhang D, Fan T. Electromagnetic wave absorption properties of porous carbon/Co nanocomposites. Appl Phys Lett 2008; 93(1): 013110-3.
[http://dx.doi.org/10.1063/1.2957035]
[67]
Liu T, Xie X, Pang Y, Kobayashi S. Co/C nanoparticles with low graphitization degree: A high performance microwave-absorbing materi-al. J Mater Chem C Mater Opt Electron Devices 2016; 4(8): 1727-35.
[http://dx.doi.org/10.1039/C5TC03874J]
[68]
Zhang D, Xu F, Lin J, Yang Z, Zhang M. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2-18-GHz frequency range. Carbon N Y 2014; 80(1): 103-11.
[http://dx.doi.org/10.1016/j.carbon.2014.08.044]
[69]
Pan G, Zhu J, Ma S, Sun G, Yang X. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexag-onal and cubic Co nanocrystals grown on graphene. ACS Appl Mater Interfaces 2013; 5(23): 12716-24.
[http://dx.doi.org/10.1021/am404117v] [PMID: 24266516]
[70]
Ding D, Wang Y, Li X, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption. Carbon N Y 2017; 111: 722-32.
[http://dx.doi.org/10.1016/j.carbon.2016.10.059]
[71]
Sun J, Wang L, Yang Q, Shen Y, Zhang X. Preparation of copper-cobalt-nickel ferrite/graphene oxide/polyaniline composite and its ap-plications in microwave absorption coating. Prog Org Coat 2020; 141: 105552.
[http://dx.doi.org/10.1016/j.porgcoat.2020.105552]
[72]
Wu Q, Jin H, Zhang B, et al. Facile synthesis of cobalt-doped porous composites with amorphous carbon/Zn shell for high-performance microwave absorption. Nanomaterials (Basel) 2020; 10(2): 1-14.
[http://dx.doi.org/10.3390/nano10020330] [PMID: 32075194]
[73]
Guan ZJ, Jiang JT, Yan SJ, Sun YM, Zhen L. Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting syner-getic electromagnetic loss effect. J Colloid Interface Sci 2020; 561: 687-95.
[http://dx.doi.org/10.1016/j.jcis.2019.11.045] [PMID: 31785935]
[74]
Zhu X, Wang X, Liu K, Meng M, Niaz Akhtar M. Microwave absorption characteristics of carbon foam decorated with BaFe12O19 and Ni0.5Co0.5Fe2O4 magnetic composite in X-band frequency. J Magn Magn Mater 2020; 513(May): 167258.
[http://dx.doi.org/10.1016/j.jmmm.2020.167258]
[75]
Zheng X, Li Y, Fun X. Design of efficient microwave absorbers based on cobalt-based mof/srfe10cotio19/carbon nanofibers nano-composite. J Supercond Nov Magn 2020; 33(29): 67.
[http://dx.doi.org/10.1007/s10948-020-05499-x]
[76]
Shu R, Wu Y, Zhang J, Wan Z, Li X. Facile synthesis of nitrogen-doped cobalt/cobalt oxide/carbon/reduced graphene oxide nanocompo-sites for electromagnetic wave absorption. Compos, Part B Eng 2020; 193(April): 108027.
[http://dx.doi.org/10.1016/j.compositesb.2020.108027]
[77]
Su X, Wang J, Zhang X, Huo S, Dai W, Zhang B. Synergistic effect of polyhedral iron-cobalt alloys and graphite nanosheets with excel-lent microwave absorption performance. J Alloys Compd 2020; 829: 154426.
[http://dx.doi.org/10.1016/j.jallcom.2020.154426]
[78]
Deng J, Zhang X, Zhao B, et al. Fluffy microrods to heighten the microwave absorption properties through tuning the electronic state of Co/CoO. J Mater Chem C Mater Opt Electron Devices 2018; 6(26): 7128-40.
[http://dx.doi.org/10.1039/C8TC02520G]
[79]
Feng W, Wang Y, Chen J, et al. Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: Tunable surface area and electromagnetic wave absorption properties. J Mater Chem C Mater Opt Electron Devices 2017; 6(1): 10-8.
[http://dx.doi.org/10.1039/C7TC03784H]
[80]
Lv H, Guo Y, Wu G, Ji G, Zhao Y, Xu ZJ. Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl Mater Interfaces 2017; 9(6): 5660-8.
[http://dx.doi.org/10.1021/acsami.6b16223] [PMID: 28116900]
[81]
Lv H, Zhang H, Ji G, Xu ZJ. Interface strategy to achieve tunable high frequency attenuation. ACS Appl Mater Interfaces 2016; 8(10): 6529-38.
[http://dx.doi.org/10.1021/acsami.5b12662] [PMID: 26918285]
[82]
Lv H, Zhang H, Zhao J, Ji G, Du Y. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhe-dron structures. Nano Res 2016; 9(6): 1813-22.
[http://dx.doi.org/10.1007/s12274-016-1074-1]
[83]
Xiang Z, Deng B, Huang C, Liu Z, Song Y, Lu W. Rational design of hollow nanosphere γ-Fe2O3/MWCNTs composites with enhanced electromagnetic wave absorption. J Alloys Compd 2020; 822: 153570.
[http://dx.doi.org/10.1016/j.jallcom.2019.153570]
[84]
Xu X, Ran F, Fan Z, et al. Cactus-inspired bimetallic metal-organic framework-derived 1d-2d hierarchical co/n-decorated carbon archi-tecture toward enhanced electromagnetic wave absorbing performance. ACS Appl Mater Interfaces 2019; 11(14): 13564-73.
[http://dx.doi.org/10.1021/acsami.9b00356] [PMID: 30882206]
[85]
Wang Z, Zhao G-L. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2 - 20 GHz. Open J Compos Mater 2013; 03(02): 17-23.
[http://dx.doi.org/10.4236/ojcm.2013.32003]

© 2025 Bentham Science Publishers | Privacy Policy