Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Zebrafish as a Tool in the Study of Sleep and Memory-related Disorders

Author(s): Stefani Altenhofen and Carla Denise Bonan *

Volume 20, Issue 3, 2022

Published on: 05 January, 2022

Page: [540 - 549] Pages: 10

DOI: 10.2174/1570159X19666210712141041

Price: $65

Abstract

Sleep is an evolutionarily conserved phenomenon, being an important biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or Non-Rapid Eye Movement (NREM) sleep, and desynchronized brain wave activity or Rapid Eye Movement (REM) sleep. There are many theories regarding “Why we need to sleep?”; one of them is the synaptic homeostasis. This theory suggests the role of sleep in the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength whereas it reestablishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm, and their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the “rebound sleep effect” phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.

Keywords: Zebrafish, sleep, sleep deprivation, memory, learning, neurological disorders.

Graphical Abstract

[1]
Schmidt, M.H. The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci. Biobehav. Rev., 2014, 47, 122-153.
[http://dx.doi.org/10.1016/j.neubiorev.2014.08.001] [PMID: 25117535]
[2]
Zhdanova, I.V. Sleep and its regulation in zebrafish. Rev. Neurosci., 2011, 22(1), 27-36.
[http://dx.doi.org/10.1515/rns.2011.005] [PMID: 21615259]
[3]
Graves, L.A.; Heller, E.A.; Pack, A.I.; Abel, T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn. Mem., 2003, 10(3), 168-176.
[http://dx.doi.org/10.1101/lm.48803] [PMID: 12773581]
[4]
Leibowitz, S.M.; Lopes, M.C.C.; Andersen, M.L.; Kushida, C.A. Sleep deprivation and sleepiness caused by sleep loss. Sleep Med. Clin., 2006, 1(1), 31-45.
[http://dx.doi.org/10.1016/j.jsmc.2005.11.010]
[5]
Stickgold, R.; Walker, M.P. Sleep-dependent memory triage: Evolving generalization through selective processing. Nat. Neurosci., 2013, 16(2), 139-145.
[http://dx.doi.org/10.1038/nn.3303] [PMID: 23354387]
[6]
Watson, B.O.; Buzsáki, G. Sleep, memory & brain rhythms. Daedalus, 2015, 144(1), 67-82.
[http://dx.doi.org/10.1162/DAED_a_00318] [PMID: 26097242]
[7]
Siegel, J.M. Do all animals sleep? Trends Neurosci., 2008, 31(4), 208-213.
[http://dx.doi.org/10.1016/j.tins.2008.02.001] [PMID: 18328577]
[8]
Abrams, R.M. Sleep Deprivation. Obstet. Gynecol. Clin. North Am., 2015, 42(3), 493-506.
[http://dx.doi.org/10.1016/j.ogc.2015.05.013] [PMID: 26333639]
[9]
Tononi, G.; Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 2014, 81(1), 12-34.
[http://dx.doi.org/10.1016/j.neuron.2013.12.025] [PMID: 24411729]
[10]
Campbell, S.S.; Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev., 1984, 8(3), 269-300.
[http://dx.doi.org/10.1016/0149-7634(84)90054-X] [PMID: 6504414]
[11]
Lesku, J.A.; Roth, T.C., II; Amlaner, C.J.; Lima, S.L. A phylogenetic analysis of sleep architecture in mammals: The integration of anatomy, physiology, and ecology. Am. Nat., 2006, 168(4), 441-453.
[http://dx.doi.org/10.1086/506973] [PMID: 17004217]
[12]
Aulsebrook, A.E.; Jones, T.M.; Rattenborg, N.C.; Roth, T.C., II; Lesku, J.A., 2nd.; Lesku, J.A. Sleep ecophysiology: Integrating neuroscience and ecology. Trends Ecol. Evol., 2016, 31(8), 590-599.
[http://dx.doi.org/10.1016/j.tree.2016.05.004] [PMID: 27262386]
[13]
Mukhametov, L.M.; Supin, A.Y.; Polyakova, I.G. Interhemispheric asymmetry of the electroencephalographic sleep patterns in dolphins. Brain Res., 1977, 134(3), 581-584.
[http://dx.doi.org/10.1016/0006-8993(77)90835-6] [PMID: 902119]
[14]
Rattenborg, N.C.; van der Meij, J.; Beckers, G.J.L.; Lesku, J.A. Local aspects of ain vian non-REM and REM sleep. Front. Neurosci., 2019, 13, 567.
[http://dx.doi.org/10.3389/fnins.2019.00567] [PMID: 31231182]
[15]
de Abreu, M.S.; Giacomini, A.C.V.V.; Genario, R.; Rech, N.; Carboni, J.; Lakstygal, A.M.; Amstislavskaya, T.G.; Demin, K.A.; Leonard, B.E.; Vlok, M.; Harvey, B.H.; Piato, A.; Barcellos, L.J.G.; Kalueff, A.V. Non-pharmacological and pharmacological approaches for psychiatric disorders: Re-appraisal and insights from zebrafish models. Pharmacol. Biochem. Behav., 2020, 193 ,172928
[http://dx.doi.org/10.1016/j.pbb.2020.172928] [PMID: 32289330]
[16]
Espino-Saldaña, A.E.; Rodríguez-Ortiz, R.; Pereida-Jaramillo, E.; Martínez-Torres, A. Modeling neuronal diseases in zebrafish in the Era of CRISPR. Curr. Neuropharmacol., 2020, 18(2), 136-152.
[http://dx.doi.org/10.2174/1570159X17666191001145550] [PMID: 31573887]
[17]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[18]
Menke, A.L.; Spitsbergen, J.M.; Wolterbeek, A.P.; Woutersen, R.A. Normal anatomy and histology of the adult zebrafish. Toxicol. Pathol., 2011, 39(5), 759-775.
[http://dx.doi.org/10.1177/0192623311409597] [PMID: 21636695]
[19]
Mueller, T.; Dong, Z.; Berberoglu, M.A.; Guo, S. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res., 2011, 1381, 95-105.
[http://dx.doi.org/10.1016/j.brainres.2010.12.089] [PMID: 21219890]
[20]
Lush, M.E.; Piotrowski, T. Sensory hair cell regeneration in the zebrafish lateral line. Dev. Dyn., 2014, 243(10), 1187-1202.
[http://dx.doi.org/10.1002/dvdy.24167] [PMID: 25045019]
[21]
Wullimann, M.F.; Mueller, T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol., 2004, 475(2), 143-162.
[http://dx.doi.org/10.1002/cne.20183] [PMID: 15211457]
[22]
Rico, E.P.; Rosemberg, D.B.; Seibt, K.J.; Capiotti, K.M.; Da Silva, R.S.; Bonan, C.D. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol. Teratol., 2011, 33(6), 608-617.
[http://dx.doi.org/10.1016/j.ntt.2011.07.007] [PMID: 21907791]
[23]
Stewart, A.M.; Ullmann, J.F.; Norton, W.H.; Parker, M.O.; Brennan, C.H.; Gerlai, R.; Kalueff, A.V. Molecular psychiatry of zebrafish. Mol. Psychiatry, 2015, 20(1), 2-17.
[http://dx.doi.org/10.1038/mp.2014.128] [PMID: 25349164]
[24]
Li, Y.; Chen, T.; Miao, X.; Yi, X.; Wang, X.; Zhao, H.; Lee, S.M.; Zheng, Y. Zebrafish: A promising in vivo model for assessing the delivery of natural products, fluorescence dyes and drugs across the blood-brain barrier. Pharmacol. Res., 2017, 125, 246-257.
[http://dx.doi.org/10.1016/j.phrs.2017.08.017]
[25]
Saleem, S.; Kannan, R.R. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov., 2018, 4, 45.
[http://dx.doi.org/10.1038/s41420-018-0109-7] [PMID: 30302279]
[26]
Chong, M.; Drapeau, P. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish. Dev. Neurobiol., 2007, 67(7), 933-947.
[http://dx.doi.org/10.1002/dneu.20398] [PMID: 17506502]
[27]
Oh, J.; Petersen, C.; Walsh, C.M.; Bittencourt, J.C.; Neylan, T.C.; Grinberg, L.T. The role of co-neurotransmitters in sleep and wake regulation. Mol. Psychiatry, 2019, 24(9), 1284-1295.
[http://dx.doi.org/10.1038/s41380-018-0291-2] [PMID: 30377299]
[28]
Ballinger, E.C.; Ananth, M.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron, 2016, 91(6), 1199-1218.
[http://dx.doi.org/10.1016/j.neuron.2016.09.006] [PMID: 27657448]
[29]
Borodovitsyna, O.; Flamini, M.; Chandler, D. Noradrenergic modulation of cognition in health and disease. Neural Plast., 2017. ,6031478
[http://dx.doi.org/10.1155/2017/6031478] [PMID: 28596922]
[30]
Tanaka, S.; Toyoda, H.; Honda, Y.; Seki, Y.; Sakurai, T.; Honda, K.; Kodama, T. Hypocretin/orexin prevents recovery from sickness. Biomed. Rep., 2015, 3(5), 648-650.
[http://dx.doi.org/10.3892/br.2015.491] [PMID: 26405539]
[31]
Anaclet, C.; Pedersen, N.P.; Ferrari, L.L.; Venner, A.; Bass, C.E.; Arrigoni, E.; Fuller, P.M. Basal forebrain control of wakefulness and cortical rhythms. Nat. Commun., 2015, 6, 8744.
[http://dx.doi.org/10.1038/ncomms9744] [PMID: 26524973]
[32]
Chen, A.; Chiu, C.N.; Mosser, E.A.; Kahn, S.; Spence, R.; Prober, D.A. QRFP and its receptors regulate locomotor activity and sleep in zebrafish. J. Neurosci., 2016, 36(6), 1823-1840.
[http://dx.doi.org/10.1523/JNEUROSCI.2579-15.2016] [PMID: 26865608]
[33]
Watson, C.J.; Lydic, R.; Baghdoyan, H.A. Sleep duration varies as a function of glutamate and GABA in rat pontine reticular formation. J. Neurochem., 2011, 118(4), 571-580.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07350.x] [PMID: 21679185]
[34]
Gompf, H.S.; Anaclet, C. The neuroanatomy and neurochemistry of sleep-wake control. Curr Opin Physiol, 2020, 15, 143-151.
[http://dx.doi.org/10.1016/j.cophys.2019.12.012] [PMID: 32647777]
[35]
Kim, T.; Thankachan, S.; McKenna, J.T.; McNally, J.M.; Yang, C.; Choi, J.H.; Chen, L.; Kocsis, B.; Deisseroth, K.; Strecker, R.E.; Basheer, R.; Brown, R.E.; McCarley, R.W. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proc. Natl. Acad. Sci. USA, 2015, 112(11), 3535-3540.
[http://dx.doi.org/10.1073/pnas.1413625112] [PMID: 25733878]
[36]
Anaclet, C.; Zhang, M.; Zhao, C.; Buda, C.; Seugnet, L.; Lin, J.S. Effects of GF-015535-00, a novel α1 GABA A receptor ligand, on the sleep-wake cycle in mice, with reference to zolpidem. Sleep (Basel), 2012, 35(1), 103-111.
[http://dx.doi.org/10.5665/sleep.1596] [PMID: 22215924]
[37]
Anaclet, C.; Ferrari, L.; Arrigoni, E.; Bass, C.E.; Saper, C.B.; Lu, J.; Fuller, P.M. The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat. Neurosci., 2014, 17(9), 1217-1224.
[http://dx.doi.org/10.1038/nn.3789] [PMID: 25129078]
[38]
Krueger, J.M.; Clinton, J.M.; Winters, B.D.; Zielinski, M.R.; Taishi, P.; Jewett, K.A.; Davis, C.J. Involvement of cytokines in slow wave sleep.Prog. Brain Res; , 2011, 193, pp. 39-47.
[http://dx.doi.org/10.1016/B978-0-444-53839-0.00003-X] [PMID: 21854954]
[39]
Brzezinski, A.; Vangel, M.G.; Wurtman, R.J.; Norrie, G.; Zhdanova, I.; Ben-Shushan, A.; Ford, I. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med. Rev., 2005, 9(1), 41-50.
[http://dx.doi.org/10.1016/j.smrv.2004.06.004] [PMID: 15649737]
[40]
Golombek, D.A.; Pandi-Perumal, S.R.; Brown, G.M.; Cardinali, D.P. Some implications of melatonin use in chronopharmacology of insomnia. Eur. J. Pharmacol., 2015, 762, 42-48.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.032] [PMID: 26004526]
[41]
Cardinali, D.P.; Golombek, D.A.; Rosenstein, R.E.; Brusco, L.I.; Vigo, D.E. Assessing the efficacy of melatonin to curtail benzodiazepine/Z drug abuse. Pharmacol. Res., 2016, 109, 12-23.
[http://dx.doi.org/10.1016/j.phrs.2015.08.016] [PMID: 26438969]
[42]
Auld, F.; Maschauer, E.L.; Morrison, I.; Skene, D.J.; Riha, R.L. Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev., 2017, 34, 10-22.
[http://dx.doi.org/10.1016/j.smrv.2016.06.005] [PMID: 28648359]
[43]
Gonciarz, M.; Gonciarz, Z.; Bielanski, W.; Mularczyk, A.; Konturek, P.C.; Brzozowski, T.; Konturek, S.J. The effects of long-term melatonin treatment on plasma liver enzymes levels and plasma concentrations of lipids and melatonin in patients with nonalcoholic steatohepatitis: A pilot study. J. Physiol. Pharmacol., 2012, 63(1), 35-40.
[PMID: 22460459]
[44]
Celinski, K.; Konturek, P.C.; Slomka, M.; Cichoz-Lach, H.; Brzozowski, T.; Konturek, S.J.; Korolczuk, A. Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease-14 months follow up. J. Physiol. Pharmacol., 2014, 65(1), 75-82.
[PMID: 24622832]
[45]
Ganie, S.A.; Dar, T.A.; Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A. Melatonin: a potential anti-oxidant therapeutic agent for mitochondrial dysfunctions and related disorders. Rejuvenation Res., 2016, 19(1), 21-40.
[http://dx.doi.org/10.1089/rej.2015.1704] [PMID: 26087000]
[46]
Carrillo-Vico, A.; Lardone, P.J.; Alvarez-Sánchez, N.; Rodríguez-Rodríguez, A.; Guerrero, J.M. Melatonin: Buffering the immune system. Int. J. Mol. Sci., 2013, 14(4), 8638-8683.
[http://dx.doi.org/10.3390/ijms14048638] [PMID: 23609496]
[47]
Esteban, M.Á.; Cuesta, A.; Chaves-Pozo, E.; Meseguer, J. Influence of melatonin on the immune system of fish: A review. Int. J. Mol. Sci., 2013, 14(4), 7979-7999.
[http://dx.doi.org/10.3390/ijms14047979] [PMID: 23579958]
[48]
Yousaf, F.; Seet, E.; Venkatraghavan, L.; Abrishami, A.; Chung, F. Efficacy and safety of melatonin as an anxiolytic and analgesic in the perioperative period: A qualitative systematic review of randomized trials. Anesthesiology, 2010, 113(4), 968-976.
[http://dx.doi.org/10.1097/ALN.0b013e3181e7d626] [PMID: 20823763]
[49]
Madsen, M.T.; Isbrand, A.; Andersen, U.O.; Andersen, L.J.; Taskiran, M.; Simonsen, E.; Gögenur, I. The effect of Melatonin on depressive symptoms, anxiety, circadian and sleep disturbances in patients after acute coronary syndrome (MEDACIS): Study protocol for a randomized controlled trial. Trials, 2017, 18(1), 81.
[http://dx.doi.org/10.1186/s13063-017-1806-x] [PMID: 28228148]
[50]
Lazarus, M.; Oishi, Y.; Bjorness, T.E.; Greene, R.W. Gating and the need for sleep: Dissociable effects of adenosine A1 and A2A receptors. Front. Neurosci., 2019, 13, 740.
[http://dx.doi.org/10.3389/fnins.2019.00740] [PMID: 31379490]
[51]
Basheer, R.; Strecker, R.E.; Thakkar, M.M.; McCarley, R.W. Adenosine and sleep-wake regulation. Prog. Neurobiol., 2004, 73(6), 379-396.
[http://dx.doi.org/10.1016/j.pneurobio.2004.06.004] [PMID: 15313333]
[52]
Huang, Z.L.; Urade, Y.; Hayaishi, O. The role of adenosine in the regulation of sleep. Curr. Top. Med. Chem., 2011, 11(8), 1047-1057.
[http://dx.doi.org/10.2174/156802611795347654] [PMID: 21401496]
[53]
Feldberg, W.; Sherwood, S.L. Injections of drugs into the lateral ventricle of the cat. J. Physiol., 1954, 123(1), 148-167.
[http://dx.doi.org/10.1113/jphysiol.1954.sp005040] [PMID: 13131253]
[54]
Oishi, Y.; Huang, Z.L.; Fredholm, B.B.; Urade, Y.; Hayaishi, O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system in via A1 receptors and promotes non-rapid eye movement sleep. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19992-19997.
[http://dx.doi.org/10.1073/pnas.0810926105] [PMID: 19066225]
[55]
Urade, Y.; Eguchi, N.; Qu, W.M.; Sakata, M.; Huang, Z.L.; Chen, J.F.; Schwarzschild, M.A.; Fink, J.S.; Hayaishi, O. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology, 2003, 61(11)(Suppl. 6), S94-S96.
[http://dx.doi.org/10.1212/01.WNL.0000095222.41066.5E] [PMID: 14663019]
[56]
Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol. Rev., 2011, 63(1), 1-34.
[http://dx.doi.org/10.1124/pr.110.003285] [PMID: 21303899]
[57]
Schneider, L. Neurobiology and neuroprotective benefits of sleep. Continuum (Minneap. Minn.), 2020, 26(4), 848-870.
[http://dx.doi.org/10.1212/CON.0000000000000878] [PMID: 32756225]
[58]
Liu, Z.; Wang, F.; Tang, M.; Zhao, Y.; Wang, X. Amyloid β and tau are involved in sleep disorder in Alzheimer’s disease by orexin A and adenosine A(1) receptor. Int. J. Mol. Med., 2019, 43(1), 435-442.
[PMID: 30365112]
[59]
Gillin, J.C.; Jernajczyk, W.; Valladares-Neto, D.C.; Golshan, S.; Lardon, M.; Stahl, S.M. Inhibition of REM sleep by ipsapirone, a 5HT1A agonist, in normal volunteers. Psychopharmacology (Berl.), 1994, 116(4), 433-436.
[http://dx.doi.org/10.1007/BF02247474] [PMID: 7701045]
[60]
Wichniak, A.; Wierzbicka, A.; Walęcka, M.; Jernajczyk, W. Effects of antidepressants on sleep. Curr. Psychiatry Rep., 2017, 19(9), 63.
[http://dx.doi.org/10.1007/s11920-017-0816-4] [PMID: 28791566]
[61]
Argyropoulos, S.V.; Wilson, S.J. Sleep disturbances in depression and the effects of antidepressants. Int. Rev. Psychiatry, 2005, 17(4), 237-245.
[http://dx.doi.org/10.1080/09540260500104458] [PMID: 16194795]
[62]
Schierenbeck, T.; Riemann, D.; Berger, M.; Hornyak, M. Effect of illicit recreational drugs upon sleep: cocaine, ecstasy and marijuana. Sleep Med. Rev., 2008, 12(5), 381-389.
[http://dx.doi.org/10.1016/j.smrv.2007.12.004] [PMID: 18313952]
[63]
Thompson, P.M.; Gillin, J.C.; Golshan, S.; Irwin, M. Polygraphic sleep measures differentiate alcoholics and stimulant abusers during short-term abstinence. Biol. Psychiatry, 1995, 38(12), 831-836.
[http://dx.doi.org/10.1016/0006-3223(95)00070-4] [PMID: 8750043]
[64]
Drummond, S.P.; Gillin, J.C.; Smith, T.L.; DeModena, A. The sleep of abstinent pure primary alcoholic patients: Natural course and relationship to relapse. Alcohol. Clin. Exp. Res., 1998, 22(8), 1796-1802.
[http://dx.doi.org/10.1097/00000374-199811000-00026] [PMID: 9835298]
[65]
Gann, H.; van Calker, D.; Feige, B.; Cloot, O.; Brück, R.; Berger, M.; Riemann, D. Polysomnographic comparison between patients with primary alcohol dependency during subacute withdrawal and patients with a major depression. Eur. Arch. Psychiatry Clin. Neurosci., 2004, 254(4), 263-271.
[http://dx.doi.org/10.1007/s00406-004-0494-1] [PMID: 15309398]
[66]
Zhang, L.; Samet, J.; Caffo, B.; Punjabi, N.M. Cigarette smoking and nocturnal sleep architecture. Am. J. Epidemiol., 2006, 164(6), 529-537.
[http://dx.doi.org/10.1093/aje/kwj231] [PMID: 16829553]
[67]
Soldatos, C.R.; Kales, J.D.; Scharf, M.B.; Bixler, E.O.; Kales, A. Cigarette smoking associated with sleep difficulty. Science, 1980, 207(4430), 551-553.
[http://dx.doi.org/10.1126/science.7352268] [PMID: 7352268]
[68]
Mehtry, V.; Nizamie, S.H.; Parvez, N.; Pradhan, N. Sleep profile in opioid dependence: A polysomnographic case-control study. J. Clin. Neurophysiol., 2014, 31(6), 517-522.
[http://dx.doi.org/10.1097/WNP.0000000000000117] [PMID: 25462136]
[69]
Killgore, W.D. Effects of sleep deprivation on cognition.Prog.Brain Res; , 2010, 185, pp. 105-129.
[http://dx.doi.org/10.1016/B978-0-444-53702-7.00007-5] [PMID: 21075236]
[70]
Van Dongen, H.P.; Bender, A.M.; Dinges, D.F. Systematic individual differences in sleep homeostatic and circadian rhythm contributions to neurobehavioral impairment during sleep deprivation. Accid. Anal. Prev., 2012, 45(Suppl.), 11-16.
[http://dx.doi.org/10.1016/j.aap.2011.09.018] [PMID: 22239924]
[71]
Barlow, I.L.; Rihel, J. Zebrafish sleep: From geneZZZ to neuronZZZ. Curr. Opin. Neurobiol., 2017, 44, 65-71.
[http://dx.doi.org/10.1016/j.conb.2017.02.009] [PMID: 28391130]
[72]
Xie, L.; Kang, H.; Xu, Q.; Chen, M.J.; Liao, Y.; Thiyagarajan, M.; O’Donnell, J.; Christensen, D.J.; Nicholson, C.; Iliff, J.J.; Takano, T.; Deane, R.; Nedergaard, M. Sleep drives metabolite clearance from the adult brain. Science, 2013, 342(6156), 373-377.
[http://dx.doi.org/10.1126/science.1241224] [PMID: 24136970]
[73]
Eide, P.K.; Vinje, V.; Pripp, A.H.; Mardal, K.A.; Ringstad, G. Sleep deprivation impairs molecular clearance from the human brain. Brain, 2021, 144(3), 863-874.
[http://dx.doi.org/10.1093/brain/awaa443] [PMID: 33829232]
[74]
Andersen, M.L.; Antunes, I.B.; Silva, A.; Alvarenga, T.A.; Baracat, E.C.; Tufik, S. Effects of sleep loss on sleep architecture in Wistar rats: Gender-specific rebound sleep. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2008, 32(4), 975-983.
[http://dx.doi.org/10.1016/j.pnpbp.2008.01.007] [PMID: 18276051]
[75]
Marshall, L.; Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci., 2007, 11(10), 442-450.
[http://dx.doi.org/10.1016/j.tics.2007.09.001] [PMID: 17905642]
[76]
Shein-Idelson, M.; Ondracek, J.M.; Liaw, H.P.; Reiter, S.; Laurent, G. Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science, 2016, 352(6285), 590-595.
[http://dx.doi.org/10.1126/science.aaf3621] [PMID: 27126045]
[77]
van Alphen, B.; Yap, M.H.; Kirszenblat, L.; Kottler, B.; van Swinderen, B. A dynamic deep sleep stage in Drosophila. J. Neurosci., 2013, 33(16), 6917-6927.
[http://dx.doi.org/10.1523/JNEUROSCI.0061-13.2013] [PMID: 23595750]
[78]
Zhdanova, I.V. Sleep in zebrafish. Zebrafish, 2006, 3(2), 215-226.
[http://dx.doi.org/10.1089/zeb.2006.3.215] [PMID: 18248262]
[79]
Yokogawa, T.; Marin, W.; Faraco, J.; Pézeron, G.; Appelbaum, L.; Zhang, J.; Rosa, F.; Mourrain, P.; Mignot, E. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol., 2007, 5(10) ,e277
[http://dx.doi.org/10.1371/journal.pbio.0050277] [PMID: 17941721]
[80]
del Pozo, A.; Sánchez-Férez, J.A.; Sánchez-Vázquez, F.J. Circadian rhythms of self-feeding and locomotor activity in zebrafish (Danio Rerio). Chronobiol. Int., 2011, 28(1), 39-47.
[http://dx.doi.org/10.3109/07420528.2010.530728] [PMID: 21182403]
[81]
Lee, D.A.; Liu, J.; Hong, Y.; Lane, J.M.; Hill, A.J.; Hou, S.L.; Wang, H.; Oikonomou, G.; Pham, U.; Engle, J.; Saxena, R.; Prober, D.A. Evolutionarily conserved regulation of sleep by epidermal growth factor receptor signaling. Sci. Adv., 2019, 5(11) ,eaax4249
[http://dx.doi.org/10.1126/sciadv.aax4249] [PMID: 31763451]
[82]
Sorribes, A.; Thornorsteinsson, H.; Arnardóttir, H.; Jóhannesdóttir, I.Þ.; Sigurgeirsson, B.; de Polavieja, G.G.; Karlsson, K.Æ. The ontogeny of sleep-wake cycles in zebrafish: A comparison to humans. Front. Neural Circuits, 2013, 7, 178.
[http://dx.doi.org/10.3389/fncir.2013.00178] [PMID: 24312015]
[83]
Leung, L.C.; Wang, G.X.; Madelaine, R.; Skariah, G.; Kawakami, K.; Deisseroth, K.; Urban, A.E.; Mourrain, P. Neural signatures of sleep in zebrafish. Nature, 2019, 571(7764), 198-204.
[http://dx.doi.org/10.1038/s41586-019-1336-7] [PMID: 31292557]
[84]
Cadena, P.G.; Cadena, M.R.S.; Sarmah, S.; Marrs, J.A. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reprod. Toxicol., 2020, 96, 249-257.
[http://dx.doi.org/10.1016/j.reprotox.2020.07.013] [PMID: 32763456]
[85]
Pinheiro-da-Silva, J.; Silva, P.F.; Nogueira, M.B.; Luchiari, A.C. Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio). Anim. Cogn., 2017, 20(2), 159-169.
[http://dx.doi.org/10.1007/s10071-016-1034-x] [PMID: 27646310]
[86]
Pinheiro-da-Silva, J.; Tran, S.; Silva, P.F.; Luchiari, A.C. Good night, sleep tight: The effects of sleep deprivation on spatial associative learning in zebrafish. Pharmacol. Biochem. Behav., 2017, 159, 36-47.
[http://dx.doi.org/10.1016/j.pbb.2017.06.011] [PMID: 28652199]
[87]
Pinheiro-da-Silva, J.; Tran, S.; Luchiari, A.C. Sleep deprivation impairs cognitive performance in zebrafish: A matter of fact? Behav. Processes, 2018, 157, 656-663.
[http://dx.doi.org/10.1016/j.beproc.2018.04.004] [PMID: 29656092]
[88]
Guo, S.; Brush, J.; Teraoka, H.; Goddard, A.; Wilson, S.W.; Mullins, M.C.; Rosenthal, A. Development of noradrenergic neurons in the zebrafish hindbrain requires BMP, FGF8, and the homeodomain protein soulless/Phox2a. Neuron, 1999, 24(3), 555-566.
[http://dx.doi.org/10.1016/S0896-6273(00)81112-5] [PMID: 10595509]
[89]
Holzschuh, J.; Ryu, S.; Aberger, F.; Driever, W. Dopamine transporter expression distinguishes dopaminergic neurons from other catecholaminergic neurons in the developing zebrafish embryo. Mech. Dev., 2001, 101(1-2), 237-243.
[http://dx.doi.org/10.1016/S0925-4773(01)00287-8] [PMID: 11231083]
[90]
Rink, E.; Wullimann, M.F. Development of the catecholaminergic system in the early zebrafish brain: An immunohistochemical study. Brain Res. Dev. Brain Res., 2002, 137(1), 89-100.
[http://dx.doi.org/10.1016/S0165-3806(02)00354-1] [PMID: 12128258]
[91]
McLean, D.L.; Fetcho, J.R. Relationship of tyrosine hydroxylase and serotonin immunoreactivity to sensorimotor circuitry in larval zebrafish. J. Comp. Neurol., 2004, 480(1), 57-71.
[http://dx.doi.org/10.1002/cne.20281] [PMID: 15514919]
[92]
Rink, E.; Guo, S. The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience, 2004, 127(1), 147-154.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.004] [PMID: 15219677]
[93]
Panula, P.; Chen, Y.C.; Priyadarshini, M.; Kudo, H.; Semenova, S.; Sundvik, M.; Sallinen, V. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis., 2010, 40(1), 46-57.
[http://dx.doi.org/10.1016/j.nbd.2010.05.010] [PMID: 20472064]
[94]
Lillesaar, C.; Stigloher, C.; Tannhäuser, B.; Wullimann, M.F.; Bally-Cuif, L. Axonal projections originating from raphe serotonergic neurons in the developing and adult zebrafish, Danio rerio, using transgenics to visualize raphe-specific pet1 expression. J. Comp. Neurol., 2009, 512(2), 158-182.
[http://dx.doi.org/10.1002/cne.21887] [PMID: 19003874]
[95]
Sallinen, V.; Sundvik, M.; Reenilä, I.; Peitsaro, N.; Khrustalyov, D.; Anichtchik, O.; Toleikyte, G.; Kaslin, J.; Panula, P. Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J. Neurochem., 2009, 109(2), 403-415.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05986.x] [PMID: 19222706]
[96]
Kaslin, J.; Nystedt, J.M.; Ostergård, M.; Peitsaro, N.; Panula, P. The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J. Neurosci., 2004, 24(11), 2678-2689.
[http://dx.doi.org/10.1523/JNEUROSCI.4908-03.2004] [PMID: 15028760]
[97]
Faraco, J.H.; Appelbaum, L.; Marin, W.; Gaus, S.E.; Mourrain, P.; Mignot, E. Regulation of hypocretin (orexin) expression in embryonic zebrafish. J. Biol. Chem., 2006, 281(40), 29753-29761.
[http://dx.doi.org/10.1074/jbc.M605811200] [PMID: 16867991]
[98]
Prober, D.A.; Rihel, J.; Onah, A.A.; Sung, R.J.; Schier, A.F. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci., 2006, 26(51), 13400-13410.
[http://dx.doi.org/10.1523/JNEUROSCI.4332-06.2006] [PMID: 17182791]
[99]
Renier, C.; Faraco, J.H.; Bourgin, P.; Motley, T.; Bonaventure, P.; Rosa, F.; Mignot, E. Genomic and functional conservation of sedative-hypnotic targets in the zebrafish. Pharmacogenet. Genomics, 2007, 17(4), 237-253.
[http://dx.doi.org/10.1097/FPC.0b013e3280119d62] [PMID: 17496723]
[100]
Berridge, C.W.; Schmeichel, B.E.; España, R.A. Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev., 2012, 16(2), 187-197.
[http://dx.doi.org/10.1016/j.smrv.2011.12.003] [PMID: 22296742]
[101]
Carter, M.E.; Brill, J.; Bonnavion, P.; Huguenard, J.R.; Huerta, R.; de Lecea, L. Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc. Natl. Acad. Sci. USA, 2012, 109(39), E2635-E2644.
[http://dx.doi.org/10.1073/pnas.1202526109] [PMID: 22955882]
[102]
Chiu, C.N.; Rihel, J.; Lee, D.A.; Singh, C.; Mosser, E.A.; Chen, S.; Sapin, V.; Pham, U.; Engle, J.; Niles, B.J.; Montz, C.J.; Chakravarthy, S.; Zimmerman, S.; Salehi-Ashtiani, K.; Vidal, M.; Schier, A.F.; Prober, D.A. A zebrafish genetic screen identifies neuromedin U as a regulator of sleep/sake states. Neuron, 2016, 89(4), 842-856.
[http://dx.doi.org/10.1016/j.neuron.2016.01.007] [PMID: 26889812]
[103]
Rihel, J.; Prober, D.A.; Arvanites, A.; Lam, K.; Zimmerman, S.; Jang, S.; Haggarty, S.J.; Kokel, D.; Rubin, L.L.; Peterson, R.T.; Schier, A.F. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science, 2010, 327(5963), 348-351.
[http://dx.doi.org/10.1126/science.1183090] [PMID: 20075256]
[104]
Gandhi, A.V.; Mosser, E.A.; Oikonomou, G.; Prober, D.A. Melatonin is required for the circadian regulation of sleep. Neuron, 2015, 85(6), 1193-1199.
[http://dx.doi.org/10.1016/j.neuron.2015.02.016] [PMID: 25754820]
[105]
Ben-Moshe Livne, Z.; Alon, S.; Vallone, D.; Bayleyen, Y.; Tovin, A.; Shainer, I.; Nisembaum, L.G.; Aviram, I.; Smadja-Storz, S.; Fuentes, M.; Falcón, J.; Eisenberg, E.; Klein, D.C.; Burgess, H.A.; Foulkes, N.S.; Gothilf, Y. Genetically blocking the zebrafish pineal clock affects circadian behavior. PLoS Genet., 2016, 12(11) ,e1006445
[http://dx.doi.org/10.1371/journal.pgen.1006445] [PMID: 27870848]
[106]
Takayasu, S.; Sakurai, T.; Iwasaki, S.; Teranishi, H.; Yamanaka, A.; Williams, S.C.; Iguchi, H.; Kawasawa, Y.I.; Ikeda, Y.; Sakakibara, I.; Ohno, K.; Ioka, R.X.; Murakami, S.; Dohmae, N.; Xie, J.; Suda, T.; Motoike, T.; Ohuchi, T.; Yanagisawa, M.; Sakai, J. A neuropeptide ligand of the G protein-coupled receptor GPR103 regulates feeding, behavioral arousal, and blood pressure in mice. Proc. Natl. Acad. Sci. USA, 2006, 103(19), 7438-7443.
[http://dx.doi.org/10.1073/pnas.0602371103] [PMID: 16648250]
[107]
Oikonomou, G.; Altermatt, M.; Zhang, R-W.; Coughlin, G.M.; Montz, C.; Gradinaru, V.; Prober, D.A. The serotonergic raphe promote sleep in zebrafish and mice. Neuron, 2019, 103(4), 686-701.e8.
[http://dx.doi.org/10.1016/j.neuron.2019.05.038] [PMID: 31248729]
[108]
Venner, A.; Broadhurst, R.Y.; Sohn, L.T.; Todd, W.D.; Fuller, P.M. Selective activation of serotoninergic dorsal raphe neurons facilitates sleep through anxiolysis. Sleep (Basel), 2020, 43(2) ,zsz231
[http://dx.doi.org/10.1093/sleep/zsz231] [PMID: 31553451]
[109]
Giacomini, A.C.V.V.; Teixeira, K.H.; Marcon, L.; Scolari, N.; Bueno, B.W.; Genario, R.; de Abreu, N.S.; Demin, K.A.; Galstyan, D.S.; Kalueff, A.V.; de Abreu, M.S. Melatonin treatment reverses cognitive and endocrine deficits evoked by a 24-h light exposure in adult zebrafish. Neurosci. Lett., 2020, 733 ,135073
[http://dx.doi.org/10.1016/j.neulet.2020.135073] [PMID: 32446774]
[110]
Elbaz, I.; Yelin-Bekerman, L.; Nicenboim, J.; Vatine, G.; Appelbaum, L. Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafish. J. Neurosci., 2012, 32(37), 12961-12972.
[http://dx.doi.org/10.1523/JNEUROSCI.1284-12.2012] [PMID: 22973020]
[111]
Liu, J.; Merkle, F.T.; Gandhi, A.V.; Gagnon, J.A.; Woods, I.G.; Chiu, C.N.; Shimogori, T.; Schier, A.F.; Prober, D.A. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development, 2015, 142(6), 1113-1124.
[http://dx.doi.org/10.1242/dev.117424] [PMID: 25725064]
[112]
Özcan, G.G.; Lim, S.; Leighton, P.; Allison, W.T.; Rihel, J. Sleep is bi-directionally modified by amyloid beta oligomers. eLife, 2020, 9 ,e53995
[http://dx.doi.org/10.7554/eLife.53995] [PMID: 32660691]
[113]
Christensen, C.; Þorsteinsson, H.; Maier, V.H.; Karlsson, K.Æ. Multi-parameter behavioral phenotyping of the MPP+ model of parkinson’s disease in zebrafish. Front. Behav. Neurosci., 2020, 14 ,623924
[http://dx.doi.org/10.3389/fnbeh.2020.623924] [PMID: 33390914]
[114]
Zimmermann, F.F.; Gaspary, K.V.; Siebel, A.M.; Leite, C.E.; Kist, L.W.; Bogo, M.R.; Bonan, C.D. Analysis of extracellular nucleotide metabolism in adult zebrafish after embryological exposure to valproic acid. Mol. Neurobiol., 2017, 54(5), 3542-3553.
[http://dx.doi.org/10.1007/s12035-016-9917-z] [PMID: 27189619]
[115]
Lutte, A.H.; Nazario, L.R.; Majolo, J.H.; Pereira, T.C.B.; Altenhofen, S.; Dadda, A.D.S.; Bogo, M.R.; Da Silva, R.S. Persistent increase in ecto -5′- nucleotidase activity from encephala of adult zebrafish exposed to ethanol during early development. Neurotoxicol. Teratol., 2018, 70, 60-66.
[http://dx.doi.org/10.1016/j.ntt.2018.10.004] [PMID: 30366104]
[116]
Marcon, M.; Mocelin, R.; Sachett, A.; Siebel, A.M.; Herrmann, A.P.; Piato, A. Enriched environment prevents oxidative stress in zebrafish submitted to unpredictable chronic stress. PeerJ, 2018, 6 ,e5136
[http://dx.doi.org/10.7717/peerj.5136] [PMID: 30002970]
[117]
Altenhofen, S.; Nabinger, D.D.; Bitencourt, P.E.R.; Bonan, C.D. Dichlorvos alters morphology and behavior in zebrafish (Danio rerio) larvae. Environ. Pollut., 2019, 245, 1117-1123.
[http://dx.doi.org/10.1016/j.envpol.2018.11.095] [PMID: 30682746]
[118]
Rambo, C.L.; Mocelin, R.; Marcon, M.; Villanova, D.; Koakoski, G.; de Abreu, M.S.; Oliveira, T.A.; Barcellos, L.J.G.; Piato, A.L.; Bonan, C.D. Gender differences in aggression and cortisol levels in zebrafish subjected to unpredictable chronic stress. Physiol. Behav., 2017, 171, 50-54.
[http://dx.doi.org/10.1016/j.physbeh.2016.12.032] [PMID: 28039073]
[119]
de Oliveira, G.M.; Kist, L.W.; Pereira, T.C.; Bortolotto, J.W.; Paquete, F.L.; de Oliveira, E.M.; Leite, C.E.; Bonan, C.D.; de Souza Basso, N.R.; Papaleo, R.M.; Bogo, M.R. Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2014, 162, 77-84.
[http://dx.doi.org/10.1016/j.cbpc.2014.03.010] [PMID: 24704546]
[120]
Müller, T.E.; Nunes, M.E.; Menezes, C.C.; Marins, A.T.; Leitemperger, J.; Gressler, A.C.L.; Carvalho, F.B.; de Freitas, C.M.; Quadros, V.A.; Fachinetto, R.; Rosemberg, D.B.; Loro, V.L. Sodium selenite prevents paraquat-induced neurotoxicity in zebrafish. Mol. Neurobiol., 2018, 55(3), 1928-1941.
[http://dx.doi.org/10.1007/s12035-017-0441-6] [PMID: 28244005]
[121]
Nabinger, D.D.; Altenhofen, S.; Bitencourt, P.E.R.; Nery, L.R.; Leite, C.E. in vianna, M.R.M.R.; Bonan, C.D. Nickel exposure alters behavioral parameters in larval and adult zebrafish. Sci. Total Environ., 2018, 624, 1623-1633.
[http://dx.doi.org/10.1016/j.scitotenv.2017.10.057] [PMID: 29102187]
[122]
Martinelli, L.K.B.; Rotta, M.; Villela, A.D.; Rodrigues-Junior, V.S.; Abbadi, B.L.; Trindade, R.V.; Petersen, G.O.; Danesi, G.M.; Nery, L.R.; Pauli, I.; Campos, M.M.; Bonan, C.D.; de Souza, O.N.; Basso, L.A.; Santos, D.S. Functional, thermodynamics, structural and biological studies of in silico-identified inhibitors of Mycobacterium tuberculosis enoyl-ACP(CoA) reductase enzyme. Sci. Rep., 2017, 7, 46696.
[http://dx.doi.org/10.1038/srep46696] [PMID: 28436453]
[123]
Macchi, F.S.; Pissinate, K.; Villela, A.D.; Abbadi, B.L.; Rodrigues-Junior, V.; Nabinger, D.D.; Altenhofen, S.; Sperotto, N.; da Silva Dadda, A.; Subtil, F.T.; de Freitas, T.F.; Erhart Rauber, A.P.; Borsoi, A.F.; Bonan, C.D.; Bizarro, C.V.; Basso, L.A.; Santos, D.S.; Machado, P. 1H-Benzo[d]imidazoles and 3,4-dihydroquinazolin-4-ones: Design, synthesis and antitubercular activity. Eur. J. Med. Chem., 2018, 155, 153-164.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.005] [PMID: 29885576]
[124]
Xia, S.; Zhu, Y.; Xu, X.; Xia, W. Computational techniques in zebrafish image processing and analysis. J. Neurosci. Methods, 2013, 213(1), 6-13.
[http://dx.doi.org/10.1016/j.jneumeth.2012.11.009] [PMID: 23219894]
[125]
Radev, Z.; Hermel, J.M.; Elipot, Y.; Bretaud, S.; Arnould, S.; Duchateau, P.; Ruggiero, F.; Joly, J.S.; Sohm, F. A TALEN-exon skipping design for a bethlem myopathy model in zebrafish. PLoS One, 2015, 10(7) ,e0133986
[http://dx.doi.org/10.1371/journal.pone.0133986] [PMID: 26221953]
[126]
Liu, K.; Petree, C.; Requena, T.; Varshney, P.; Varshney, G.K. Expanding the CRISPR toolbox in zebrafish for studying development and disease. Front. Cell Dev. Biol., 2019, 7, 13.
[http://dx.doi.org/10.3389/fcell.2019.00013] [PMID: 30886848]
[127]
Bai, Q.; Burton, E.A. Zebrafish models of Tauopathy. Biochim. Biophys. Acta, 2011, 1812(3), 353-363.
[http://dx.doi.org/10.1016/j.bbadis.2010.09.004] [PMID: 20849952]
[128]
Nery, L.R.; Eltz, N.S.; Hackman, C.; Fonseca, R.; Altenhofen, S.; Guerra, H.N.; Freitas, V.M.; Bonan, C.D. in vianna, M.R. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium. PLoS One, 2014, 9(9) ,e105862
[http://dx.doi.org/10.1371/journal.pone.0105862] [PMID: 25187954]
[129]
Altenhofen, S.; Zimmermann, F.F.; Barreto, L.S.; Bortolotto, J.W.; Kist, L.W.; Bogo, M.R.; Bonan, C.D. Benzodiazepines alter nucleotide and nucleoside hydrolysis in zebrafish (Danio rerio) brain. J. Neural Transm. (Vienna), 2015, 122(8), 1077-1088.
[http://dx.doi.org/10.1007/s00702-015-1390-8] [PMID: 25772464]
[130]
Marcon, M.; Herrmann, A.P.; Mocelin, R.; Rambo, C.L.; Koakoski, G.; Abreu, M.S.; Conterato, G.M.; Kist, L.W.; Bogo, M.R.; Zanatta, L.; Barcellos, L.J.; Piato, A.L. Prevention of unpredictable chronic stress-related phenomena in zebrafish exposed to bromazepam, fluoxetine and nortriptyline. Psychopharmacology (Berl.), 2016, 233(21-22), 3815-3824.
[http://dx.doi.org/10.1007/s00213-016-4408-5] [PMID: 27562666]
[131]
Singer, M.L.; Oreschak, K.; Rhinehart, Z.; Robison, B.D. Anxiolytic effects of fluoxetine and nicotine exposure on exploratory behavior in zebrafish. PeerJ., 2016, 4 ,e2352
[http://dx.doi.org/10.7717/peerj.2352] [PMID: 27635325]
[132]
Froestl, W.; Muhs, A.; Pfeifer, A. Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors. J. Alzheimers Dis., 2012, 32(4), 793-887.
[http://dx.doi.org/10.3233/JAD-2012-121186] [PMID: 22886028]
[133]
Sigurgeirsson, B.; Thorsteinsson, H.; Arnardóttir, H.; Jóhannesdóttir, I.T.; Karlsson, K.A. Effects of modafinil on sleep-wake cycles in larval zebrafish. Zebrafish, 2011, 8(3), 133-140.
[http://dx.doi.org/10.1089/zeb.2011.0708] [PMID: 21882999]
[134]
Grossman, L.; Stewart, A.; Gaikwad, S.; Utterback, E.; Wu, N.; Dileo, J.; Frank, K.; Hart, P.; Howard, H.; Kalueff, A.V. Effects of piracetam on behavior and memory in adult zebrafish. Brain Res. Bull., 2011, 85(1-2), 58-63.
[http://dx.doi.org/10.1016/j.brainresbull.2011.02.008] [PMID: 21371538]
[135]
Pisera-Fuster, A.; Rocco, L.; Faillace, M.P.; Bernabeu, R. Sensitization-dependent nicotine place preference in the adult zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 92, 457-469.
[http://dx.doi.org/10.1016/j.pnpbp.2019.02.018] [PMID: 30826460]
[136]
Sales Cadena, M.R.; Cadena, P.G.; Watson, M.R.; Sarmah, S.; Boehm Ii, S.L.; Marrs, J.A. Zebrafish (Danio rerio) larvae show behavioral and embryonic development defects when exposed to opioids at embryo stage. Neurotoxicol. Teratol., 2021, 85 ,106964
[http://dx.doi.org/10.1016/j.ntt.2021.106964] [PMID: 33621603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy