Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Characterization of Bioactive Compounds from the Red Sea Tunicate- Derived Fungus Penicillium commune DY004

Author(s): Diaa T.A. Youssef*, Lamiaa A. Shaala, Ameen Almohammadi, Sameh S. Elhady, Torki A. Alzughaibi and Khalid Z. Alshali

Volume 19, Issue 2, 2022

Published on: 17 June, 2021

Page: [144 - 149] Pages: 6

DOI: 10.2174/1570178618666210617112441

Price: $65

Abstract

As a part of our ongoing interest to identify bioactive microbial secondary metabolites, the Red Sea tunicate derived Penicillium commune DY004 was investigated. A new dipeptide, penicillizine A (1) together with cyclo(L-Pro-L-Phe) (2), meleagrin (3), α-cyclopiazonic acid (4) and N-(4-hydroxyphenethyl)acetamide (5) was isolated from the ethyl acetate extract of the cultures of the fungus. The structural determinations of 1-5 were supported by interpretation of their oneand two-dimensional nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. In the evaluation of the compounds for their effects against three human tumorous cell lines, meleagrin (3) and α-cyclopiazonic acid (4) displayed the highest and potent activity against HeLa, U373 glioblastoma and MDA-MB-231 cell lines down up to 3.1 μg/mL. These results suggest that marine fungi are a copious source of drug leads with therapeutic potential. Meleagrin and α-cyclopiazonic acid could be used as potential scaffolds for the development of new and more effective drug leads.

Keywords: Red Sea Didemnum species, Penicillium commune DY004, penicillizine A, cyclo (l-Pro-l-Phe), meleagrin, α-cyclopiazonic acid, structural determination, human cancer cell lines.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. J. Nat. Prod., 2012, 75(3), 311-335.
[PMID: 22316239]
[2]
Newman, D.J.; Giddings, L-A. Phytochem. Rev., 2014, 13, 123-137.
[3]
Chen, G.; Wang, H.F.; Pei, Y.H. J. Asian Nat. Prod. Res., 2014, 16(1), 105-122.
[PMID: 24215463]
[4]
Agrawal, S.; Adholeya, A.; Deshmukh, S.K. Front. Pharmacol., 2016, 7, 333.
[PMID: 27826240]
[5]
Deshmukh, S.K.; Prakash, V.; Ranjan, N. Phytochem. Rev., 2017, 16, 883-920.
[6]
Singh, R.; Sharma, M.; Joshi, P.; Rawat, D.S. Anticancer. Agents Med. Chem., 2008, 8(6), 603-617.
[PMID: 18690825]
[7]
Mayer, A.M.S.; Glaser, K.B.; Cuevas, C.; Jacobs, R.S.; Kem, W.; Little, R.D.; McIntosh, J.M.; Newman, D.J.; Potts, B.C.; Shuster, D.E. Trends Pharmacol. Sci., 2010, 31(6), 255-265.
[PMID: 20363514]
[8]
Newman, D.J.; Cragg, G.M. Mar. Drugs, 2017, 15, 99.
[9]
Liang, X.; Luo, D.; Luesch, H. Pharmacol. Res., 2019, 147, 104373.
[PMID: 31351913]
[10]
Ma, H.G.; Liu, Q.; Zhu, G.L.; Liu, H.S.; Zhu, W.M. J. Asian Nat. Prod. Res., 2016, 18(1), 92-115.
[PMID: 26880598]
[11]
Bugni, T.S.; Ireland, C.M. Nat. Prod. Rep., 2004, 21(1), 143-163.
[PMID: 15039840]
[12]
Gomes, N.G.; Lefranc, F.; Kijjoa, A.; Kiss, R. Mar. Drugs, 2015, 13(6), 3950-3991.
[PMID: 26090846]
[13]
Moghadamtousi, S.Z.; Nikzad, S.; Kadir, H.A.; Abubakar, S.; Zandi, K. Mar. Drugs, 2015, 13(7), 4520-4538.
[PMID: 26204947]
[14]
Pejin, B.; Maja, K. Fungal Metabolites; Mérillon, J-M; Ramawat, K.G., Ed.; Springer International Publishing, 2017, pp. 1-28.
[15]
Deshmukh, S.K.; Prakash, V.; Ranjan, N. Front. Microbiol., 2018, 8, 2536.
[PMID: 29354097]
[16]
Zhao, C.Y.; Zhu, T.H.; Zhu, W.M. Youji Huaxue, 2013, 33, 1195-1234.
[17]
Wang, M.H.; Li, X.M.; Li, C.S.; Ji, N.Y. Wang, B.G. Mar. Drugs, 2013, 11, 2230-2238.
[PMID: 23792827]
[18]
Shaala, L.A.; Youssef, D.T.A. Mar. Drugs, 2015, 13(4), 1698-1709.
[PMID: 25815893]
[19]
Youssef, D.T.A.; Alahdal, A.M. Molecules, 2018, 3, 394.
[20]
Munekata, M.; Tamura, G. Agric. Biol. Chem., 1981, 45, 2613-2618.
[21]
Kawai, K.; Nozawa, K.; Nakajima, S.; Iitaka, Y. Chem. Pharm. Bull. (Tokyo), 1984, 32, 94-98.
[22]
Hamed, A.; Abdel-Razek, A.S. Mariam Araby, Abu-Elghait, M.; El-Hosari, D.G.; Frese, M.; Soliman, H.S.M.; Stammler, H.G.; Sewald, N.; Mohamed Shaaban, M. Nat. Prod. Res.,
[http://dx.doi.org/10.1080/14786419.2020.1741583] [PMID: 32189530]
[23]
Lin, A-Q.; Du, L.; Fang, Y-C.; Wang, F-Z.; Zhu, T-J.; Gu, Q-Q.; Zhu, W-M. Chem. Nat. Compd., 2009, 45, 677-680.
[24]
Yu, Z.; He, Y.Y.; Gao, X.N.; Wang, H.; Huang, L.L. Nat. Prod. Res. Dev., 2014, 26, 848-850.
[25]
Park, Y.C.; Gunasekera, S.P.; Lopez, J.V.; McCarthy, P.J.; Wright, A.E. J. Nat. Prod., 2006, 69(4), 580-584.
[PMID: 16643030]
[26]
Tian, H.; Ermolenko, L.; Gabant, M.; Vergne, C.; Moriou, C.; Retailleau, P.; Al-Mourabit, A. Adv. Synth. Catal., 2011, 353, 1525-1533.
[27]
Dembitsky, V.M. J. Mol. Genet. Med., 2015, 9, 163.
[28]
Vil, V.A.; Gloriozova, T.A.; Terent’ev, A.O.; Savidov, N.N.; Dembitsky, V.M. Appl. Microbiol. Biotechnol., 2019, 103, 1627-1642.
[PMID: 30623202]
[29]
Vil, V.A.; Terent’ev, A.O.; Savidov, N.; Gloriozova, T.A.; Poroikov, V.V.; Pounina, T.A.; Dembitsky, V.M. J. Steroid Biochem., 2019, 190, 76-87.
[30]
Marfey, P. Carlsberg Res. Commun., 1984, 49, 591-596.
[31]
Youssef, D.T.A.; Mooberry, S.L. J. Nat. Prod., 2006, 69(1), 154-157.
[PMID: 16441091]
[32]
Shaala, L.A.; Youssef, D.T.A. Biomolecules, 2019, 9, 841.
[33]
White, T.J.; Bruns, T.; Lee, S.; Taylor, J. PCR Protocols: A Guide to Methods and Application; Innis, M.A.; Gelfand, D.H.; Sninsky, J.J; White, T.J., Ed.; Academic Press: San Diego, CA, USA, 1990, pp. 315-322.
[34]
National Center for Biotechnology Information. Available at: https://blast.ncbi.nlm.nih.gov/Blast.cgi (Accessed on December 10, 2022).
[35]
Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. Nucleic Acids Res., 1997, 25(24), 4876-4882.
[PMID: 9396791]
[36]
Hall, T.A. Nucleic Acids Symp. Ser., 1999, 41, 95-98.
[37]
Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. Mol. Biol. Evol., 2011, 28(10), 2731-2739.
[PMID: 21546353]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy