Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Fabrication of Chitosan-coated Mesoporous Silica Nanoparticles Bearing Rosuvastatin as a Drug Delivery System

Author(s): Mojdeh Rahnama Ghahfarokhi, Ghasem Dini* and Behrooz Movahedi

Volume 19, Issue 1, 2022

Published on: 09 June, 2021

Page: [64 - 73] Pages: 10

DOI: 10.2174/1567201818666210609165630

Price: $65

Abstract

Aim: In this work, to improve the solubility and bioavailability of the rosuvastatin (RSV) drug, chitosan-coated mesoporous silica nanoparticles (CS-MSNs) as a drug delivery system were fabricated.

Methods: To do this, first MSNs with a maximum specific surface area were synthesized from sodium silicate as silica source and different molar ratios of cethyl trimethylammonium bromide (CTAB) and pluronics (P123, PEO20PPO17PEO20) as surfactants via the sol-gel process. Then, the synthesized MSNs were coated by CS polymer with the help of (3-glycidoxypropyl)methyldiethoxysilane (GPTMS) as a linker between MSNs and CS. Subsequently, the RSV drug was loaded into the synthesized CS-coated MSNs. The products were characterized by different techniques, including X-ray diffraction (XRD), the Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). The in vitro drug release profile of the fabricated DDS was evaluated in a typical phosphate-buffered saline (PBS) solution at different pH values (i.e., 4, 6, and 7.4) for 48 h. To assess the cytotoxicity, the viability of the human fibroblast cells exposed to the fabricated DDS was also examined.

Results: The results showed that at an optimal molar ratio of P123/CTAB, the amorphous MSNs with a specific surface area of about 1080 m2/g, a pore diameter of 4 nm, a pore volume of 1.1 cm3/g, and an average size of about 30 nm were synthesized. Also, the presence of all the components, including the CS coating and the RSV drug, was confirmed in the structure of the fabricated DDS by FTIR analysis. Due to the pH-responsive feature of the CS coating, the RSV drug release from the fabricated DDS showed a reasonable environmental response; as the pH value of the PBS solution decreased, the degree of drug release increased.

Conclusion: The CS coating enhanced the cytotoxicity of the fabricated DDS and led to sustainable drug release behavior, which would provide a beneficial approach for drug delivery technology.

Keywords: Mesoporous silica nanoparticles, chitosan, rosuvastatin, characterization, drug delivery system, pH-responsive feature.

Graphical Abstract

[1]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[2]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[3]
Listigovers, N.A.; Georges, M.K.; Odell, P.G.; Keoshkerian, B. Narrow-polydispersity diblock and triblock copolymers of alkyl acrylates by a “Living” stable free radical polymerization. Macromolecules, 1996, 29(27), 8992-8993.
[http://dx.doi.org/10.1021/ma961189v]
[4]
Deng, Z.; Zhen, Z.; Hu, X.; Wu, S.; Xu, Z.; Chu, P.K. Hollow chitosan-silica nanospheres as pH-sensitive targeted delivery carriers in breast cancer therapy. Biomaterials, 2011, 32(21), 4976-4986.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.050] [PMID: 21486679]
[5]
Li, Z.; Chen, Y.; Yang, Y.; Yu, Y.; Zhang, Y.; Zhu, D.; Yu, X.; Ouyang, X.; Xie, Z.; Zhao, Y.; Li, L. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front. Bioeng. Biotechnol., 2019, 7, 293.
[http://dx.doi.org/10.3389/fbioe.2019.00293] [PMID: 31696114]
[6]
Yang, Z.; Sun, Z.; Ren, Y.; Chen, X.; Zhang, W.; Zhu, X.; Mao, Z.; Shen, J.; Nie, S. Advances in nanomaterials for use in photothermal and photodynamic therapeutics (Review). Mol. Med. Rep., 2019, 20(1), 5-15.
[http://dx.doi.org/10.3892/mmr.2019.10218] [PMID: 31115497]
[7]
Shibu, E.S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. Photochem. Rev., 2013, 15, 53-72.
[http://dx.doi.org/10.1016/j.jphotochemrev.2012.09.004]
[8]
Yaraki, M.T.; Wu, M.; Middha, E.; Wu, W.; Rezaei, S.D.; Liu, B.; Tan, Y.N. Gold Nanostars-AIE theranostic nanodots with enhanced fluorescence and photosensitization towards effective image-guided photodynamic therapy. Nano-Micro Lett., 2021, 13(1), 1-15.
[http://dx.doi.org/10.1007/s40820-020-00583-2]
[9]
Yaraki, M.T.; Hu, F.; Rezaei, S.D.; Liu, B.; Tan, Y.N. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. Nanoscale Advances, 2020, 2(7), 2859-2869.
[http://dx.doi.org/10.1039/D0NA00182A]
[10]
Yaraki, M.T.; Tan, Y.N. Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced raman scattering. Chem. Asian J., 2020, 15(20), 3180-3208.
[http://dx.doi.org/10.1002/asia.202000847] [PMID: 32808471]
[11]
Yaraki, M.T.; Pan, Y.; Hu, F.; Yu, Y.; Liu, B.; Tan, Y.N. Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy. Mater. Chem. Front., 2020, 4(10), 3074-3085.
[http://dx.doi.org/10.1039/D0QM00469C]
[12]
Giri, S.; Trewyn, B.G.; Stellmaker, M.P.; Lin, V.S-Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. Engl., 2005, 44(32), 5038-5044.
[http://dx.doi.org/10.1002/anie.200501819] [PMID: 16038000]
[13]
Taylor, K.M.L.; Kim, J.S.; Rieter, W.J.; An, H.; Lin, W.; Lin, W. Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc., 2008, 130(7), 2154-2155.
[http://dx.doi.org/10.1021/ja710193c] [PMID: 18217764]
[14]
Wu, S-H.; Mou, C-Y.; Lin, H-P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 2013, 42(9), 3862-3875.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[15]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[16]
Ávila-Ortega, A.; Carrillo-Cocom, L.M.; Olán-Noverola, C.E.; Nic-Can, G.I.; Vilchis-Nestor, A.R.; Talavera-Pech, W.A. Increased toxicity of doxorubicin encapsulated into pH-Responsive Poly(β-Amino Ester)-functionalized MCM-41 silica nanoparticles. Curr. Drug Deliv., 2020, 17(9), 799-805.
[http://dx.doi.org/10.2174/1567201817999200728123915] [PMID: 32723272]
[17]
Mahkam, M. Synthesis and characterization of pH-sensitive silica nanoparticles for oral-insulin delivery. Curr. Drug Deliv., 2011, 8(6), 607-611.
[http://dx.doi.org/10.2174/156720111797635522] [PMID: 21864258]
[18]
Hu, X.; Wang, Y.; Peng, B. Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem. Asian J., 2014, 9(1), 319-327.
[http://dx.doi.org/10.1002/asia.201301105] [PMID: 24115568]
[19]
Ponnuraj, R.; Janakiraman, K.; Gopalakrishnan, S.; Jeyakumar, H.J.; Venkateswarlu, V.; Narayanan, D.S. Formulation and characterization of rosuvastatin calcium nanoparticles. Indo American Journal of Pharmaceutical Research, 2015, 5(2), 767-779.
[20]
Ibrahim, H.K.; Fahmy, R.H. Localized rosuvastatin via implantable bioerodible sponge and its potential role in augmenting bone healing and regeneration. Drug Deliv., 2016, 23(9), 3181-3192.
[http://dx.doi.org/10.3109/10717544.2016.1160458] [PMID: 26942653]
[21]
Van Speybroeck, M.; Barillaro, V.; Thi, T.D.; Mellaerts, R.; Martens, J.; Van Humbeeck, J.; Vermant, J.; Annaert, P.; Van den Mooter, G.; Augustijns, P. Ordered mesoporous silica material SBA-15: A broad-spectrum formulation platform for poorly soluble drugs. J. Pharm. Sci., 2009, 98(8), 2648-2658.
[http://dx.doi.org/10.1002/jps.21638] [PMID: 19072861]
[22]
Akbarzadeh, I.; Yaraki, M.T.; Ahmadi, S.; Chiani, M.; Nourouzian, D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in vitro investigation. Adv. Powder Technol., 2020, 31(9), 4064-4071.
[http://dx.doi.org/10.1016/j.apt.2020.08.011]
[23]
Akbarzadeh, I.; Yaraki, M.T.; Bourbour, M.; Noorbazargan, H.; Lajevardi, A.; Shilsar, S.M.S.; Heidari, F.; Mousavian, S.M. Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. J. Drug Deliv. Sci. Technol., 2020, 57, 101715.
[http://dx.doi.org/10.1016/j.jddst.2020.101715]
[24]
Ghafelehbashi, R.; Akbarzadeh, I.; Tavakkoli Yaraki, M.; Lajevardi, A.; Fatemizadeh, M.; Heidarpoor Saremi, L. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. Pharm., 2019, 569, 118580.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118580] [PMID: 31374239]
[25]
Lajevardi, A.; Sadr, M.H.; Yaraki, M.T.; Badiei, A.; Armaghan, M. A pH-responsive and magnetic Fe 3 O 4@ silica@ MIL-100 (Fe)/β-CD nanocomposite as a drug nanocarrier: Loading and release study of cephalexin. New J. Chem., 2018, 42(12), 9690-9701.
[http://dx.doi.org/10.1039/C8NJ01375F]
[26]
Ghafelehbashi, R.; Tavakkoli Yaraki, M.; Heidarpoor Saremi, L.; Lajevardi, A.; Haratian, M.; Astinchap, B.; Rashidi, A.M.; Moradian, R. A pH-responsive citric-acid/α-cyclodextrin-functionalized Fe3O4 nanoparticles as a nanocarrier for quercetin: An experimental and DFT study. Mater. Sci. Eng. C, 2020, 109, 110597.
[http://dx.doi.org/10.1016/j.msec.2019.110597] [PMID: 32228991]
[27]
Saraf, M.; Yaraki, M.T.; Tan, P.Y.N.; Gupta, R.K. Insights and perspectives regarding nanostructured fluorescent materials toward tackling COVID-19 and future pandemics. ACS Applied Nano Materials, 2021, 4(2), 911-948.
[http://dx.doi.org/10.1021/acsanm.0c02945]
[28]
Kosuge, K.; Sato, T.; Kikukawa, N.; Takemori, M. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate. Chem. Mater., 2004, 16(5), 899-905.
[http://dx.doi.org/10.1021/cm030622u]
[29]
Katiyar, A.; Yadav, S.; Smirniotis, P.G.; Pinto, N.G. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A, 2006, 1122(1-2), 13-20.
[http://dx.doi.org/10.1016/j.chroma.2006.04.055] [PMID: 16716334]
[30]
Poyraz, A.S.; Dag, Ö. Role of organic and inorganic additives on the assembly of CTAB-P123 and the morphology of mesoporous silica particles. J. Phys. Chem. C, 2009, 113(43), 18596-18607.
[http://dx.doi.org/10.1021/jp907303a]
[31]
Kosuge, K.; Kikukawa, N.; Takemori, M. One-step preparation of porous silica spheres from sodium silicate using triblock copolymer templating. Chem. Mater., 2004, 16(21), 4181-4186.
[http://dx.doi.org/10.1021/cm0400177]
[32]
Sevda, R.R.; Ravetkar, A.S.; Shirote, P.J. UV Spectrophotometric estimation of rosuvastatin calcium and fenofibrate in bulk drug and dosage form using simultaneous equation method. Int. J. Chemtech Res., 2011, 3(2), 629-635.
[33]
Zhou, Y.; Li, X.; Chen, Z. Rapid synthesis of well-ordered mesoporous silica from sodium silicate. Powder Technol., 2012, 226, 239-245.
[http://dx.doi.org/10.1016/j.powtec.2012.04.054]
[34]
Gan, Q.; Zhu, J.; Yuan, Y.; Liu, H.; Qian, J.; Li, Y.; Liu, C. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(10), 2056-2066.
[http://dx.doi.org/10.1039/C4TB01897D] [PMID: 32262373]
[35]
Zeng, W.; Qian, X-F.; Zhang, Y-B.; Yin, J.; Zhu, Z-K. Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system. Mater. Res. Bull., 2005, 40(5), 766-772.
[http://dx.doi.org/10.1016/j.materresbull.2005.02.011]
[36]
Chen, F.; Zhu, Y. Chitosan enclosed mesoporous silica nanoparticles as drug nano-carriers: Sensitive response to the narrow PH range. Microporous Mesoporous Mater., 2012, 150, 83-89.
[http://dx.doi.org/10.1016/j.micromeso.2011.07.023]
[37]
Dollimore, D.; Spooner, P.; Turner, A. The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas. Surf. Technol., 1976, 4(2), 121-160.
[http://dx.doi.org/10.1016/0376-4583(76)90024-8]
[38]
Brown, W. Dynamic light scattering: The method and some applications; Clarendon Press: Oxford, 1993.
[39]
Al-Oweini, R.; El-Rassy, H. Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R′′Si(OR′)3 precursors. J. Mol. Struct., 2009, 919(1-3), 140-145.
[http://dx.doi.org/10.1016/j.molstruc.2008.08.025]
[40]
Shaltooki, M.; Dini, G.; Mehdikhani, M. Fabrication of chitosan- coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C, 2019, 105, 110138.
[http://dx.doi.org/10.1016/j.msec.2019.110138] [PMID: 31546409]
[41]
Negrea, P.; Caunii, A.; Sarac, I.; Butnariu, M. The study of infrared spectrum of chitin and chitosan extract as potential sources of biomass. Dig. J. Nanomater. Biostruct., 2015, 10(4), 1129-1138.
[42]
Rezazadeh, M.; Parandeh, M.; Akbari, V.; Ebrahimi, Z.; Taheri, A. Incorporation of rosuvastatin-loaded chitosan/chondroitin sulfate nanoparticles into a thermosensitive hydrogel for bone tissue engineering: Preparation, characterization, and cellular behavior. Pharm. Dev. Technol., 2019, 24(3), 357-367.
[http://dx.doi.org/10.1080/10837450.2018.1484765] [PMID: 29863957]
[43]
Popat, A.; Liu, J.; Lu, G.Q. PH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J. Mater. Chem., 2012, 22(22), 11173-11178.
[http://dx.doi.org/10.1039/c2jm30501a]
[44]
Qu, F.; Zhu, G.; Huang, S.; Li, S.; Sun, J.; Zhang, D.; Qiu, S. Controlled release of captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater., 2006, 92(1-3), 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2005.12.004]
[45]
Song, S-W.; Hidajat, K.; Kawi, S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions. Langmuir, 2005, 21(21), 9568-9575.
[http://dx.doi.org/10.1021/la051167e] [PMID: 16207037]
[46]
Taghavi, S.M.; Momenpour, M.; Azarian, M.; Ahmadian, M.; Souri, F.; Taghavi, S.A.; Sadeghain, M.; Karchani, M. Effects of nanoparticles on the environment and outdoor workplaces. Electron. Physician, 2013, 5(4), 706-712.
[http://dx.doi.org/10.14661/2013.706-712] [PMID: 26120406]
[47]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[48]
Park, H-G.; Yeo, M-K. Nanomaterial regulatory policy for human health and environment. Mol. Cell. Toxicol., 2016, 12(3), 223-236.
[http://dx.doi.org/10.1007/s13273-016-0027-9]
[49]
Seaton, A. Nanoparticles, human health hazard and regulation. Journal of The Royal Society Interface, 2009, 7(suppl_1), S119-129.
[50]
Marchant, G.E.; Sylvester, D.J.; Abbott, K.W.; Danforth, T.L. International harmonization of regulation of nanomedicine. Stud. Ethics Law Technol., 2010, 3(3), 1-14.
[http://dx.doi.org/10.2202/1941-6008.1120]
[51]
Stern, S.T.; McNeil, S.E. Nanotechnology safety concerns revisited. Toxicol. Sci., 2008, 101(1), 4-21.
[http://dx.doi.org/10.1093/toxsci/kfm169] [PMID: 17602205]
[52]
Amoabediny, G.H.; Naderi, A.; Malakootikhah, J.; Koohi, M.K.; Mortazavi, S.A.; Naderi, M.; Rashedi, H. Guidelines for safe handling, use and disposal of nanoparticles. J. Phys. Conf. Ser., 2009, 170, 012037.
[http://dx.doi.org/10.1088/1742-6596/170/1/012037]
[53]
Faunce, T.A. Policy challenges of nanomedicine for Australia’s PBS. Aust. Health Rev., 2009, 33(2), 258-267.
[http://dx.doi.org/10.1071/AH090258] [PMID: 19563314]
[54]
Johnson, V.R. Nanotechnology, environmental risks, and regulatory options. Penn State Law Rev., 2016, 121, 471-503.
[55]
Bhavsar, D.; Patel, V.; Sawant, K. Systematic investigation of in vitro and in vivo safety, toxicity and degradation of mesoporous silica nanoparticles synthesized using commercial sodium silicate. Microporous Mesoporous Mater., 2019, 284, 343-352.
[http://dx.doi.org/10.1016/j.micromeso.2019.04.050]
[56]
Rascol, E.; Pisani, C.; Dorandeu, C.; Nyalosaso, J.L.; Charnay, C.; Daurat, M.; Da Silva, A.; Devoisselle, J-M.; Gaillard, J-C.; Armengaud, J.; Prat, O.; Maynadier, M.; Gary-Bobo, M.; Garcia, M.; Chopineau, J.; Guari, Y. Biosafety of mesoporous silica nanoparticles. Biomimetics (Basel), 2018, 3(3), 22-36.
[http://dx.doi.org/10.3390/biomimetics3030022] [PMID: 31105244]
[57]
Hosseinpour, S.; Walsh, L.J.; Xu, C. Biomedical application of mesoporous silica nanoparticles as delivery systems: A biological safety perspective. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(43), 9863-9876.
[http://dx.doi.org/10.1039/D0TB01868F] [PMID: 33047764]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy