Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Assessment of Once Daily Controlled-release Ibuprofen Matrix Tablets Prepared using Eudragit ®E100/Carbopol® 971P NF Polymers and their Salt Combinations

Author(s): Wasfy M. Obeidat* and Mohammad Ahmad Al-Natour

Volume 19, Issue 1, 2022

Published on: 25 June, 2021

Page: [74 - 85] Pages: 12

DOI: 10.2174/1567201818999210625100126

Price: $65

Abstract

Introduction: Hydrophilic polymers that swell or dissolve in aqueous media can have the potential to prepare controlled/sustained dosage forms for weakly acidic and poorly soluble drugs.

Objective: The main objective of this study is to utilize Eudragit®E100 (EE) and Carbopol®971P NF (Cp) polymers and their salt forms for the preparation of a once-daily controlled-release matrix tablet for model drug, Ibuprofen (IB).

Methods: Combinations of the polymers in their base forms (EE)/(Cp) or in their salt forms (EEHCl/ CpNa) were compressed with (IB) into single layer matrix tablets, or otherwise into bilayer tablets. Dissolution profiles were constructed using three different consecutive stages (pH 1.2, 4.8 and 6.8).

Results: It was found that the incorporation of (EEHCl) modified the release rates of (IB) from (Cp) based matrix tablets. However, a major enhancement of (IB) release rates occurred when the polymers were combined in their salt forms in a 1:1 ratio by weight. In addition, a bilayer tablet was prepared wherein a relatively rapidly disintegrating layer composed of polymers salts (EEHCl and CpNa), and a second layer containing only (Cp) polymer in its base form in a 1:2 weight ratio possessed excellent release properties and mechanical strength.

Conclusion: It was concluded that the prepared bilayer tablet could be promising for controlling the release rates of (IB) in an extended manner to allow once-daily administration with an improved pH-independent release behavior.

Keywords: Polymer, eudragit®E100, carbopol®971P NF, polymer salt, controlled/sustained release, ibuprofen.

Graphical Abstract

[1]
Wilson, W.I.; Peng, Y.; Augsburger, L.L. Comparison of statistical analysis and Bayesian Networks in the evaluation of dissolution performance of BCS Class II model drugs. J. Pharm. Sci., 2005, 94(12), 2764-2776.
[http://dx.doi.org/10.1002/jps.20358] [PMID: 16258987]
[2]
Reynolds, J.E.F. Martindale, the extra pharmacopoeia; The pharmaceutical press: London, 1996.
[3]
Sood, A.; Panchagnula, R. Drug release evaluation of diltiazem CR preparations. Int. J. Pharm., 1998, 175(1), 95-107.
[http://dx.doi.org/10.1016/S0378-5173(98)00268-3]
[4]
Shargel, L.; Wu Pong, S.; Yu, A. Applied Biopharmaceutics & Pharmacokinetics; McGraw-Hill: New York, 2005.
[5]
Adeyeye, C.M.; Price, J.C. Development and evaluation of sustained-release ibuprofen-wax microspheres. I. Effect of formulation variables on physical characteristics. Pharm. Res., 1991, 8(11), 1377-1383.
[http://dx.doi.org/10.1023/A:1015845022112] [PMID: 1798673]
[6]
Adeyeye, C.M.; Price, J.C. Development and evaluation of sustained-release ibuprofen-wax microspheres. II. in vitro dissolution studies. Pharm. Res., 1994, 11(4), 575-579.
[http://dx.doi.org/10.1023/A:1018931002991] [PMID: 8058619]
[7]
Ghaly, E.S.; Sepúlveda, S. In-vitro evaluation of sustained release ibuprofen microspheres. P. R. Health Sci. J., 1996, 15(2), 97-100.
[PMID: 8936613]
[8]
Cao, S.W.; Zhu, Y.J.; Wu, J.; Wang, K.W.; Tang, Q.L. Preparation and sustained-release property of triblock copolymer/calcium phosphate nanocomposite as nanocarrier for hydrophobic drug. Nanoscale Res. Lett., 2010, 5(4), 781-785.
[http://dx.doi.org/10.1007/s11671-010-9558-5] [PMID: 20671783]
[9]
Manjanna, K.M.; Shivakumar, B.; Pramod Kumar, T.M. Microencapsulation: An acclaimed novel drug-delivery system for NSAIDs in arthritis. Crit. Rev. Ther. Drug Carrier Syst., 2010, 27(6), 509-545.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v27.i6.20] [PMID: 21175420]
[10]
Cai, J.Y.; Huang, D.C.; Wang, Z.X.; Dang, B.L.; Wang, Q.L.; Su, X.G. Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology. Yao Xue Xue Bao, 2012, 47(6), 791-796.
[PMID: 22919729]
[11]
Wei, Z.; Wang, C.; Liu, H.; Zou, S.; Tong, Z. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions. Colloids Surf. B Biointerfaces, 2012, 91, 97-105.
[http://dx.doi.org/10.1016/j.colsurfb.2011.10.044] [PMID: 22088755]
[12]
Jan, S.U.; Khan, G.M.; Hussain, I.; Gaskell, E.E.; Hutcheon, G.H. Synthesis, conjugation and evaluation of some novel polymers and their micro particles for sustained release drug formulations. Pak. J. Pharm. Sci., 2013, 26(4), 741-746.
[PMID: 23811451]
[13]
Vyslouzil, J.; Kejdusova, M.; Dvorackov, K.; Vetchy, D. Influence of formulation and process parameters on the characteristics of PLGA-based microparticles with controlled drug release. Ceska a Slovenska Farmacie, 2013, 62(3), 120-126.
[14]
Haroun, A.A.; El-Halawany, N.R.; Loira-Pastoriza, C.; Maincent, P. Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles. Drug Dev. Ind. Pharm., 2014, 40(1), 61-65.
[http://dx.doi.org/10.3109/03639045.2012.746359] [PMID: 23244199]
[15]
Wen, L.X.; Ding, H.M.; Wang, J.X.; Chen, J.F. Porous hollow silica nanoparticles as carriers for controlled delivery of ibuprofen to small intestine. J. Nanosci. Nanotechnol., 2006, 6(9-10), 3139-3144.
[http://dx.doi.org/10.1166/jnn.2006.410] [PMID: 17048529]
[16]
Verraedt, E.; Van den Mooter, G.; Martens, J.A. Novel amorphous microporous silica spheres for controlled release applications. J. Pharm. Sci., 2011, 100(10), 4295-4301.
[http://dx.doi.org/10.1002/jps.22617] [PMID: 21567409]
[17]
Lamprecht, A.; Saumet, J.L.; Roux, J.; Benoit, J.P. Lipid nanocarriers as drug delivery system for ibuprofen in pain treatment. Int. J. Pharm., 2004, 278(2), 407-414.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.018] [PMID: 15196644]
[18]
Dian, L.; Yang, Z.; Li, F.; Wang, Z.; Pan, X.; Peng, X.; Huang, X.; Guo, Z.; Quan, G.; Shi, X.; Chen, B.; Li, G.; Wu, C. Cubic phase nanoparticles for sustained release of ibuprofen: Formulation, characterization, and enhanced bioavailability study. Int. J. Nanomedicine, 2013, 8, 845-854.
[PMID: 23468008]
[19]
Perge, L.; Robitzer, M.; Guillemot, C.; Devoisselle, J.M.; Quignard, F.; Legrand, P. New solid lipid microparticles for controlled ibuprofen release: Formulation and characterization study. Int. J. Pharm., 2012, 422(1-2), 59-67.
[http://dx.doi.org/10.1016/j.ijpharm.2011.10.027] [PMID: 22027394]
[20]
Bialleck, S.; Rein, H. Preparation of starch-based pellets by hot-melt extrusion. Eur. J. Pharmaceut. Biopharmaceut., 2011, 79(2), 440-448.
[21]
Aulton, M.E.; Dyer, A.M.; Khan, K.A. The strength and compaction of millispheres: The design of a controlled-release drug delivery system for ibuprofen in the form of a tablet comprising compacted polymer-coated millispheres. Drug Dev. Ind. Pharm., 1994, 20, 3069-3104.
[http://dx.doi.org/10.3109/03639049409041969]
[22]
Santos, H.; Veiga, F.; Pina, M.E.; Sousa, J.J. Compaction, compression and drug release properties of diclofenac sodium and ibuprofen pellets comprising xanthan gum as a sustained release agent. Int. J. Pharm., 2005, 295(1-2), 15-27.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.014] [PMID: 15898143]
[23]
Tang, Y.D.; Venkatraman, S.S.; Boey, F.Y.; Wang, L.W. Sustained release of hydrophobic and hydrophilic drugs from a floating dosage form. Int. J. Pharm., 2007, 336(1), 159-165.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.060] [PMID: 17194555]
[24]
Khobragade, D.S.; Parshuramkar, P.R.; Ujjainkar, A.P.; Mahendra, A.M.; Phapal, S.M.; Patil, A.T. Conception and evaluation of sustained release polymeric matrix beads for enhanced gastric retention. Curr. Drug Deliv., 2009, 6(3), 249-254.
[http://dx.doi.org/10.2174/156720109788680831] [PMID: 19604138]
[25]
Ozdemir, N.; Ozates, B. Drug release from lipid matrices. Part II. Influence of formulation factors on the release of slightly soluble drug. Acta Pol. Pharm., 1996, 53(2), 107-110.
[PMID: 8960285]
[26]
Majid Khan, G.; Zhu, J.B. Ibuprofen release kinetics from controlled-release tablets granulated with aqueous polymeric dispersion of ethylcellulose II: influence of several parameters and coexcipients. J. Control. Rel., 1998, 56(1-3), 127-134.
[27]
Bordaweka, M.S.; Zia, H.; Quadir, A. Evaluation of polyvinyl acetate dispersion as a sustained release polymer for tablets. Drug Deliv., 2006, 13(2), 121-131.
[http://dx.doi.org/10.1080/10717540500313398] [PMID: 16423800]
[28]
Hasanzadeh, D.; Ghaffari, S.; Monajjemzadeh, F.; Al-Hallak, M.H.; Soltani, G.; Azarmi, S. Thermal treating of acrylic matrices as a tool for controlling drug release. Chem. Pharm. Bull. (Tokyo), 2009, 57(12), 1356-1362.
[http://dx.doi.org/10.1248/cpb.57.1356] [PMID: 19952444]
[29]
Khan, G.M.; Zhu, J.B. Studies on drug release kinetics from ibuprofen-carbomer hydrophilic matrix tablets: influence of co-excipients on release rate of the drug. J. Control. Rel., 1999, 57(2), 197-203.
[30]
Gonzalez Novoa, G.A.; Heinamaki, J.; Mirza, S.; Antikainen, O.; Colarte, A.I.; Paz, A.S.; Yliruusi, J. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate. Eur. J. Pharmaceut. Biopharmaceut., 2005, 59(2), 343-350.
[31]
Shoaib, M.H.; Tazeen, J.; Merchant, H.A.; Yousuf, R.I. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak. J. Pharm. Sci., 2006, 19(2), 119-124.
[PMID: 16751122]
[32]
Chandran, S.; Asghar, L.F.; Mantha, N. Design and evaluation of ethyl cellulose based matrix tablets of ibuprofen with pH modulated release kinetics. Indian J. Pharm. Sci., 2008, 70(5), 596-602.
[http://dx.doi.org/10.4103/0250-474X.45397] [PMID: 21394255]
[33]
Patel, N.; Madan, P.; Lin, S. Development and evaluation of controlled release ibuprofen matrix tablets by direct compression technique. Pharm. Dev. Technol., 2011, 16(1), 1-11.
[http://dx.doi.org/10.3109/10837450903460467] [PMID: 20491616]
[34]
Mumuni, A.M.; Kenechukwu, F.C.; Chime, S.A.; Ogbonna, J.D.; Mora, A.T. Anti-inflammatory and pharmacokinetics evaluation of PEGylated ibuprofen tablet formulation. Drug Deliv., 2014, 21(4), 315-319.
[PMID: 24191762]
[35]
Contreras-García, A.; Alvarez-Lorenzo, C.; Taboada, C.; Concheiro, A.; Bucio, E. Stimuli-responsive networks grafted onto polypropylene for the sustained delivery of NSAIDs. Acta Biomater., 2011, 7(3), 996-1008.
[http://dx.doi.org/10.1016/j.actbio.2010.10.001] [PMID: 20933615]
[36]
Kislalioglu, M.S.; Khan, M.A.; Blount, C.; Goettsch, R.W.; Bolton, S. Physical characterization and dissolution properties of ibuprofen: Eudragit coprecipitates. J. Pharm. Sci., 1991, 80(8), 799-804.
[http://dx.doi.org/10.1002/jps.2600800820] [PMID: 1791544]
[37]
Moustafine, R.I.; Kabanova, T.V.; Kemenova, V.A.; Van den Mooter, G. Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. J. Control. Rel., 2005, 103(1), 191-198.
[38]
Lu, Z.; Chen, W.; Hamman, J.H. Chitosan-polycarbophil complexes in swellable matrix systems for controlled drug release. Curr. Drug Deliv., 2007, 4(4), 257-263.
[http://dx.doi.org/10.2174/156720107782151232] [PMID: 17979647]
[39]
Prado, H.J.; Matulewicz, M.C.; Bonelli, P.R.; Cukierman, A.L. Preparation and characterization of a novel starch-based interpolyelectrolyte complex as matrix for controlled drug release. Carbohydr. Res., 2009, 344(11), 1325-1331.
[http://dx.doi.org/10.1016/j.carres.2009.04.026] [PMID: 19539898]
[40]
Prado, H.J.; Matulewicz, M.C.; Bonelli, P.R.; Cukierman, A.L. Preparation and characterization of controlled release matrices based on novel seaweed interpolyelectrolyte complexes. Int. J. Pharm., 2012, 429(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.016] [PMID: 22433798]
[41]
Abbaspour, M.R.; Sadeghi, F.; Afrasiabi Garekani, H. Design and study of ibuprofen disintegrating sustained-release tablets comprising coated pellets. Eur. J. Pharmaceut. Biopharmaceut., 2008, 68(3), 747-759.
[42]
Mujtaba, A.; Kohli, K. In vitro/in vivo evaluation of HPMC/alginate based extended-release matrix tablets of cefpodoxime proxetil. Int. J. Biol. Macromol., 2016, 89, 434-441.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.010] [PMID: 27155235]
[43]
Tatavarti, A.S.; Mehta, K.A.; Augsburger, L.L.; Hoag, S.W. Influence of methacrylic and acrylic acid polymers on the release performance of weakly basic drugs from sustained release hydrophilic matrices. J. Pharm. Sci., 2004, 93(9), 2319-2331.
[http://dx.doi.org/10.1002/jps.20129] [PMID: 15295792]
[44]
Tatavarti, A.S.; Hoag, S.W. Microenvironmental pH modulation based release enhancement of a weakly basic drug from hydrophilic matrices. J. Pharm. Sci., 2006, 95(7), 1459-1468.
[http://dx.doi.org/10.1002/jps.20612] [PMID: 16729265]
[45]
Rao, V.M.; Engh, K.; Qiu, Y. Design of pH-independent controlled release matrix tablets for acidic drugs. Int. J. Pharm., 2003, 252(1-2), 81-86.
[http://dx.doi.org/10.1016/S0378-5173(02)00622-1] [PMID: 12550783]
[46]
Obeidat, W.M.; Abu Znait, A.H.; Sallam, A.S. Novel combination of anionic and cationic polymethacrylate polymers for sustained release tablet preparation. Drug Dev. Ind. Pharm., 2008, 34(6), 650-660.
[http://dx.doi.org/10.1080/03639040701836578] [PMID: 18568916]
[47]
McGinity, J.W. Aqueous polymeric coatings for pharmaceutical dosage forms, 2nd ed; Marcel Dekker: New York, 1997.
[48]
Jijun, F.; Lishuang, X.; Xiaoli, W.; Shu, Z.; Xiaoguang, T.; Xingna, Z.; Haibing, H.; Xing, T. Nimodipine (NM) tablets with high dissolution containing NM solid dispersions prepared by hot-melt extrusion. Drug Dev. Ind. Pharm., 2011, 37(8), 934-944.
[http://dx.doi.org/10.3109/03639045.2010.550301] [PMID: 21417606]
[49]
Parojcić, J.; Ethurić, Z.; Jovanović, M.; Ibrić, S.; Jovanović, D. Influence of dissolution media composition on drug release and in-vitro/in-vivo correlation for paracetamol matrix tablets prepared with novel carbomer polymers. J. Pharm. Pharmacol., 2004, 56(6), 735-741.
[http://dx.doi.org/10.1211/0022357023583] [PMID: 15231038]
[50]
Xu, X.; Sun, M.; Zhi, F.; Hu, Y. Floating matrix dosage form for phenoporlamine hydrochloride based on gas forming agent: In vitro and in vivo evaluation in healthy volunteers. Int. J. Pharm., 2006, 310(1-2), 139-145.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.003] [PMID: 16413710]
[51]
Ravi, P.R.; Kotreka, U.K.; Saha, R.N. Controlled release matrix tablets of zidovudine: Effect of formulation variables on the in vitro drug release kinetics. AAPS PharmSciTech, 2008, 9(1), 302-313.
[http://dx.doi.org/10.1208/s12249-007-9030-8] [PMID: 18446496]
[52]
Higuchi, T.; Connors, K.A. Phase Solubility Techniques. Adv. Anal. Chem. Instrument., 1965, 4, 117-212.
[54]
Liu, L.X.; Marziano, I.; Bentham, A.C.; Litster, J.D.; White, E.T.; Howes, T. Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm., 2008, 362(1-2), 109-117.
[http://dx.doi.org/10.1016/j.ijpharm.2008.06.023] [PMID: 18652883]
[55]
Patel, S.; Kaushal, A.M.; Bansal, A.K. Mechanistic investigation on pressure dependency of Heckel parameter. Int. J. Pharm., 2010, 389(1-2), 66-73.
[http://dx.doi.org/10.1016/j.ijpharm.2010.01.020] [PMID: 20083173]
[56]
Masum, M.A.; Sharmin, F.; Islam, S. Enhancement of solubility and dissolution characteristics of IB by solid dispersion technique. J. Pharm. Sci., 2012, 11, 1-6.
[57]
Charman, W.N.; Christy, D.P.; Geunin, E.P.; Monkhouse, D.C. Interaction between calcium, a model divalent cation, and a range of poly (acrylic acid) resins as a function of solution ph. Drug Dev. Ind. Pharm., 1991, 17(2), 271-280.
[http://dx.doi.org/10.3109/03639049109043824]
[58]
Fu, J.; Sun, X.; Zhang, Z.R. Study on of bioadhesive property of carbomer 934 by a gamma camera in vivo. World J. Gastroenterol., 2002, 8(1), 176-179.
[http://dx.doi.org/10.3748/wjg.v8.i1.176] [PMID: 11833098]
[59]
Obeidat, W.M.; Nokhodchi, A.; Alkhatib, H. Evaluation of matrix tablets based on Eudragit®E100/Carbopol®971P combinations for controlled release and improved compaction properties of water soluble model drug paracetamol. AAPS PharmSciTech, 2015, 16(5), 1169-1179.
[http://dx.doi.org/10.1208/s12249-015-0301-5] [PMID: 25724162]
[60]
Yamada, I.; Goda, T.; Kawata, M.; Shiotuki, T.; Ogawa, K. Gastric acidity-dependent bioavailability of commercial sustained release preparations of indomethacin, evaluated by gastric acidity- controlled beagle dogs. Chem. Pharm. Bull. (Tokyo), 1990, 38(11), 3112-3115.
[http://dx.doi.org/10.1248/cpb.38.3112] [PMID: 2085896]
[61]
Korsmeyer, R.W.; Gurny, R.; Doelker, E.M.; Buri, P.A.P.N. Mechanism of solute release from porous hydrophilic polymers. Int. J. Pharm., 1983, 15, 25-35.
[http://dx.doi.org/10.1016/0378-5173(83)90064-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy