Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

General Review Article

Melatonin: a Potential Shield against Electromagnetic Waves

Author(s): Maya Jammoul and Nada Lawand*

Volume 20, Issue 3, 2022

Page: [648 - 660] Pages: 13

DOI: 10.2174/1570159X19666210609163946

Price: $65

Abstract

Melatonin, a vital hormone synthesized by the pineal gland, has been implicated in various physiological functions and circadian rhythm regulation. Its role in the protection against the non-ionizing electromagnetic field (EMF), known to disrupt the body’s oxidative/anti-oxidative balance, has been called into question due to inconsistent results observed across studies. This review provides the current knowledge on the interwoven relationship between melatonin, EMF, and oxidative stress. Based on synthesized evidence, we present a model that best describes the mechanisms underlying the protective effects of melatonin against RF/ELF-EMF-induced oxidative stress. It has been observed that the free radical scavenger activity of melatonin can be enabled by reducing the radical pair singlet-triplet conversion rate and the concentration of the triplet products. Moreover, this review aims to highlight the potential therapeutic benefits of melatonin against the detrimental effects of EMF, in general, and electromagnetic hypersensitivity (EHS), in particular.

Keywords: Antioxidant system, electrohypersensitivity, electromagnetic field, melatonin, oxidative stress, radical pair mechanism.

« Previous
Graphical Abstract

[1]
Berhouma, M. Beyond the pineal gland assumption: A neuroanatomical appraisal of dualism in Descartes’ philosophy. Clin. Neurol. Neurosurg., 2013, 115(9), 1661-1670.
[http://dx.doi.org/10.1016/j.clineuro.2013.02.023] [PMID: 23562082]
[2]
Lokhorst, G.J. Descartes and the pineal gland. The Stanford Encyclopedia of Philosophy, Winter 2018 Edition; Zalta, E.N., Ed.; , 2018.
[3]
Ilahi, S.; Beriwal, N.; Ilahi, T.B. Physiology, pineal gland treasure island (FL): StatPearls publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525955/2020
[4]
Amaral, F.G.D.; Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab., 2018, 62(4), 472-479.
[http://dx.doi.org/10.20945/2359-3997000000066] [PMID: 30304113]
[5]
Yu, H-S.; Reiter, R.J. Melatonin: Biosynthesis, physiological effects, and clinical applications; CRC press, 2020.
[6]
Singh, S.; Kapoor, N. Health implications of electromagnetic fields, mechanisms of action, and research needs. Adv. Biol., 2014, 2014(198609), 24.
[http://dx.doi.org/10.1155/2014/198609]
[7]
Belpomme, D.; Irigaray, P. Electrohypersensitivity as a newly identified and characterized neurologic pathological disorder: How to diagnose, treat, and prevent it. Int. J. Mol. Sci., 2020, 21(6)E1915
[http://dx.doi.org/10.3390/ijms21061915] [PMID: 32168876]
[8]
Heuser, G.; Heuser, S.A. Functional brain MRI in patients complaining of electrohypersensitivity after long term exposure to electromagnetic fields. Rev. Environ. Health, 2017, 32(3), 291-299.
[http://dx.doi.org/10.1515/reveh-2017-0014] [PMID: 28678737]
[9]
McCarty, D.E.; Carrubba, S.; Chesson, A.L., Jr; Frilot, C.; Gonzalez-Toledo, E.; Marino, A.A. Electromagnetic hypersensitivity: Evidence for a novel neurological syndrome. Int. J. Neurosci., 2011, 121(12), 670-676.
[http://dx.doi.org/10.3109/00207454.2011.608139] [PMID: 21793784]
[10]
Havas, M; Marrongelle, J; Pollner, B; Kelley, E; Rees, C; Tully, L Provocation study using heart rate variability shows microwave radiation from 2.4 GHz cordless phone affects autonomic nervous system. Non-thermal effects and mechanisms of interaction between electromagnetic fields and living matter Bologna (IT): Ramazzini institute. 2010.
[11]
Genuis, S.J.; Lipp, C.T. Electromagnetic hypersensitivity: Fact or fiction? Sci. Total Environ., 2012, 414, 103-112.
[http://dx.doi.org/10.1016/j.scitotenv.2011.11.008] [PMID: 22153604]
[12]
Stein, Y.; Udasin, I.G. Electromagnetic hypersensitivity (EHS, microwave syndrome) - Review of mechanisms. Environ. Res., 2020, 186109445
[http://dx.doi.org/10.1016/j.envres.2020.109445] [PMID: 32289567]
[13]
Schomerus, C.; Korf, H.W. Mechanisms regulating melatonin synthesis in the mammalian pineal organ. Ann. N. Y. Acad. Sci., 2005, 1057, 372-383.
[http://dx.doi.org/10.1196/annals.1356.028] [PMID: 16399907]
[14]
Koch, M.; Mauhin, V.; Stehle, J.H.; Schomerus, C.; Korf, H.W. Dephosphorylation of pCREB by protein serine/threonine phosphatases is involved in inactivation of Aanat gene transcription in rat pineal gland. J. Neurochem., 2003, 85(1), 170-179.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01651.x] [PMID: 12641739]
[15]
Blume, C.; Garbazza, C.; Spitschan, M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl.), 2019, 23(3), 147-156.
[http://dx.doi.org/10.1007/s11818-019-00215-x] [PMID: 31534436]
[16]
Do, M.T.; Yau, K.W. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev., 2010, 90(4), 1547-1581.
[http://dx.doi.org/10.1152/physrev.00013.2010] [PMID: 20959623]
[17]
Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002, 295(5557), 1070-1073.
[http://dx.doi.org/10.1126/science.1067262] [PMID: 11834835]
[18]
Pandi-Perumal, S.R.; Trakht, I.; Srinivasan, V.; Spence, D.W.; Maestroni, G.J.; Zisapel, N.; Cardinali, D.P. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog. Neurobiol., 2008, 85(3), 335-353.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.001] [PMID: 18571301]
[19]
Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin synthesis and function: Evolutionary history in animals and plants. Front. Endocrinol. (Lausanne), 2019, 10, 249.
[http://dx.doi.org/10.3389/fendo.2019.00249] [PMID: 31057485]
[20]
Hardeland, R. Melatonin metabolism in the central nervous system. Curr. Neuropharmacol., 2010, 8(3), 168-181.
[http://dx.doi.org/10.2174/157015910792246164] [PMID: 21358968]
[21]
Hardeland, R. Taxon- and site-specific melatonin catabolism. Molecules, 2017, 22(11)E2015
[http://dx.doi.org/10.3390/molecules22112015] [PMID: 29160833]
[22]
Jockers, R.; Delagrange, P.; Dubocovich, M.L.; Markus, R.P.; Renault, N.; Tosini, G.; Cecon, E.; Zlotos, D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol., 2016, 173(18), 2702-2725.
[http://dx.doi.org/10.1111/bph.13536] [PMID: 27314810]
[23]
Nosjean, O.; Ferro, M.; Cogé, F.; Beauverger, P.; Henlin, J.M.; Lefoulon, F.; Fauchere, J.L.; Delagrange, P.; Canet, E.; Boutin, J.A. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J. Biol. Chem., 2000, 275(40), 31311-31317.
[http://dx.doi.org/10.1074/jbc.M005141200] [PMID: 10913150]
[24]
Alkozi, H.A.; Navarro, G.; Franco, R.; Pintor, J. Melatonin and the control of intraocular pressure. Prog. Retin. Eye Res., 2020, 75100798
[http://dx.doi.org/10.1016/j.preteyeres.2019.100798] [PMID: 31560946]
[25]
Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu. Rev. Pharmacol. Toxicol., 2016, 56, 361-383.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[26]
Purushothaman, A.; Sheeja, A.A.; Janardanan, D. Hydroxyl radical scavenging activity of melatonin and its related indolamines. Free Radic. Res., 2020, 54(5), 373-383.
[http://dx.doi.org/10.1080/10715762.2020.1774575] [PMID: 32567401]
[27]
Allegra, M.; Reiter, R.J.; Tan, D.X.; Gentile, C.; Tesoriere, L.; Livrea, M.A. The chemistry of melatonin’s interaction with reactive species. J. Pineal Res., 2003, 34(1), 1-10.
[http://dx.doi.org/10.1034/j.1600-079X.2003.02112.x] [PMID: 12485365]
[28]
Romero, A.; Ramos, E.; de Los Ríos, C.; Egea, J.; Del Pino, J.; Reiter, R.J. A review of metal-catalyzed molecular damage: Protection by melatonin. J. Pineal Res., 2014, 56(4), 343-370.
[http://dx.doi.org/10.1111/jpi.12132] [PMID: 24628077]
[29]
Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res., 2016, 61(3), 253-278.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[30]
Rodriguez, C.; Mayo, J.C.; Sainz, R.M.; Antolín, I.; Herrera, F.; Martín, V.; Reiter, R.J. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res., 2004, 36(1), 1-9.
[http://dx.doi.org/10.1046/j.1600-079X.2003.00092.x] [PMID: 14675124]
[31]
Tan, D.X.; Manchester, L.C.; Qin, L.; Reiter, R.J. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci., 2016, 17(12)E2124
[http://dx.doi.org/10.3390/ijms17122124] [PMID: 27999288]
[32]
Reiter, R.J.; Tan, D.X.; Rosales-Corral, S.; Galano, A.; Zhou, X.J.; Xu, B. Mitochondria: Central organelles for melatonin’s antioxidant and anti-aging actions. Molecules, 2018, 23(2)E509
[http://dx.doi.org/10.3390/molecules23020509] [PMID: 29495303]
[33]
Huo, X.; Wang, C.; Yu, Z.; Peng, Y.; Wang, S.; Feng, S.; Zhang, S.; Tian, X.; Sun, C.; Liu, K.; Deng, S.; Ma, X. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res., 2017, 62(4)
[http://dx.doi.org/10.1111/jpi.12390] [PMID: 28099762]
[34]
Chang, C.C.; Huang, T.Y.; Chen, H.Y.; Huang, T.C.; Lin, L.C.; Chang, Y.J.; Hsia, S.M. Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells. Oxid. Med. Cell. Longev., 2018, 20189015765
[http://dx.doi.org/10.1155/2018/9015765] [PMID: 30174783]
[35]
Electromagnetic fields (EMF) WHO., 2020. Available from:. https://www.who.int/peh-emf/about/WhatisEMF/en/index1.html
[36]
Lai, H. Exposure to static and extremely-low frequency electromagnetic fields and cellular free radicals. Electromagn. Biol. Med., 2019, 38(4), 231-248.
[http://dx.doi.org/10.1080/15368378.2019.1656645] [PMID: 31450976]
[37]
Yakymenko, I.; Tsybulin, O.; Sidorik, E.; Henshel, D.; Kyrylenko, O.; Kyrylenko, S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn. Biol. Med., 2016, 35(2), 186-202.
[http://dx.doi.org/10.3109/15368378.2015.1043557] [PMID: 26151230]
[38]
Woodward, J.R.; Timmel, C.R.; McLauchlan, K.A.; Hore, P.J. Radio frequency magnetic field effects on electron-hole recombination. Phys. Rev. Lett., 2001, 87(7)077602
[http://dx.doi.org/10.1103/PhysRevLett.87.077602] [PMID: 11497916]
[39]
Hayashi, H. Introduction to dynamic spin chemistry: Magnetic field effects on chemical and biochemical reactions; World Scientific Publishing Company, 2004.
[http://dx.doi.org/10.1142/5316]
[40]
Usselman, R.J.; Hill, I.; Singel, D.J.; Martino, C.F. Spin biochemistry modulates reactive oxygen species (ROS) production by radio frequency magnetic fields. PLoS One, 2014, 9(3)e93065
[http://dx.doi.org/10.1371/journal.pone.0093065] [PMID: 24681944]
[41]
Kıvrak, E.G.; Yurt, K.K.; Kaplan, A.A.; Alkan, I.; Altun, G. Effects of electromagnetic fields exposure on the antioxidant defense system. J. Microsc. Ultrastruct., 2017, 5(4), 167-176.
[http://dx.doi.org/10.1016/j.jmau.2017.07.003] [PMID: 30023251]
[42]
Desai, S.N.; Farris, F.F.; Ray, S.D. Lipid Peroxidation.Encyclopedia of Toxicology; , 2014.
[43]
Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2¢ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev., 2009, 27(2), 120-139.
[http://dx.doi.org/10.1080/10590500902885684] [PMID: 19412858]
[44]
Gulati, S.; Yadav, A.; Kumar, N.; Priya, K.; Aggarwal, N.K.; Gupta, R. Phenotypic and genotypic characterization of antioxidant enzyme system in human population exposed to radiation from mobile towers. Mol. Cell. Biochem., 2018, 440(1-2), 1-9.
[http://dx.doi.org/10.1007/s11010-017-3150-6] [PMID: 28819931]
[45]
Moustafa, Y.M.; Moustafa, R.M.; Belacy, A.; Abou-El-Ela, S.H.; Ali, F.M. Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes. J. Pharm. Biomed. Anal., 2001, 26(4), 605-608.
[http://dx.doi.org/10.1016/S0731-7085(01)00492-7] [PMID: 11516912]
[46]
Kerimoğlu, G.; Güney, C.; Ersöz, Ş.; Odacı, E. A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence. J. Chem. Neuroanat., 2018, 91, 1-7.
[http://dx.doi.org/10.1016/j.jchemneu.2018.01.001] [PMID: 29331319]
[47]
Jeong, Y.J.; Son, Y.; Han, N.K.; Choi, H.D.; Pack, J.K.; Kim, N.; Lee, Y.S.; Lee, H.J. Impact of long-term RF-EMF on oxidative stress and neuroinflammation in aging brains of C57BL/6 mice. Int. J. Mol. Sci., 2018, 19(7)E2103
[http://dx.doi.org/10.3390/ijms19072103] [PMID: 30029554]
[48]
Tsoy, A.; Saliev, T.; Abzhanova, E.; Turgambayeva, A.; Kaiyrlykyzy, A.; Akishev, M.; Saparbayev, S.; Umbayev, B.; Askarova, S. The effects of mobile phone radiofrequency electromagnetic fields on β-amyloid-induced oxidative stress in human and rat primary astrocytes. Neuroscience, 2019, 408, 46-57.
[http://dx.doi.org/10.1016/j.neuroscience.2019.03.058] [PMID: 30953670]
[49]
Bouji, M.; Lecomte, A.; Gamez, C.; Blazy, K.; Villégier, A.S. Impact of cerebral radiofrequency exposures on oxidative stress and corticosterone in a rat model of alzheimer’s disease. J. Alzheimers Dis., 2020, 73(2), 467-476.
[http://dx.doi.org/10.3233/JAD-190593] [PMID: 31796670]
[50]
Zhang, Y.; Zhang, D.; Zhu, B.; Zhang, H.; Sun, Y.; Sun, C. Effects of dietary green tea polyphenol supplementation on the health of workers exposed to high-voltage power lines. Environ. Toxicol. Pharmacol., 2016, 46, 183-187.
[http://dx.doi.org/10.1016/j.etap.2016.07.016] [PMID: 27490209]
[51]
Yokus, B.; Cakir, D.U.; Akdag, M.Z.; Sert, C.; Mete, N. Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields. Free Radic. Res., 2005, 39(3), 317-323.
[http://dx.doi.org/10.1080/10715760500043603] [PMID: 15788236]
[52]
Solek, P.; Majchrowicz, L.; Bloniarz, D.; Krotoszynska, E.; Koziorowski, M. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology, 2017, 382, 84-92.
[http://dx.doi.org/10.1016/j.tox.2017.03.015] [PMID: 28323003]
[53]
Budziosz, J.; Stanek, A.; Sieroń, A.; Witkoś, J.; Cholewka, A.; Sieroń, K. Effects of low-frequency electromagnetic field on oxidative stress in selected structures of the central nervous system. Oxid. Med. Cell. Longev., 2018, 20181427412
[http://dx.doi.org/10.1155/2018/1427412] [PMID: 30647806]
[54]
Hamilton, M.L.; Van Remmen, H.; Drake, J.A.; Yang, H.; Guo, Z.M.; Kewitt, K.; Walter, C.A.; Richardson, A. Does oxidative damage to DNA increase with age? Proc. Natl. Acad. Sci. USA, 2001, 98(18), 10469-10474.
[http://dx.doi.org/10.1073/pnas.171202698] [PMID: 11517304]
[55]
Falone, S.; Mirabilio, A.; Carbone, M.C.; Zimmitti, V.; Di Loreto, S.; Mariggiò, M.A.; Mancinelli, R.; Di Ilio, C.; Amicarelli, F. Chronic exposure to 50Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain. Int. J. Biochem. Cell Biol., 2008, 40(12), 2762-2770.
[http://dx.doi.org/10.1016/j.biocel.2008.05.022] [PMID: 18585472]
[56]
Barnes, F.S.; Greenebaum, B. The effects of weak magnetic fields on radical pairs. Bioelectromagnetics, 2015, 36(1), 45-54.
[http://dx.doi.org/10.1002/bem.21883] [PMID: 25399679]
[57]
Kazemi, M.; Sahraei, H.; Aliyari, H.; Tekieh, E.; Saberi, M.; Tavacoli, H.; Meftahi, G.H.; Ghanaati, H.; Salehi, M.; Hajnasrollah, M. Effects of the extremely low frequency electromagnetic fields on NMDA-receptor gene expression and visual working memory in male rhesus macaques. Basic Clin. Neurosci., 2018, 9(3), 167-176.
[http://dx.doi.org/10.29252/nirp.bcn.9.3.167] [PMID: 30034647]
[58]
Dell’Omo, G.; Costantini, D.; Lucini, V.; Antonucci, G.; Nonno, R.; Polichetti, A. Magnetic fields produced by power lines do not affect growth, serum melatonin, leukocytes and fledging success in wild kestrels. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2009, 150(3), 372-376.
[http://dx.doi.org/10.1016/j.cbpc.2009.06.002] [PMID: 19524062]
[59]
Kumlin, T.; Heikkinen, P.; Laitinen, J.T.; Juutilainen, J. Exposure to a 50-hz magnetic field induces a circadian rhythm in 6-hydroxymelatonin sulfate excretion in mice. J. Radiat. Res. (Tokyo), 2005, 46(3), 313-318.
[http://dx.doi.org/10.1269/jrr.46.313] [PMID: 16210787]
[60]
Dyche, J.; Anch, A.M.; Fogler, K.A.; Barnett, D.W.; Thomas, C. Effects of power frequency electromagnetic fields on melatonin and sleep in the rat. Emerg. Health Threats J., 2012, 5, 5.
[http://dx.doi.org/10.3402/ehtj.v5i0.10904] [PMID: 22529876]
[61]
Hore, P.J. Are biochemical reactions affected by weak magnetic fields? Proc. Natl. Acad. Sci. USA, 2012, 109(5), 1357-1358.
[http://dx.doi.org/10.1073/pnas.1120531109] [PMID: 22307585]
[62]
Tripp, H.M.; Warman, G.R.; Arendt, J. Circularly polarised MF (500 micro T 50 Hz) does not acutely suppress melatonin secretion from cultured wistar rat pineal glands. Bioelectromagnetics, 2003, 24(2), 118-124.
[http://dx.doi.org/10.1002/bem.10075] [PMID: 12524678]
[63]
Brendel, H.; Niehaus, M.; Lerchl, A. Direct suppressive effects of weak magnetic fields (50 Hz and 16 2/3 Hz) on melatonin synthesis in the pineal gland of Djungarian hamsters (Phodopus sungorus). J. Pineal Res., 2000, 29(4), 228-233.
[http://dx.doi.org/10.1034/j.1600-0633.2002.290405.x] [PMID: 11068945]
[64]
Crasson, M.; Beckers, V.; Pequeux, C.; Claustrat, B.; Legros, J.J. Daytime 50 Hz magnetic field exposure and plasma melatonin and urinary 6-sulfatoxymelatonin concentration profiles in humans. J. Pineal Res., 2001, 31(3), 234-241.
[http://dx.doi.org/10.1034/j.1600-079X.2001.310307.x] [PMID: 11589758]
[65]
Kurokawa, Y.; Nitta, H.; Imai, H.; Kabuto, M. Acute exposure to 50 Hz magnetic fields with harmonics and transient components: Lack of effects on nighttime hormonal secretion in men. Bioelectromagnetics, 2003, 24(1), 12-20.
[http://dx.doi.org/10.1002/bem.10084] [PMID: 12483661]
[66]
Gobba, F.; Bravo, G.; Scaringi, M.; Roccatto, L. No association between occupational exposure to ELF magnetic field and urinary 6-sulfatoximelatonin in workers. Bioelectromagnetics, 2006, 27(8), 667-673.
[http://dx.doi.org/10.1002/bem.20254] [PMID: 16988988]
[67]
Youngstedt, S.D.; Kripke, D.F.; Elliott, J.A.; Assmus, J.D. No association of 6-sulfatoxymelatonin with in-bed 60-Hz magnetic field exposure or illumination level among older adults. Environ. Res., 2002, 89(3), 201-209.
[http://dx.doi.org/10.1006/enrs.2002.4370] [PMID: 12176004]
[68]
Burch, J.B.; Reif, J.S.; Yost, M.G. Geomagnetic activity and human melatonin metabolite excretion. Neurosci. Lett., 2008, 438(1), 76-79.
[http://dx.doi.org/10.1016/j.neulet.2008.04.031] [PMID: 18472329]
[69]
Davis, S.; Mirick, D.K.; Chen, C.; Stanczyk, F.Z. Effects of 60-Hz magnetic field exposure on nocturnal 6-sulfatoxymelatonin, estrogens, luteinizing hormone, and follicle-stimulating hormone in healthy reproductive-age women: Results of a crossover trial. Ann. Epidemiol., 2006, 16(8), 622-631.
[http://dx.doi.org/10.1016/j.annepidem.2005.11.005] [PMID: 16458540]
[70]
Burch, J.B.; Reif, J.S.; Noonan, C.W.; Ichinose, T.; Bachand, A.M.; Koleber, T.L.; Yost, M.G. Melatonin metabolite excretion among cellular telephone users. Int. J. Radiat. Biol., 2002, 78(11), 1029-1036.
[http://dx.doi.org/10.1080/09553000210166561] [PMID: 12456290]
[71]
Sukhotina, I.; Streckert, J.R.; Bitz, A.K.; Hansen, V.W.; Lerchl, A. 1800 MHz electromagnetic field effects on melatonin release from isolated pineal glands. J. Pineal Res., 2006, 40(1), 86-91.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00284.x] [PMID: 16313503]
[72]
Lerchl, A.; Krüger, H.; Niehaus, M.; Streckert, J.R.; Bitz, A.K.; Hansen, V. Effects of mobile phone electromagnetic fields at nonthermal SAR values on melatonin and body weight of Djungarian hamsters (Phodopus sungorus). J. Pineal Res., 2008, 44(3), 267-272.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00522.x] [PMID: 18339122]
[73]
Koyu, A.; Ozguner, F.; Cesur, G.; Gokalp, O.; Mollaoglu, H.; Caliskan, S.; Delibas, N. No effects of 900 MHz and 1800 MHz electromagnetic field emitted from cellular phone on nocturnal serum melatonin levels in rats. Toxicol. Ind. Health, 2005, 21(1-2), 27-31.
[http://dx.doi.org/10.1191/0748233705th212oa] [PMID: 15986574]
[74]
Hata, K.; Yamaguchi, H.; Tsurita, G.; Watanabe, S.; Wake, K.; Taki, M.; Ueno, S.; Nagawa, H. Short term exposure to 1439 MHz pulsed TDMA field does not alter melatonin synthesis in rats. Bioelectromagnetics, 2005, 26(1), 49-53.
[http://dx.doi.org/10.1002/bem.20080] [PMID: 15605405]
[75]
Altpeter, E.S.; Röösli, M.; Battaglia, M.; Pfluger, D.; Minder, C.E.; Abelin, T. Effect of short-wave (6-22 MHz) magnetic fields on sleep quality and melatonin cycle in humans: The Schwarzenburg shut-down study. Bioelectromagnetics, 2006, 27(2), 142-150.
[http://dx.doi.org/10.1002/bem.20183] [PMID: 16342198]
[76]
Singh, S.; Mani, K.V.; Kapoor, N. Effect of occupational EMF exposure from radar at two different frequency bands on plasma melatonin and serotonin levels. Int. J. Radiat. Biol., 2015, 91(5), 426-434.
[http://dx.doi.org/10.3109/09553002.2015.1004466] [PMID: 25565559]
[77]
Reiter, R.J. Melatonin in the context of the reported bioeffects of environmental electromagnetic fields. Bioelectrochem. Bioenerg., 1998, 47(1), 135-142.
[http://dx.doi.org/10.1016/S0302-4598(98)00152-4]
[78]
Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res., 2013, 54(3), 245-257.
[http://dx.doi.org/10.1111/jpi.12010] [PMID: 22998574]
[79]
Barnes, F.; Greenebaum, B. Role of radical pairs and feedback in weak radio frequency field effects on biological systems. Environ. Res., 2018, 163, 165-170.
[http://dx.doi.org/10.1016/j.envres.2018.01.038] [PMID: 29438901]
[80]
Zhu, H.; Chen, S.; Yao, S.; Wang, W. Protective effect of melatonin on photo-damage to lysozyme. J. Photochem. Photobiol. B, 2009, 94(2), 125-130.
[http://dx.doi.org/10.1016/j.jphotobiol.2008.11.004] [PMID: 19097803]
[81]
Gumral, N.; Saygin, M.; Asci, H.; Uguz, A.C.; Celik, O.; Doguc, D.K.; Savas, H.B.; Comlekci, S. The effects of electromagnetic radiation (2450 MHz wireless devices) on the heart and blood tissue: Role of melatonin. Bratisl. Lek Listy, 2016, 117(11), 665-671.
[PMID: 28125893]
[82]
Tök, L.; Nazıroğlu, M.; Doğan, S.; Kahya, M.C.; Tök, O. Effects of melatonin on wi-fi-induced oxidative stress in lens of rats. Indian J. Ophthalmol., 2014, 62(1), 12-15.
[http://dx.doi.org/10.4103/0301-4738.126166] [PMID: 24492496]
[83]
Ozguner, F.; Bardak, Y.; Comlekci, S. Protective effects of melatonin and caffeic acid phenethyl ester against retinal oxidative stress in long-term use of mobile phone: A comparative study. Mol. Cell. Biochem., 2006, 282(1-2), 83-88.
[http://dx.doi.org/10.1007/s11010-006-1267-0] [PMID: 16317515]
[84]
Oksay, T.; Naziroğlu, M.; Doğan, S.; Güzel, A.; Gümral, N.; Koşar, P.A. Protective effects of melatonin against oxidative injury in rat testis induced by wireless (2.45 GHz) devices. Andrologia, 2014, 46(1), 65-72.
[http://dx.doi.org/10.1111/and.12044] [PMID: 23145464]
[85]
Shokri, M.; Shamsaei, M.E.; Malekshah, A.K.; Amiri, F.T. The protective effect of melatonin on radiofrequency electromagnetic fields of mobile phone-induced testicular damage in an experimental mouse model. Andrologia, 2020, 52(11)e13834
[http://dx.doi.org/10.1111/and.13834] [PMID: 33040351]
[86]
Sokolovic, D.; Djindjic, B.; Nikolic, J.; Bjelakovic, G.; Pavlovic, D.; Kocic, G.; Krstic, D.; Cvetkovic, T.; Pavlovic, V. Melatonin reduces oxidative stress induced by chronic exposure of microwave radiation from mobile phones in rat brain. J. Radiat. Res. (Tokyo), 2008, 49(6), 579-586.
[http://dx.doi.org/10.1269/jrr.07077] [PMID: 18827438]
[87]
Kesari, K.K.; Jamal, Q.M.S.; Sharma, A. LPO and ROS production in rat brain exposed to microwaves: Computational elucidation of melatonin in repair system; Perspectives in Environmental Toxicology Springer International Publishing, 2017, pp. 31-46.
[88]
Erdem Koç, G.; Kaplan, S.; Altun, G.; Gümüş, H.; Gülsüm Deniz, Ö.; Aydin, I.; Emin Onger, M.; Altunkaynak, Z. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int. J. Radiat. Biol., 2016, 92(10), 590-595.
[http://dx.doi.org/10.1080/09553002.2016.1206223] [PMID: 27442260]
[89]
Nazıroğlu, M.; Çelik, Ö.; Özgül, C.; Çiğ, B.; Doğan, S.; Bal, R.; Gümral, N.; Rodríguez, A.B.; Pariente, J.A. Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat. Physiol. Behav., 2012, 105(3), 683-692.
[http://dx.doi.org/10.1016/j.physbeh.2011.10.005] [PMID: 22019785]
[90]
Ishii, M.; Shimizu, S.; Hara, Y.; Hagiwara, T.; Miyazaki, A.; Mori, Y.; Kiuchi, Y. Intracellular-produced hydroxyl radical mediates H2O2-induced Ca2+ influx and cell death in rat β-cell line RIN-5F. Cell Calcium, 2006, 39(6), 487-494.
[http://dx.doi.org/10.1016/j.ceca.2006.01.013] [PMID: 16546253]
[91]
Jajte, J.; Zmyślony, M.; Palus, J.; Dziubałtowska, E.; Rajkowska, E. Protective effect of melatonin against in vitro iron ions and 7 mT 50 Hz magnetic field-induced DNA damage in rat lymphocytes. Mutat. Res., 2001, 483(1-2), 57-64.
[http://dx.doi.org/10.1016/S0027-5107(01)00230-5] [PMID: 11600133]
[92]
Sage, C. The implications of non-linear biological oscillations on human electrophysiology for electrohypersensitivity (EHS) and multiple chemical sensitivity (MCS). Rev. Environ. Health, 2015, 30(4), 293-303.
[http://dx.doi.org/10.1515/reveh-2015-0007] [PMID: 26368042]
[93]
Irigaray, P.; Caccamo, D.; Belpomme, D. Oxidative stress in electrohypersensitivity self reporting patients: Results of a prospective in vivo investigation with comprehensive molecular analysis. Int. J. Mol. Med., 2018, 42(4), 1885-1898.
[http://dx.doi.org/10.3892/ijmm.2018.3774] [PMID: 30015864]
[94]
Mistraletti, G.; Paroni, R.; Umbrello, M.; D’Amato, L.; Sabbatini, G.; Taverna, M.; Formenti, P.; Finati, E.; Favero, G.; Bonomini, F.; Rezzani, R.; Reiter, R.J.; Iapichino, G. Melatonin pharmacological blood levels increase total antioxidant capacity in critically ill patients. Int. J. Mol. Sci., 2017, 18(4), 759.
[http://dx.doi.org/10.3390/ijms18040759] [PMID: 28368352]
[95]
Belpomme, D.; Campagnac, C.; Irigaray, P. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Rev. Environ. Health, 2015, 30(4), 251-271.
[http://dx.doi.org/10.1515/reveh-2015-0027] [PMID: 26613326]
[96]
Mahmood, N.; Jumma, K.M.; Hussain, S.A. Dose-dependent anti-inflammatory activity of melatonin in experimental animal model of chronic inflammation. Glob. J. Pharmacol., 2010, 4(2), 66-70.
[97]
Mayo, J.C.; Sainz, R.M.; Tan, D-X.; Hardeland, R.; Leon, J.; Rodriguez, C.; Reiter, R.J. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol., 2005, 165(1-2), 139-149.
[http://dx.doi.org/10.1016/j.jneuroim.2005.05.002] [PMID: 15975667]
[98]
Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol., 2017, 15(3), 434-443.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[99]
Bumb, J.M.; Enning, F.; Mueller, J.K.; van der List, T.; Rohleder, C.; Findeisen, P.; Noelte, I.; Schwarz, E.; Leweke, F.M. Differential melatonin alterations in cerebrospinal fluid and serum of patients with major depressive disorder and bipolar disorder. Compr. Psychiatry, 2016, 68, 34-39.
[http://dx.doi.org/10.1016/j.comppsych.2016.03.005] [PMID: 27234180]
[100]
Nie, L.; Wei, G.; Peng, S.; Qu, Z.; Yang, Y.; Yang, Q.; Huang, X.; Liu, J.; Zhuang, Z.; Yang, X. Melatonin ameliorates anxiety and depression-like behaviors and modulates proteomic changes in triple transgenic mice of Alzheimer’s disease. Biofactors, 2017, 43(4), 593-611.
[http://dx.doi.org/10.1002/biof.1369] [PMID: 28608594]
[101]
Shamir, E.; Laudon, M.; Barak, Y.; Anis, Y.; Rotenberg, V.; Elizur, A.; Zisapel, N. Melatonin improves sleep quality of patients with chronic schizophrenia. J. Clin. Psychiatry, 2000, 61(5), 373-377.
[http://dx.doi.org/10.4088/JCP.v61n0509] [PMID: 10847313]
[102]
Gringras, P; Nir, T; Breddy, J; Frydman-Marom, A; Findling, RL Efficacy and safety of pediatric prolonged-release melatonin for insomnia in children with autism spectrum disorder. J. Am. Acad. Child Adoles. Psychiat., 2017.
[http://dx.doi.org/10.1016/j.jaac.2017.09.414]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy