Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

Experimental and DFT Studies on Well-Defined Odd-Even Effect in Organic Liquid Crystal Tetramers Incorporating Two Chiral Centers

Author(s): Mursyida Abdul Rahim, Guan-Yeow Yeap*, Wai Kit Tang and Chi-Kit Siu

Volume 15, Issue 1, 2022

Published on: 31 May, 2021

Page: [90 - 101] Pages: 12

DOI: 10.2174/2666145414666210531123103

Price: $65

Abstract

Introduction: A new series of organic liquid crystal tetramers containing two symmetrical mesogenic units of 4-(4’-phenoxylimino)methyl)phenol joined by methylene –(CH2)mspacer wherein m varied from 5 to 10 have been synthesized.

Methods: The length for each of the mesogenic units was extended further via connection with two chiral entities of (S)-2- methylbutyl-4-(4’-bromobutyloxyphenyl)benzoate situated at both terminal ends. The structures of these tetramers were elucidated using elemental analysis and spectroscopic techniques (FT-IR and 1H-NMR) whilst the texture, and the phase transition temperatures were studied using polarizing optical microscopy (POM) along with differential scanning calorimetry (DSC).

Results: All the homologues in this series are enantiotropic mesogens exhibiting oily streak texture or fan-shaped texture characteristic of the chiral nematic phase. The odd-even effect can be observed upon increasing the methylene spacer length. The structure-properties connectivity has demonstrated that the phase transition temperature for tetramers with even-numbered methylene units in the spacer is relatively higher in comparison with the odd-numbered members.

Conclusion: The computational study via molecular constraint dynamics performed at the DFTB level of theory has further supported that more energy is required for the even-numbered tetramer than the odd-numbered member to undergo the structural transition from folded to extended geometries.

Keywords: Organic tetramers, enantiotropic, odd-even effect, oily streak, fan shaped, chiral nematic phase.

Graphical Abstract

[1]
Ha ST, Ong LK, Yasodha S, et al. Mesogenic Schiff base esters with terminal chloro group: Synthesis, thermotropic properties and X-ray diffraction studies. Int J Phys Sci 2010; 5(5): 564-75.
[2]
Yelamaggad CV, Tamilenthi VP. Synthesis and thermal properties of liquid crystal trimers comprising cyanobiphenyl and salicylaldimine anisometric segments. Tetrahedron 2009; 65: 6403-9.
[http://dx.doi.org/10.1016/j.tet.2009.05.076]
[3]
Achalkumar AS, Hiremath US, Shankar Rao DS, Yelamaggad CV. Non- conventional liquid crystals: synthesis and mesomorphism of non-symmetric trimers and tetramers derived from cholesterol. Liq Cryst 2011; 38(11-12): 1563-89.
[http://dx.doi.org/10.1080/02678292.2011.610473]
[4]
Iwan A, Janeczek H, Hreniak A, Palewicz M, Pociecha D. Thermal and current-voltage behaviour of liquid crystal compounds with rod and bent shapes comprising alkoxysemifluorinated and imine segments. Liq Cryst 2010; 37(8): 1021-31.
[http://dx.doi.org/10.1080/02678291003746262]
[5]
Merlo AA, Ritter OMS, Pereira FV, Vieira CH, Silveira NP. Chiral liquid- crystalline polyacrylates from (S)-(-)-2-methyl-1-butanol. Synthesis, mesomorphic properties and light scattering. J Braz Chem Soc 2001; 12: 184-91.
[http://dx.doi.org/10.1590/S0103-50532001000200010]
[6]
Bo X, Zhao JL, Bi QW, Ping H, Carl R, Ke QZ. Synthesis of triphenylene discotic liquid crystals possessing nine alkyl chains: influence of molecular symmetry and chain length on mesomorphism. Mol Cryst Liq Cryst 2013; 577(1): 25-35.
[http://dx.doi.org/10.1080/15421406.2013.781489]
[7]
Yeap GY, Subramanian B, Samikannu R. Synthesis and mesomorphic properties of chiral liquid crystal dimers derived from azobenzene and substituted naphthol. Liq Cryst 2013; 40(4): 555-63.
[http://dx.doi.org/10.1080/02678292.2013.765608]
[8]
Majumdar KC, Pranab KS, Shankar Rao DS, Prasad SK. Oxadiazole-based non-symmetric liquid crystalline trimers terminating with ferrocene and cholesterol units exhibiting TGBC* phase over a wide thermal range. Liq Cryst 2012; 39(9): 1117-23.
[http://dx.doi.org/10.1080/02678292.2012.698756]
[9]
Yeap GY, Chan TN, Yam WS, Madrak K, Pociecha D, Gorecka E. Non-symmetric chiral isoflavone dimers: synthesis, characterisation and mesomorphic behaviour. Liq Cryst 2012; 39(9): 1041-7.
[http://dx.doi.org/10.1080/02678292.2012.693628]
[10]
Lee HC, Zhibao L, Henderson PA, et al. Cholesteryl-based liquid crystal dimers containing a sulfur–sulfur link in the flexible spacer. Liq Cryst 2012; 39(2): 259-68.
[http://dx.doi.org/10.1080/02678292.2011.641753]
[11]
Subala SS, Sundar BS, Sastry SS. Synthesis and characterization of nonsymmetric liquid crystal dimer containing biphenyl and azobenzene moiety. J Chem 2013; 2013: 939406.
[http://dx.doi.org/10.1155/2013/939406]
[12]
Liao CC, Wang CS, Sheu HS, Lai CK. Symmetrical dimer liquid crystals derived from benzoxazoles. Tetrahedron 2008; 64: 7977-85.
[http://dx.doi.org/10.1016/j.tet.2008.06.001]
[13]
Yeap GY, Hng TC, Mahmood WAK, Ewa G, Daisuke T, Kohtaro O. Chirality- induced liquid crystalline properties of seven-ring trimeric mesogens incorporating dual chiral centers. Mol Cryst Liq Cryst 2009; 506(1): 109-33.
[http://dx.doi.org/10.1080/15421400902841353]
[14]
Majumdar KC, Ponra S, Chakravorty S. Synthesis and characterization of cholesterol-based tetramers. Mol Cryst Liq Cryst 2010; 528(1): 113-9.
[http://dx.doi.org/10.1080/15421406.2010.504628]
[15]
Imrie CT, Stewart D, Remy C, Christie DW, Hamley IW, Harding RJ. Liquid crystal tetramers. Mater Chem 1999; 9: 2321-5.
[http://dx.doi.org/10.1039/a901899i]
[16]
Henderson PA, Imrie CT. Liquid crystal tetramers: influence of molecular shape on liquid crystal behaviour. Liq Cryst 2005; 32(11-12): 1531-41.
[http://dx.doi.org/10.1080/02678290500410620]
[17]
Itahara T. Effects of combining of different flexible spacers in liquid crystal trimers and tetramers on transition properties. Liq Cryst 2010; 37(9): 1157-63.
[http://dx.doi.org/10.1080/02678292.2010.490307]
[18]
Narumi T, Yoshizawa A, Yamamoto J, Takanishi Y. Synthesis and phase transition behavior of novel liquid crystal tetramers. Mol Cryst Liq Cryst 2009; 509(1): 263-73.
[http://dx.doi.org/10.1080/15421400903065739]
[19]
Itahara T, Tamura H. Odd-even effect in liquid crystal tetramers. Mol Cryst Liq Cryst 2009; 501(1): 94-103.
[http://dx.doi.org/10.1080/15421400802697665]
[20]
Blatch AE, Fletcher ID, Luckhurst GR. Symmetric and non-symmetric liquid crystal dimers with branched terminal alkyl chains: racemic and chiral. J Mater Chem 1997; 7(1): 9-17.
[http://dx.doi.org/10.1039/a602980i]
[21]
Rokunohe J, Yamaguchi A, Yoshizawa A. Physical properties of a novel chiral material possessing a binaphthyl group. Liq Cryst 2005; 32: 207-12.
[http://dx.doi.org/10.1080/02678290412331320575]
[22]
Yelamaggad CV, Nagamani SA, Hiremath US, Rao DSS, Prasad SK. The first examples of monodispersive liquid crystalline tetramers possessing four non-identical anisometric segments. Liq Cryst 2002; 29(2): 231-6.
[http://dx.doi.org/10.1080/02678290110097792]
[23]
Henderson PA, Niemeyer O, Imrie CT. Methylene-linked liquid crystal dimers. Liq Cryst 2001; 28(3): 463-72.
[http://dx.doi.org/10.1080/02678290010007558]
[24]
Niggemann E, Stegemeyer H. Magnetic field-induced instabilities in cholesteric liquid crystals: periodic deformations of the Grandjean texture. Liq Cryst 1989; 5(2): 739-47.
[http://dx.doi.org/10.1080/02678298908045424]
[25]
Qi H, Neil JQ, Hegmann T. Chirality transfer in nematic liquid crystals doped with (S)-naproxenfunctionalized gold nanoclusters: an induced circular dichroism study. J Mater Chem 2007; 18: 374-80.
[http://dx.doi.org/10.1039/B712616F]
[26]
Donaldson T, Henderson PA, Achard MF, Imrie CT. Chiral liquid crystal tetramers. J Mater Chem 2011; 21: 10935-41.
[http://dx.doi.org/10.1039/c1jm10992h]
[27]
Elstner M, Porezag D, Jungnickel G, et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B Condens Matter Mater Phys 1998; 58: 7260-8.
[http://dx.doi.org/10.1103/PhysRevB.58.7260]
[28]
Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R. Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B Condens Matter 1995; 51(19): 12947-57.
[http://dx.doi.org/10.1103/PhysRevB.51.12947] [PMID: 9978089]
[29]
Seifert G, Porezag D, Frauenheim T. Calculations of molecules, clusters, and solids with a simplified LCAO‐DFT‐LDA scheme. Int J Quantum Chem 1996; 58: 185-92.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U]
[30]
Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J. cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev: Comput Mol Sci 2014; 4: 15-25.
[31]
VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput Phys Commun 2005; 167: 103-28.
[http://dx.doi.org/10.1016/j.cpc.2004.12.014]
[32]
Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007; 126(1): 014101.
[http://dx.doi.org/10.1063/1.2408420] [PMID: 17212484]
[33]
Anderson HC. Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Phys 1983; 52: 24.
[http://dx.doi.org/10.1016/0021-9991(83)90014-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy