Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Research Article

A Numerical Study for Determining the Effect of Raffia, Alfa and Sisal Fibers on the Fiber-matrix Interface Damage of Biocomposite Materials

Author(s): Bouchra Achour, Allel Mokaddem*, Bendouma Doumi*, Abdelkader Ziadi*, Lahcen Belarbi and Ahmed Boutaous

Volume 15, Issue 1, 2022

Published on: 11 August, 2021

Page: [115 - 124] Pages: 10

DOI: 10.2174/2666145414666210811154840

Price: $65

Abstract

Background: Nowadays, natural fibers are used in all industrial fields, particularly in automotive technology and civil engineering. This great emergence is due to their biodegradability, recyclability and have no environmental effect.

Objective: In this article, the effect of raffia, alfa and sisal fibers on the damage of biocomposite materials (raffia/PLA (polylactic acid), alfa/PLA and sisal/PLA), subjected to the same mechanical shear stress, has been investigated.

Methods: To calculate the damage to the interface, the genetic operator crossing is employed based on the fiber and matrix damage.

Results: The results have shown that the raffia / PLA and alfa/PLA biocomposite materials are better mechanical properties compared to sisal / PLA, this observation has been confirmed by different values of interface damage of the biocomposite studied.

Conclusion: The numerical results are similar and coincide perfectly with the results of Cox where he demonstrated that the Young's modulus of fibers improves the resistance of the interface. These conclusions are in very good agreement with our numerical data presented by the red cloud, and in good agreement with the work presented by Antoine Le Duigou et al. and Bodros et al. in which they have shown that natural fibers greatly improve the physical characteristics of composite materials.

Keywords: Alfa, interface, PLA (polylactic acid), raffia, shear damage, sisal.

Graphical Abstract

[1]
Silou T, Makonzo-Mondako C, Profiz JS, Boussoukou A, Maloumbi G. Carctéristiques physicochimiques et composition en acides gras des huiles de raffia sese et raffia laurentri. Tropicultura 2000; T18: 26-31.
[2]
Elenga RG, Dirras GF, Goma Maniongui J, Djemia P, Biget MP. On the microstructure and physical properties of untreated raffia textilis fiber. Compos, Part A Appl Sci Manuf 2009; 40(4): 418-22.
[http://dx.doi.org/10.1016/j.compositesa.2009.01.001]
[3]
Elenga RG, Djemia P, Biget MP, Goma Maniongui J, Dirras G. Microstructure and physico-mechanical properties of raw raffia fiber. Matériaux 2006; pp. 13-7.
[4]
Lu Y, Weng L, Cao X. Morphological, thermal and mechanical proerties of ramie crystallites reinforced plasticized starch biocomposites. Carbohydr Polym 2006; 63: 198-204.
[http://dx.doi.org/10.1016/j.carbpol.2005.08.027]
[5]
Pandey JK. Degradability of polymer composites from renewable resources. Thesis India: Savitribai Phule Pune University 2006.
[6]
Karnani R, Krishnan M, Narayan R. Biofiber-reinforced polypropylene composites. Polym Eng Sci 1997; 37: 476-83.
[http://dx.doi.org/10.1002/pen.11691]
[7]
Musset R. The raffia Annale de Géographie. Ann Geogr 1933; 42(236): 190-3.
[8]
Obahiagbon FI. A review of the origin, morphology, cultivation, economic products, health and physiological implications of raffia palm. Afr J Food Sci 2009; 3(13): 447-53.
[9]
Sandy M, Bacon L. Tensile testing of raffia. J Mater Sci Lett 2001; 20: 529-30.
[10]
Ndenecho EN. Biogeographical and ethnobotanical analysis of the raffia palm in the west Cameroon highlands. J Cameroon Acad Sci 2007; 7: 21-32.
[11]
Kankam CK. Raffia palm-reinforced concrete beams. Mater Struct 1997; 30: 313-6.
[http://dx.doi.org/10.1007/BF02486356]
[12]
Brink M, Achigan-Dako EG. Plant resources of tropical Africa16 fibres. Wageningen, Netherland: PROTA-Foundation/CTA 2012.
[13]
Ernst Young. Market study of new uses of plant fibers. ADME 2005.
[14]
Mobasher B, Pahilayani J, Peled A. Analytical simulation of tensile response of fabric reinforced cement based composites. Cement Concr Compos 2006; 28: 77-89.
[http://dx.doi.org/10.1016/j.cemconcomp.2005.06.007]
[15]
Hanifi B, Orhan A, Tahir S. Investigation of fibre reinforced mud brick as building material. Constr Build Mater 2005; 19: 313-8.
[http://dx.doi.org/10.1016/j.conbuildmat.2004.07.013]
[16]
Adil SBIAI. Composite materials with an epoxy matrix loaded with date palm fibers: effect of tempo oxidation on the fibers. Doctoral thesis 2011.
[17]
Duy Cuong NGUYEN. Characterization of the fiber / matrix interface. Application to polypropylene / hemp composites. Doctoral thesis 2016.
[18]
Stéphane GAZUT. (DRT/LIST/DM2I/SID/LS2D) Can genetic algorithms help identify genetic bi-markers?. Paris-Saclay University 2019.
[19]
Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F. Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 2018; 85: 83-127.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.07.001]
[20]
Kaseem M, Hamad K, Deri F, Ko YG. A review on recent researches on polylactic acid/carbon nanotube composites. Polym Bull 2017; 74(7): 2921-37.
[http://dx.doi.org/10.1007/s00289-016-1861-6]
[21]
Kaseem M, Ko YG. Melt flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends. J Polym Environ 2017; 25(4): 994-8.
[http://dx.doi.org/10.1007/s10924-016-0873-5]
[22]
Baley C. Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos, Part A Appl Sci Manuf 2002; 33: 939-48.
[http://dx.doi.org/10.1016/S1359-835X(02)00040-4]
[23]
Keller A, Leupin M, Mediavilla V, Wintermantel E. Influence of the growth stage of industrial hemp on chemical and physical properties of the fibres. Ind Crops Prod 2001; 13: 35-48.
[http://dx.doi.org/10.1016/S0926-6690(00)00051-0]
[24]
Davies CG, Bruce DM. Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 1998; 68(9): 623-9.
[http://dx.doi.org/10.1177/004051759806800901]
[25]
Mukherjee PS, Satyanaravana KG. An empirical evaluation of structure-property relationships in natural fibres and their fracture behaviour. J Mater Sci 1986; 21: 4162-8.
[http://dx.doi.org/10.1007/BF01106524]
[26]
Andersons J, Sparmins E, Joffe R, Wallstrom L. Strength distribution of elementary flax fibres. Compos Sci Technol 2005; 65: 693-702.
[http://dx.doi.org/10.1016/j.compscitech.2004.10.001]
[27]
Abhishek S, Samir OM, Annadurai V, Gopalkrishna Urs R, Mahesh SS, Somashekar R. Role of micro-crystalline parameters in the physical properties of cotton fibers. Eur Polym J 2005; 41: 2916-22.
[http://dx.doi.org/10.1016/j.eurpolymj.2005.06.005]
[28]
Ben Brahim S, Ben Cheikh R. Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa-polyester composite. Compos Sci Technol 2007; 67: 140-7.
[http://dx.doi.org/10.1016/j.compscitech.2005.10.006]
[29]
Dallel M. Evaluation du potentiel textile des fibres d’Alfa (StipaTenacissima L.) :Caractérisation physico-chimique de la fibre au fil. Autre. doctorat, Thèse de Université de Haute Alsace Mulhouse 2012.
[30]
Datta R, Tsai SO, Bonsignore P, Moon SH, Frank JR. Technological and economic potential of poly(lactic acid) and lactic acid derivatives. FEMS Microbiol Rev 1995; 16: 221-31.
[http://dx.doi.org/10.1111/j.1574-6976.1995.tb00168.x]
[31]
Mani HH. Etude de la mise en œuvre de l’acide poly (lactique) par le procédé d’extrusion film: Relation structureprocédé. Matériaux. Université de Lyo; Université de Sfax (Tunisie) 2016. Français. NNT: 2016LYSEI023. 2016.
[32]
Bezazi A, Belaadi A, Bourchak M, Scarpa F, Boba K. Novel extraction techniques, chemical and mechanical characterisation of Agave americana L. natural fibres. Compos, Part B Eng 2014; 66: 194-203.
[http://dx.doi.org/10.1016/j.compositesb.2014.05.014]
[33]
Chand N, Hashmi SAR. Mechanical properties of sisal fibre at elevated temperatures. J Mater Sci 1993; 28: 6676-82.
[http://dx.doi.org/10.1007/BF00356422]
[34]
Chand N, Verma S, Khazanchi AC. SEM and strength characteristics of acetylated sisal fibre. J Mater Sci Lett 1989; 8: 1307-9.
[http://dx.doi.org/10.1007/BF00721503]
[35]
Silva F de A, Chawla N. Filho RD de T. Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol 2008; 68: 3438-43.
[http://dx.doi.org/10.1016/j.compscitech.2008.10.001]
[36]
Thomason JL, Carruthers J, Kelly J, Johnson G. Fibre cross-section determination and variability in sisal and flax and its effects on fibre performance characterisation. Compos Sci Technol 2011; 71: 1008-15.
[http://dx.doi.org/10.1016/j.compscitech.2011.03.007]
[37]
Belaadi A, Bezazi A, Bourchak M, Scarpa F, Zhu C. Thermochemical and statistical mechanical properties of natural sisal fibres. Compos, Part B Eng 2014; 67: 481-9.
[http://dx.doi.org/10.1016/j.compositesb.2014.07.029]
[38]
Milanese AC, Cioffi MOH, Voorwald HJC. Thermal and mechanical behaviour of sisal/phenolic composites. Compos, Part B Eng 2012; 43: 2843-50.
[http://dx.doi.org/10.1016/j.compositesb.2012.04.048]
[39]
Towo AN, Ansell MP. Fatigue evaluation and dynamic mechanical thermal analysis of sisal fibre-thermosetting resin composites. Compos Sci Technol 2008; 68: 925-32.
[http://dx.doi.org/10.1016/j.compscitech.2007.08.022]
[40]
Belaadi A, Bezazi A, Maache M, Scarpa F. Fatigue in sisal fiber reinforced polyester composites: hysteresis and energy dissipation. Proc Eng 2014; 74: 325-8.
[http://dx.doi.org/10.1016/j.proeng.2014.06.272]
[41]
Zuccarello B. Static and dynamic mechanical properties of eco-friendly polymer composites. In: Amuddin, Thomas S, Kumar MR, Asiri A, Eds Sustainable Polymer Composites and Nanocomposites Springer, Cham. 2019; pp. 259-92.
[http://dx.doi.org/10.1007/978-3-030-05399-4_9]
[42]
Zuccarello B, Zingales M. Toward high performance renewable agave reinforced biocomposites: optimization of fiber performance and fiber-matrix adhesion analysis. Compos, Part B Eng 2017; 122: 109-20.
[http://dx.doi.org/10.1016/j.compositesb.2017.04.011]
[43]
Zuccarello B, Scaffaro R. Experimental analysis and micromechanical models of high performance renewable agave reinforced biocomposites. Compos, Part B Eng 2017; 119: 141-52.
[http://dx.doi.org/10.1016/j.compositesb.2017.03.056]
[44]
Zuccarello B, Marannano G, Mancino A. Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers. Compos Struct 2018; 194: 575-83.
[http://dx.doi.org/10.1016/j.compstruct.2018.04.007]
[45]
Zuccarello B, Marannano G. Random short sisal fiber biocomposites: optimal manufacturing process and reliable theoretical models. Mater Des 2018; 149: 87-100.
[http://dx.doi.org/10.1016/j.matdes.2018.03.070]
[46]
Pantano A, Zuccarello B. Numerical model for the characterization of biocomposites reinforced by sisal fibres. Proc Struct Integr 2018; 8: 517-25.
[http://dx.doi.org/10.1016/j.prostr.2017.12.051]
[47]
Mancino A, Marannano G, Zuccarello B. Implementation of eco-sustainable biocomposite materials reinforced by optimized agave fibers. Proc Struct Integr 2018; 8: 526-38.
[http://dx.doi.org/10.1016/j.prostr.2017.12.052]
[48]
Militello C, Bongiorno F, Epasto G, Zuccarello B. Low-velocity impact behaviour of green epoxy biocomposite laminates reinforced by sisal fibers. Compos Struct 2020.
[http://dx.doi.org/10.1016/j.compstruct.2020.112744]
[49]
Chaboche JL. Mechanics of solid materials. Cambridge university press 1988.
[50]
Lim LT. Kevin Cink, Tim Vanyo Poly(lactic acid): Synthesis, structures, properties, processing, and applications. New Jersey: Wiley 2010; p. 69.
[51]
Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 2010; 101(22): 8493-501.
[http://dx.doi.org/10.1016/j.biortech.2010.05.092] [PMID: 20630747]
[52]
Garlotta D. A literature review of poly(lactic acid). J Polym Environ 2001; 9: 2.
[http://dx.doi.org/10.1023/A:1020200822435]
[53]
Cipriano TF, Silva AL, Silva AH, Sousa AM, Silva GM, Rocha MG. Thermal, rheological and morphological properties of poly (lactic acid) (pla) and talc composites. Polímeros 2014; 24: 276-82.
[http://dx.doi.org/10.4322/polimeros.2014.067]
[54]
Weibull W. A statistical theory of the strength of materials. Royal Swedish Acad Eng Sci Proc 1939; 151: 1-45.
[55]
Atig K, Mokaddem A, Meskine M, Doumi B, Belkheir M, Elkeurti M. Using genetic algorithms to study the effect of cellulose fibers ratio on the fiber-matrix interface damage of biocomposite materials. Recent Pat Mater Sci 2019; 12(1): 83-90.
[http://dx.doi.org/10.2174/1874464812666190408144801]
[56]
Mokaddem A, Alami M, Boutaous A. A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber-matrix interface of a composite material. J Textil Inst 2012; 103(12): 1376-82.
[http://dx.doi.org/10.1080/00405000.2012.727587]
[57]
Benyamina B, Mokaddem A, Doumi B, et al. Study and modeling of thermomechanical properties of jute and Alfa fiber-reinforced polymer matrix hybrid biocomposite materials. Polym Bull 2020; 78: 1771-95.
[http://dx.doi.org/10.1007/s00289-020-03183-7]
[58]
Mokaddem A, Alami M, Doumi B, Boutaous A. Prediction by a genetic algorithm of the fiber matrix interface damage for composite material. Strength Mater 2014; 46(4): 543-7.
[59]
Mokaddem A, Alami M, Ziani N, Beldjoudi N, Boutaous A. Prediction by a genetic algorithm of the fiber matrix interface damage for composite material. Part2: study of shear damage to Graphite/Epoxy nanocomposites. Strength Mater 2014; 46: 548-52.
[60]
Ladevèse P, Lubineau G. Pont entre micro et méso mécaniques des composites stratifies. Elsevier. C R Mec 2003; 331: 537-44.
[http://dx.doi.org/10.1016/S1631-0721(03)00130-X]
[61]
Lissart N. Damage and failure in ceramic matrix minicomposites: experimental study and model, acta mater. 1997; 45: 1025-44.
[62]
Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952; 12: 72-9.
[http://dx.doi.org/10.1088/0508-3443/3/3/302]
[63]
Belkheir M, Doumi B, Mokaddem A, Boutaous A. Using genetic algorithm for investigating the performance of carbonbasalt/polyester hybrids composite materials. Curr Mater Sci 2021; 13(2): 120-8.
[http://dx.doi.org/10.2174/2666145413999201124224238]
[64]
Antoine Le Duigou. Kervoelen A, Le Grand A, Nardin M, Baley C. Interfacial properties of flax fibre-epoxy resin systems: existence of a complex interphase. Compos Sci Technol 2014; 100: 152-7.
[http://dx.doi.org/10.1016/j.compscitech.2014.06.009]
[65]
Bodros E, Pillin I, Montrelay N, Baley C. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 2007; 67(3-4): 462-70.
[http://dx.doi.org/10.1016/j.compscitech.2006.08.02]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy