Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Spectral, Crystalline, Thermal, Morphological Characterization and Catalytic Performance of Ruthenium(III) Complexes of Natural Biopolymer-Based Schiff Base Ligands

Author(s): T. Vadivel*, M. Dhamodaran and S. Kavitha

Volume 2, Issue 1, 2022

Published on: 27 May, 2021

Article ID: e270521193640 Pages: 9

DOI: 10.2174/2666001601666210527113042

Price: $65

Abstract

Aims: To achieve catalytic performance for the oxidation of alcohols using Ruthenium(III) metal complexes as a catalyst.

Background: Chitosan is a potential candidate, which enables the synthesis of transition metal complexes from its corresponding bidentate ligands.

Objective: The chemical modification was performed on a chitosan molecule with suitable aldehydes.

Methods: The oxidation of alcohols was performed using ruthenium metal complexes as a catalyst with pyridinium chlorochromate (PCC) as an oxidant and dichloromethane as a solvent. To a solution of alcohol (2 mmol) and dichloromethane (25 mmol), pyridinium chlorochromate (3 mmol), and ruthenium(III) complexes (0.01 mmol) were added. The solution was stirred for 12 h at room temperature. At the required time, the aldehyde/ketone was extracted with n-hexane. The nhexane was then analyzed by GC.

Results: The ruthenium(III) complexes derived from modified chitosan Schiff bidentate ligands have resulted in good catalytic performance for the oxidation of alcohols under optimized conditions.

Conclusion: The enhanced catalytic activities of ruthenium(III) complexes were due to the presence of electron-donating groups in the Schiff base ligand.

Keywords: Chitosan, NO donor ligands, ruthenium(III) complex, catalytic activity, schiff base, biopolymer.

Graphical Abstract

[1]
Enescu, D.; Hamciuc, V.; Pricop, L.; Hamaide, T.; Harabagiu, V.; Simionescu, B.C. Polydimethylsiloxane-modified chitosan I. synthesis and structural characterisation of graft andcrosslinked copolymers. J. Polym. Res., 2009, 16, 73-80.
[http://dx.doi.org/10.1007/s10965-008-9204-4]
[2]
Bansal, V.; Kumar Sharma, P.; Sharma, N.; Prakash Pal, O.; Malviya, R. Applications of chitosan and chitosan derivatives in drug delivery. Adv. Biol. Res. (Faisalabad), 2011, 5, 28-37.
[3]
Hong, S.; Yang, Q.; Yuan, Y.; Chen, L.; Song, Y.; Lian, H. Sustainable co-solvent induced one step extraction of low molecular weight chitin with high purity from raw lobster shell. Carbohydr. Polym., 2019, 205, 236-243.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.045] [PMID: 30446100]
[4]
Krishnapriya, K.R.; Kandaswamy, M. A new chitosan biopolymer derivative as metal-complexing agent: Synthesis, characterization, and metal(II) ion adsorption studies. Carbohydr. Res., 2010, 345(14), 2013-2022.
[http://dx.doi.org/10.1016/j.carres.2010.06.005] [PMID: 20708730]
[5]
Chen, P.H.; Hwang, Y.H.; Kuo, T.Y.; Liu, F.H.; Yih, J. JenHsieh, H. Improvement in the properties of chitosan membranes using natural organic acid solutions as solvents for chitosan dissolution. J. Med. Biol. Eng., 2007, 27, 23-28.
[6]
Kocak, N.; Sahin, M.; Kücükkolbasi, S.; Erdogan, Z.O. Synthesis and characterization of novel nano-chitosan Schiff base and use of lead (II) sensor. Int. J. Biol. Macromol., 2012, 51(5), 1159-1166.
[http://dx.doi.org/10.1016/j.ijbiomac.2012.09.003] [PMID: 22982811]
[7]
Pervaiz, M.; Ahmad, I.; Yousaf, M.; Kirn, S.; Munawar, A.; Saeed, Z.; Adnan, A.; Gulzar, T.; Kamal, T.; Ahmad, A.; Rashid, A. Synthesis, spectral and antimicrobial studies of amino acid derivative Schiff base metal (Co, Mn, Cu, and Cd) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 642-649.
[http://dx.doi.org/10.1016/j.saa.2018.05.057] [PMID: 29880252]
[8]
Gavilan, K.C.; Pestov, A.V.; Garcia, H.M.; Yatluk, Y.; Roussy, J.; Guibal, E. Mercury sorption on a thiocarbamoyl derivative of chitosan. J. Hazard. Mater., 2009, 165(1.3), 415-426.
[http://dx.doi.org/10.1016/j.jhazmat.2008.10.005] [PMID: 19059716]
[9]
Anan, N.A.; Hassan, S.M.; Saad, E.M.; Butler, I.S.; Mostafa, S.I. Preparation, characterization and pH-metric measurements of 4- hydroxysalicylidenechitosan Schiff-base complexes of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Ru(III), Rh(III), Pd(II) and Au(III). Carbohydr. Res., 2011, 346(6), 775-793.
[http://dx.doi.org/10.1016/j.carres.2011.01.014] [PMID: 21392736]
[10]
Caro, C.A.; Cabello, G.; Landaeta, E.; Pérez, J.; González, M.; Zaga, J.H.; Lillo, L. Preparation, spectroscopic, and electrochemical characterization of metal(II) complexes with Schiff base ligands derived from chitosan: Correlations of redox potentials with Hammett parameters. J. Coord. Chem., 2014, 67, 4114-4124.
[http://dx.doi.org/10.1080/00958972.2014.977271]
[11]
Bal, S.; Orhan, B.; Connolly, J.D. Dıgrak, M.; Koytepe, S. Synthesis and characterization of Schiff bases, their metal complexes and thermal, antimicrobial and catalytic features. J. Therm. Anal. Calorim., 2015, 121, 909-917.
[http://dx.doi.org/10.1007/s10973-015-4617-x]
[12]
Gunasekaran, N.; Karvembu, R. Synthesis, characterization, and catalytic applications of Ru(III) complexes containing N-[di(alkyl/aryl)carbamothioyl]benzamide derivatives and triphenylphosphine/triphenylarsine. Inorg. Chem. Commun., 2010, 13, 952-955.
[http://dx.doi.org/10.1016/j.inoche.2010.05.004]
[13]
Demetgul, C.; Serin, S. Synthesis and characterization of a new vic-dioximederivativeof chitosan and its transition metal complexes. Carbohydr. Polym., 2008, 72, 506-512.
[http://dx.doi.org/10.1016/j.carbpol.2007.09.020]
[14]
Antony, R.; Theodore David, S.; Saravanan, K.; Karuppasamy, K.; Balakumar, S. Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2013, 103, 423-430.
[http://dx.doi.org/10.1016/j.saa.2012.09.101] [PMID: 23274227]
[15]
Madhan, R.; Galmari, V. Half‒Sandwich (h6‒p‒Cymene) Ruthenium(II) complexes bearing 5‒Amino‒1‒Methyl‒3‒Phenylpyrazole Schiff base ligands: Synthesis, structure and catalytic transfer hydrogenation of ketones. J. Organomet. Chem., 2019, 880, 47-55.
[http://dx.doi.org/10.1016/j.jorganchem.2018.10.029]
[16]
Elton Marks de. A.B.; Solranny Carla Cavalcante, C.e.S.; Durcilene Alves da, S.; Fernando Aécio de, A.C.; Humberto, M.B.; Luiz de Sousa, S.J.; Edson Cavalcanti da, S.F. Modified chitosan-based bioactive material for antimicrobial application: Synthesis and characterization. Int. J. Biol. Macromol., 2018, 117, 640-647.
[17]
Selwin Joseyphus, R.; Justin Dhanaraj, C.; Sivasankaran Nair, M. Synthesis and characterization of some Schiff base transition metal complexes derived from vanillin and L(+)alanine. Transition Met. Chem., 2006, 31, 699-702.
[http://dx.doi.org/10.1007/s11243-006-0048-7]
[18]
Viswanathamurthi, P.; Dharmaraj, N.; Anuradha, S.; Karuppannan Natarajan, K. Ruthenium(III) complexes with tetradentate Schiff bases containing triphenylphosphine or triphenylarsine. Transition Met. Chem., 1998, 23, 337-341.
[http://dx.doi.org/10.1023/A:1006953224166]
[19]
Peng, H.; Xiong, H.; Li, J.; Xie, M.; Liu, Y.; Bai, C.; Chen, L. Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem., 2010, 121, 23-28.
[http://dx.doi.org/10.1016/j.foodchem.2009.11.085]
[20]
Rani, S.; Kumar, S.; Chandra, S. Spectroscopic and biological approach in the characterization of a novel14-membered [N4] macrocyclic ligand and its Palladium(II), Platinum(II),Ruthenium(III) and Iridium(III) complexes. Spectrochim. Acta, Part A., 2014, 118, 244-250.
[21]
Cahit, D.; Neslihan, B. Synthesis, characterization and antioxidant activity of chitosan-chromone derivatives. Carbohydr. Polym., 2018, 181, 812-817.
[22]
Vadivel, T.; Dhamodaran, M.; Kulathooran, S.; Kavitha, M.; Amirthaganesan, K. In vitro evaluation of antifungal activities by permeation of Ru(III)complexes derived from chitosan-schiff base ligand. Curr. Appl. Polym. Sci., 2019, 3, 212-220.
[http://dx.doi.org/10.2174/2452271603666191016130012]
[23]
Chethan, P.D.; Vishalakshi, B.; Sathish, L.; Ananda, K.; Poojary, B. Preparation of substituted quaternized arylfuran chitosan derivatives and their antimicrobial activity. Int. J. Biol. Macromol., 2013, 59, 158-164.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.04.045] [PMID: 23608102]
[24]
Zeng, M.; Zhang, X.; Shao, L.; Qi, C.; Zhang, X-M. Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions. J. Organomet. Chem., 2012, 704, 29-37.
[http://dx.doi.org/10.1016/j.jorganchem.2012.01.003]
[25]
Abdelaal, M.Y.; Sobahi, T.R.; Al-Shareef, H.F. Modification of chitosan derivatives of environmental and biological interest: A green chemistry approach. Int. J. Biol. Macromol., 2013, 55, 231-239.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.01.013] [PMID: 23376358]
[26]
Neelakantan, M.A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M. Spectral characterization, cyclic voltammetry, morphology, biological activities and DNA cleaving studies of amino acid Schiff base metal(II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2008, 71(4), 1599-1609.
[http://dx.doi.org/10.1016/j.saa.2008.06.008] [PMID: 18656419]
[27]
Emara, A.A.A.; Tawab, M.A.; El-ghamry, M.A.; Elsabee, M.Z. Metal uptake by chitosan derivatives and structure studies of the polymermetal complexes. Carbohydr. Polym., 2011, 83, 192-202.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.040]
[28]
Mohan, N.; Muthumari, S.; Ramesh, R. Synthesis, structure and anticancer activity of (h6- benzene) ruthenium(II) complexes containing aroylhydrazone ligands. J. Organomet. Chem., 2016, 807, 45-51.
[http://dx.doi.org/10.1016/j.jorganchem.2016.01.033]
[29]
Trimukhe, K.D.; Varma, A.J. Metal complexes of crosslinked chitosans: Correlations between metal ioncomplexation values and thermal properties. Carbohydr. Polym., 2009, 75, 63-70.
[http://dx.doi.org/10.1016/j.carbpol.2008.06.011]
[30]
Khan, M.I.; Khan, A.; Hussain, I.; Ali Khan, M.; Gul, S.; Iqbal, M.; Rahman, I.U.; Khuda, F. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg. Chem. Commun., 2013, 35, 104-109.
[http://dx.doi.org/10.1016/j.inoche.2013.06.014]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy