Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Existing Drug Repurposing for Glioblastoma to Discover Candidate Drugs as a New a Approach

Author(s): Bo Yang, Xiande Wang*, Dong Dong, Yunqing Pan, Junhua Wu and Jianjian Liu

Volume 19, Issue 1, 2022

Published on: 09 May, 2021

Page: [31 - 43] Pages: 13

DOI: 10.2174/1570180818666210509141735

Price: $65

Abstract

Aims: Repurposing of drugs has been hypothesized as a means of identifying novel treatment methods for certain diseases.

Background: Glioblastoma (GB) is an aggressive type of human cancer; the most effective treatment for glioblastoma is chemotherapy, whereas, when repurposing drugs, a lot of time and money can be saved.

Objective: Repurposing of the existing drug may be used to discover candidate drugs for individualized treatments of GB.

Methods: We used the bioinformatics method to obtain the candidate drugs. In addition, the drugs were verified by MTT assay, Transwell® assays, TUNEL staining, and in vivo tumor formation experiments, as well as statistical analysis.

Results: We obtained 4 candidate drugs suitable for the treatment of glioma, camptothecin, doxorubicin, daunorubicin and mitoxantrone, by the expression spectrum data IPAS algorithm analysis and drug-pathway connectivity analysis. These validation experiments showed that camptothecin was more effective in treating the GB, such as MTT assay, Transwell® assays, TUNEL staining, and in vivo tumor formation.

Conclusion: With regard to personalized treatment, this present study may be used to guide the research of new drugs via verification experiments and tumor formation. The present study also provides a guide to systematic, individualized drug discovery for complex diseases and may contribute to the future application of individualized treatments.

Keywords: Glioblastoma, drug repurposing, candidate drugs, algorithm, databases, MTT assay.

Graphical Abstract

[1]
Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther., 2015, 152, 63-82.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.005] [PMID: 25944528]
[2]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma Multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev., 2017, 18(1), 3-9.
[http://dx.doi.org/10.22034/APJCP.2017.18.1.3] [PMID: 28239999]
[3]
Deorah, S.; Lynch, C.F.; Sibenaller, Z.A.; Ryken, T.C. Trends in brain cancer incidence and survival in the United States: Surveillance, Epidemiology, and End Results Program, 1973 to 2001. Neurosurg. Focus, 2006, 20(4), E1.
[http://dx.doi.org/10.3171/foc.2006.20.4.E1] [PMID: 16709014]
[4]
Brandsma, D.; van den Bent, M.J. Molecular targeted therapies and chemotherapy in malignant gliomas. Curr. Opin. Oncol., 2007, 19(6), 598-605.
[http://dx.doi.org/10.1097/CCO.0b013e3282f0313b] [PMID: 17906459]
[5]
Stupp, R.; Hegi, M.E.; Gilbert, M.R.; Chakravarti, A. Chemoradiotherapy in malignant glioma: Standard of care and future directions. J. Clin. Oncol., 2007, 25(26), 4127-4136.
[http://dx.doi.org/10.1200/JCO.2007.11.8554] [PMID: 17827463]
[6]
Alavijeh, M. S.; Chishty, M.; Qaiser, M. Z.; Palmer, A. M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx: The journal of the American Society for Experimental NeuroTherapeutics, 2005, 2(4), 554-571.
[http://dx.doi.org/10.1602/neurorx.2.4.554] [PMID: 16489365]
[7]
Pankevich, D.E.; Altevogt, B.M.; Dunlop, J.; Gage, F.H.; Hyman, S.E. Improving and accelerating drug development for nervous system disorders. Neuron, 2014, 84(3), 546-553.
[http://dx.doi.org/10.1016/j.neuron.2014.10.007] [PMID: 25442933]
[8]
Boguski, M.S.; Mandl, K.D.; Sukhatme, V.P. Drug discovery. Repurposing with a difference. Science, 2009, 324(5933), 1394-1395.
[http://dx.doi.org/10.1126/science.1169920] [PMID: 19520944]
[9]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[10]
Li, J.; Zhu, X.; Chen, J.Y. Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts. PLOS Comput. Biol., 2009, 5(7), e1000450.
[http://dx.doi.org/10.1371/journal.pcbi.1000450] [PMID: 19649302]
[11]
Kotelnikova, E.; Yuryev, A.; Mazo, I.; Daraselia, N. Computational approaches for drug repositioning and combination therapy design. J. Bioinform. Comput. Biol., 2010, 8(3), 593-606.http://S0219720010004732
[http://dx.doi.org/10.1142/S0219720010004732] [PMID: 20556864]
[12]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; Whaley, R.; Glennon, R.A.; Hert, J.; Thomas, K.L.; Edwards, D.D.; Shoichet, B.K.; Roth, B.L. Predicting new molecular targets for known drugs. Nature, 2009, 462(7270), 175-181.
[http://dx.doi.org/10.1038/nature08506] [PMID: 19881490]
[13]
Yang, L.; Agarwal, P. Systematic drug repositioning based on clinical side-effects. Systematic drug repositioning based on clinical side-effects. PLoS One, 2011, 6(12), e28025.
[http://dx.doi.org/10.1371/journal.pone.0028025] [PMID: 22205936]
[14]
Lamb, J.; Crawford, E.D.; Peck, D.; Modell, J.W.; Blat, I.C.; Wrobel, M.J.; Lerner, J.; Brunet, J.P.; Subramanian, A.; Ross, K.N.; Reich, M.; Hieronymus, H.; Wei, G.; Armstrong, S.A.; Haggarty, S.J.; Clemons, P.A.; Wei, R.; Carr, S.A.; Lander, E.S.; Golub, T.R. The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease. Science, 2006, 313(5795), 1929-1935.http://313/5795/1929
[http://dx.doi.org/10.1126/science.1132939] [PMID: 17008526]
[15]
Graul, A.I.; Cruces, E.; Stringer, M. The year’s new drugs & biologics, 2013: Part I. Drugs Today (Barc), 2014, 50(1), 51-100.
[http://dx.doi.org/10.1358/dot.2014.50.1.2116673] [PMID: 24524105]
[16]
Kusch, M.K.; Haefeli, W.E.; Seidling, H.M. How to meet patients’ individual needs for drug information - a scoping review. Patient Prefer. Adherence, 2018, 12, 2339-2355.
[http://dx.doi.org/10.2147/PPA.S173651] [PMID: 30464421]
[17]
Dopazo, J. Genomics and transcriptomics in drug discovery. Drug Discov. Today, 2014, 19(2), 126-132.
[http://dx.doi.org/10.1016/j.drudis.2013.06.003] [PMID: 23773860]
[18]
Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From molecular to modular cell biology. Nature, 1999, 402(6761)(Suppl.), C47-C52.
[http://dx.doi.org/10.1038/35011540] [PMID: 10591225]
[19]
Li, B.; Zeng, Q. Personalized identification of differentially expressed pathways in pediatric sepsis. Mol. Med. Rep., 2017, 16(4), 5085-5090.
[http://dx.doi.org/10.3892/mmr.2017.7217] [PMID: 28849000]
[20]
Watson, V.G.; Motsinger-Reif, A.; Hardison, N.E.; Peters, E.J.; Havener, T.M.; Everitt, L.; Auman, J.T.; Comins, D.L.; McLeod, H.L. Identification and replication of loci involved in camptothecin-induced cytotoxicity using CEPH pedigrees. PLoS One, 2011, 6(5), e17561.
[http://dx.doi.org/10.1371/journal.pone.0017561] [PMID: 21573211]
[21]
Bandres, E.; Zarate, R.; Ramirez, N.; Abajo, A.; Bitarte, N.; Gariia-Foncillas, J. Pharmacogenomics in colorectal cancer: The first step for individualized-therapy. World J. Gastroenterol., 2007, 13(44), 5888-5901.
[http://dx.doi.org/10.3748/wjg.v13.i44.5888] [PMID: 17990354]
[22]
Hsiang, Y.H.; Liu, L.F.; Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Manikumar, G.; Kirschenbaum, S.; Silber, R.; Potmesil, M. DNA topoisomerase I-mediated DNA cleavage and cytotoxicity of camptothecin analogues. Cancer Res., 1989, 49(16), 4385-4389.
[PMID: 2545341]
[23]
Kim, H.J. Im, S.A.; Keam, B.; Ham, H.S.; Lee, K.H.; Kim, T.Y.; Kim, Y.J.; Oh, D.Y.; Kim, J.H.; Han, W.; Jang, I.J.; Kim, T.Y.; Park, I.A.; Noh, D.Y. ABCB1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Sci., 2015, 106(1), 86-93.
[http://dx.doi.org/10.1111/cas.12560] [PMID: 25410489]
[24]
Wakita, A.; Ohtake, S.; Takada, S.; Yagasaki, F.; Komatsu, H.; Miyazaki, Y.; Kubo, K.; Kimura, Y.; Takeshita, A.; Adachi, Y.; Kiyoi, H.; Yamaguchi, T.; Yoshida, M.; Ohnishi, K.; Miyawaki, S.; Naoe, T.; Ueda, R.; Ohno, R. Randomized comparison of fixed-schedule versus response-oriented individualized induction therapy and use of ubenimex during and after consolidation therapy for elderly patients with acute myeloid leukemia: The JALSG GML200 Study. Int. J. Hematol., 2012, 96(1), 84-93.
[http://dx.doi.org/10.1007/s12185-012-1105-y] [PMID: 22639053]
[25]
Cocco, E.; Marrosu, M.G. The current role of mitoxantrone in the treatment of multiple sclerosis. Expert Rev. Neurother., 2014, 14(6), 607-616.
[http://dx.doi.org/10.1586/14737175.2014.915742] [PMID: 24834466]
[26]
Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; Beroukhim, R.; Bernard, B.; Wu, C.J.; Genovese, G.; Shmulevich, I.; Barnholtz-Sloan, J.; Zou, L.; Vegesna, R.; Shukla, S.A.; Ciriello, G.; Yung, W.K.; Zhang, W.; Sougnez, C.; Mikkelsen, T.; Aldape, K.; Bigner, D.D.; Van Meir, E.G.; Prados, M.; Sloan, A.; Black, K.L.; Eschbacher, J.; Finocchiaro, G.; Friedman, W.; Andrews, D.W.; Guha, A.; Iacocca, M.; O’Neill, B.P.; Foltz, G.; Myers, J.; Weisenberger, D.J.; Penny, R.; Kucherlapati, R.; Perou, C.M.; Hayes, D.N.; Gibbs, R.; Marra, M.; Mills, G.B.; Lander, E.; Spellman, P.; Wilson, R.; Sander, C.; Weinstein, J.; Meyerson, M.; Gabriel, S.; Laird, P.W.; Haussler, D.; Getz, G.; Chin, L.; Network, T.R. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell, 2013, 155(2), 462-477.
[http://dx.doi.org/10.1016/j.cell.2013.09.034] [PMID: 24120142]
[27]
Eckel-Passow, J.E.; Lachance, D.H.; Molinaro, A.M.; Walsh, K.M.; Decker, P.A.; Sicotte, H.; Pekmezci, M.; Rice, T.; Kosel, M.L.; Smirnov, I.V.; Sarkar, G.; Caron, A.A.; Kollmeyer, T.M.; Praska, C.E.; Chada, A.R.; Halder, C.; Hansen, H.M.; McCoy, L.S.; Bracci, P.M.; Marshall, R.; Zheng, S.; Reis, G.F.; Pico, A.R.; O’Neill, B.P.; Buckner, J.C.; Giannini, C.; Huse, J.T.; Perry, A.; Tihan, T.; Berger, M.S.; Chang, S.M.; Prados, M.D.; Wiemels, J.; Wiencke, J.K.; Wrensch, M.R.; Jenkins, R.B. glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med., 2015, 372(26), 2499-2508.
[http://dx.doi.org/10.1056/NEJMoa1407279] [PMID: 26061753]
[28]
Kim, H.; Zheng, S.; Amini, S.S.; Virk, S.M.; Mikkelsen, T.; Brat, D.J.; Grimsby, J.; Sougnez, C.; Muller, F.; Hu, J.; Sloan, A.E.; Cohen, M.L.; Van Meir, E.G.; Scarpace, L.; Laird, P.W.; Weinstein, J.N.; Lander, E.S.; Gabriel, S.; Getz, G.; Meyerson, M.; Chin, L.; Barnholtz-Sloan, J.S.; Verhaak, R.G. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res., 2015, 25(3), 316-327.
[http://dx.doi.org/10.1101/gr.180612.114] [PMID: 25650244]
[29]
Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.; Rheinbay, E.; Miller, C.R.; Vitucci, M.; Morozova, O.; Robertson, A.G.; Noushmehr, H.; Laird, P.W.; Cherniack, A.D.; Akbani, R.; Huse, J.T.; Ciriello, G.; Poisson, L.M.; Barnholtz-Sloan, J.S.; Berger, M.S.; Brennan, C.; Colen, R.R.; Colman, H.; Flanders, A.E.; Giannini, C.; Grifford, M.; Iavarone, A.; Jain, R.; Joseph, I.; Kim, J.; Kasaian, K.; Mikkelsen, T.; Murray, B.A.; O’Neill, B.P.; Pachter, L.; Parsons, D.W.; Sougnez, C.; Sulman, E.P.; Vandenberg, S.R.; Van Meir, E.G.; von Deimling, A.; Zhang, H.; Crain, D.; Lau, K.; Mallery, D.; Morris, S.; Paulauskis, J.; Penny, R.; Shelton, T.; Sherman, M.; Yena, P.; Black, A.; Bowen, J.; Dicostanzo, K.; Gastier-Foster, J.; Leraas, K.M.; Lichtenberg, T.M.; Pierson, C.R.; Ramirez, N.C.; Taylor, C.; Weaver, S.; Wise, L.; Zmuda, E.; Davidsen, T.; Demchok, J.A.; Eley, G.; Ferguson, M.L.; Hutter, C.M.; Mills Shaw, K.R.; Ozenberger, B.A.; Sheth, M.; Sofia, H.J.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Zenklusen, J.C.; Ayala, B.; Baboud, J.; Chudamani, S.; Jensen, M.A.; Liu, J.; Pihl, T.; Raman, R.; Wan, Y.; Wu, Y.; Ally, A.; Auman, J.T.; Balasundaram, M.; Balu, S.; Baylin, S.B.; Beroukhim, R.; Bootwalla, M.S.; Bowlby, R.; Bristow, C.A.; Brooks, D.; Butterfield, Y.; Carlsen, R.; Carter, S.; Chin, L.; Chu, A.; Chuah, E.; Cibulskis, K.; Clarke, A.; Coetzee, S.G.; Dhalla, N.; Fennell, T.; Fisher, S.; Gabriel, S.; Getz, G.; Gibbs, R.; Guin, R.; Hadjipanayis, A.; Hayes, D.N.; Hinoue, T.; Hoadley, K.; Holt, R.A.; Hoyle, A.P.; Jefferys, S.R.; Jones, S.; Jones, C.D.; Kucherlapati, R.; Lai, P.H.; Lander, E.; Lee, S.; Lichtenstein, L.; Ma, Y.; Maglinte, D.T.; Mahadeshwar, H.S.; Marra, M.A.; Mayo, M.; Meng, S.; Meyerson, M.L.; Mieczkowski, P.A.; Moore, R.A.; Mose, L.E.; Mungall, A.J.; Pantazi, A.; Parfenov, M.; Park, P.J.; Parker, J.S.; Perou, C.M.; Protopopov, A.; Ren, X.; Roach, J.; Sabedot, T.S.; Schein, J.; Schumacher, S.E.; Seidman, J.G.; Seth, S.; Shen, H.; Simons, J.V.; Sipahimalani, P.; Soloway, M.G.; Song, X.; Sun, H.; Tabak, B.; Tam, A.; Tan, D.; Tang, J.; Thiessen, N.; Triche, T., Jr; Van Den Berg, D.J.; Veluvolu, U.; Waring, S.; Weisenberger, D.J.; Wilkerson, M.D.; Wong, T.; Wu, J.; Xi, L.; Xu, A.W.; Yang, L.; Zack, T.I.; Zhang, J.; Aksoy, B.A.; Arachchi, H.; Benz, C.; Bernard, B.; Carlin, D.; Cho, J.; DiCara, D.; Frazer, S.; Fuller, G.N.; Gao, J.; Gehlenborg, N.; Haussler, D.; Heiman, D.I.; Iype, L.; Jacobsen, A.; Ju, Z.; Katzman, S.; Kim, H.; Knijnenburg, T.; Kreisberg, R.B.; Lawrence, M.S.; Lee, W.; Leinonen, K.; Lin, P.; Ling, S.; Liu, W.; Liu, Y.; Liu, Y.; Lu, Y.; Mills, G.; Ng, S.; Noble, M.S.; Paull, E.; Rao, A.; Reynolds, S.; Saksena, G.; Sanborn, Z.; Sander, C.; Schultz, N.; Senbabaoglu, Y.; Shen, R.; Shmulevich, I.; Sinha, R.; Stuart, J.; Sumer, S.O.; Sun, Y.; Tasman, N.; Taylor, B.S.; Voet, D.; Weinhold, N.; Weinstein, J.N.; Yang, D.; Yoshihara, K.; Zheng, S.; Zhang, W.; Zou, L.; Abel, T.; Sadeghi, S.; Cohen, M.L.; Eschbacher, J.; Hattab, E.M.; Raghunathan, A.; Schniederjan, M.J.; Aziz, D.; Barnett, G.; Barrett, W.; Bigner, D.D.; Boice, L.; Brewer, C.; Calatozzolo, C.; Campos, B.; Carlotti, C.G., Jr; Chan, T.A.; Cuppini, L.; Curley, E.; Cuzzubbo, S.; Devine, K.; DiMeco, F.; Duell, R.; Elder, J.B.; Fehrenbach, A.; Finocchiaro, G.; Friedman, W.; Fulop, J.; Gardner, J.; Hermes, B.; Herold-Mende, C.; Jungk, C.; Kendler, A.; Lehman, N.L.; Lipp, E.; Liu, O.; Mandt, R.; McGraw, M.; McLendon, R.; McPherson, C.; Neder, L.; Nguyen, P.; Noss, A.; Nunziata, R.; Ostrom, Q.T.; Palmer, C.; Perin, A.; Pollo, B.; Potapov, A.; Potapova, O.; Rathmell, W.K.; Rotin, D.; Scarpace, L.; Schilero, C.; Senecal, K.; Shimmel, K.; Shurkhay, V.; Sifri, S.; Singh, R.; Sloan, A.E.; Smolenski, K.; Staugaitis, S.M.; Steele, R.; Thorne, L.; Tirapelli, D.P.; Unterberg, A.; Vallurupalli, M.; Wang, Y.; Warnick, R.; Williams, F.; Wolinsky, Y.; Bell, S.; Rosenberg, M.; Stewart, C.; Huang, F.; Grimsby, J.L.; Radenbaugh, A.J.; Zhang, J. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med., 2015, 372(26), 2481-2498.
[http://dx.doi.org/10.1056/NEJMoa1402121]
[30]
Sturm, D.; Witt, H.; Hovestadt, V.; Khuong-Quang, D.A.; Jones, D.T.; Konermann, C.; Pfaff, E. TAnjes, M.; Sill, M.; Bender, S.; Kool, M.; Zapatka, M.; Becker, N.; Zucknick, M.; Hielscher, T.; Liu, X.Y.; Fontebasso, A.M.; Ryzhova, M.; Albrecht, S.; Jacob, K.; Wolter, M.; Ebinger, M.; Schuhmann, M.U.; van Meter, T.; FrA1/4hwald, M.C.; Hauch, H.; Pekrun, A.; Radlwimmer, B.; Niehues, T.; von Komorowski, G.; DA1/4rken, M.; Kulozik, A.E.; Madden, J.; Donson, A.; Foreman, N.K.; Drissi, R.; Fouladi, M.; Scheurlen, W.; von Deimling, A.; Monoranu, C.; Roggendorf, W.; Herold-Mende, C.; Unterberg, A.; Kramm, C.M.; Felsberg, J.; Hartmann, C.; Wiestler, B.; Wick, W.; Milde, T.; Witt, O.; Lindroth, A.M.; Schwartzentruber, J.; Faury, D.; Fleming, A.; Zakrzewska, M.; Liberski, P.P.; Zakrzewski, K.; Hauser, P.; Garami, M.; Klekner, A.; Bognar, L.; Morrissy, S.; Cavalli, F.; Taylor, M.D.; van Sluis, P.; Koster, J.; Versteeg, R.; Volckmann, R.; Mikkelsen, T.; Aldape, K.; Reifenberger, G.; Collins, V.P.; Majewski, J.; Korshunov, A.; Lichter, P.; Plass, C.; Jabado, N.; Pfister, S.M. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 2012, 22(4), 425-437.
[http://dx.doi.org/10.1016/j.ccr.2012.08.024] [PMID: 23079654]
[31]
Qu, X.A.; Rajpal, D.K. Applications of Connectivity Map in drug discovery and development. Drug Discov. Today, 2012, 17(23-24), 1289-1298.
[http://dx.doi.org/10.1016/j.drudis.2012.07.017] [PMID: 22889966]
[32]
Isik, Z.; Baldow, C.; Cannistraci, C.V.; Schroeder, M. Drug Target Prioritization by Perturbed Gene Expression and Network Information. Drug target prioritization by perturbed gene expression and network information. Sci. Rep., 2015, 5, 17417.
[http://dx.doi.org/10.1038/srep17417] [PMID: 26615774]
[33]
Kanehisa, M.; Sato, Y.; Furumichi, M.; Morishima, K.; Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res., 2019, 47(D1), D590-D595.
[http://dx.doi.org/10.1093/nar/gky962] [PMID: 30321428]
[34]
Kanehisa, M.; Goto, S.; Furumichi, M.; Tanabe, M.; Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res., 2010, 38(Database issue), D355-D360.
[http://dx.doi.org/10.1093/nar/gkp896] [PMID: 19880382]
[35]
Ahn, T.; Lee, E.; Huh, N.; Park, T. Personalized identification of altered pathways in cancer using accumulated normal tissue data. Bioinformatics, 2014, 30(17), i422-i429.
[http://dx.doi.org/10.1093/bioinformatics/btu449] [PMID: 25161229]
[36]
Luo, Y.; Ma, X.C.; Gao, Q.; Cao, L.Q. Personalized discovery of disrupted pathways and significant genes in preeclampsia based on accumulated normal tissue data. J. Cancer Res. Ther., 2018, 14(7), 1644-1649.
[http://dx.doi.org/10.4103/0973-1482.203603] [PMID: 30589053]
[37]
Croft, D.; O’Kelly, G.; Wu, G.; Haw, R.; Gillespie, M.; Matthews, L.; Caudy, M.; Garapati, P.; Gopinath, G.; Jassal, B.; Jupe, S.; Kalatskaya, I.; Mahajan, S.; May, B.; Ndegwa, N.; Schmidt, E.; Shamovsky, V.; Yung, C.; Birney, E.; Hermjakob, H.; D’Eustachio, P.; Stein, L. Reactome: A database of reactions, pathways and biological processes. Nucleic Acids Res., 2011, 39(Database issue), D691-D697.
[http://dx.doi.org/10.1093/nar/gkq1018] [PMID: 21067998]
[38]
Napolitano, F.; Sirci, F.; Carrella, D.; di Bernardo, D. Drug-set enrichment analysis: A novel tool to investigate drug mode of action. Bioinformatics, 2016, 32(2), 235-241.
[http://dx.doi.org/10.1093/bioinformatics/btv536] [PMID: 26415724]
[39]
Liu, X.; Xu, Q.R.; Xie, W.F.; Wang, M.D. DAPT suppresses the proliferation of human glioma cell line SHG-44. Asian Pac. J. Trop. Med., 2014, 7(7), 552-556.
[http://dx.doi.org/10.1016/S1995-7645(14)60092-4] [PMID: 25063285]
[40]
Wohlfart, S.; Khalansky, A.S.; Gelperina, S.; Maksimenko, O.; Bernreuther, C.; Glatzel, M.; Kreuter, J. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One, 2011, 6(5), e19121.
[http://dx.doi.org/10.1371/journal.pone.0019121] [PMID: 21573151]
[41]
Niepel, M.; Hafner, M.; Duan, Q.; Wang, Z.; Paull, E.O.; Chung, M.; Lu, X.; Stuart, J.M.; Golub, T.R.; Subramanian, A.; Ma’ayan, A.; Sorger, P.K. Common and cell-type specific responses to anti-cancer drugs revealed by high throughput transcript profiling. Nat. Commun., 2017, 8(1), 1186.
[http://dx.doi.org/10.1038/s41467-017-01383-w] [PMID: 29084964]
[42]
Cetin, Y.; Bullerman, L.B. Evaluation of reduced toxicity of zearalenone by extrusion processing as measured by the MTT cell proliferation assay. J. Agric. Food Chem., 2005, 53(16), 6558-6563.
[http://dx.doi.org/10.1021/jf051120z] [PMID: 16076149]
[43]
Del Bino, G.; Darzynkiewicz, Z. Camptothecin, teniposide, or 4′-(9-acridinylamino)-3-methanesulfon-m-anisidide, but not mitoxantrone or doxorubicin, induces degradation of nuclear DNA in the S phase of HL-60 cells. Cancer Res., 1991, 51(4), 1165-1169.
[PMID: 1997159]
[44]
Cao, Y.; Huang, B.; Gao, C. Salvia miltiorrhiza extract dihydrotanshinone induces apoptosis and inhibits proliferation of glioma cells. Bosn. J. Basic Med. Sci., 2017, 17(3), 235-240.
[http://dx.doi.org/10.17305/bjbms.2017.1800] [PMID: 28485251]
[45]
Storm, P.B.; Moriarity, J.L.; Tyler, B.; Burger, P.C.; Brem, H.; Weingart, J. Polymer delivery of camptothecin against 9L gliosarcoma: Release, distribution, and efficacy. J. Neurooncol., 2002, 56(3), 209-217.
[http://dx.doi.org/10.1023/A:1015003232713] [PMID: 12061726]
[46]
DiMeco, F.; Li, K.W.; Tyler, B.M.; Wolf, A.S.; Brem, H.; Olivi, A. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats. J. Neurosurg., 2002, 97(5), 1173-1178.
[http://dx.doi.org/10.3171/jns.2002.97.5.1173] [PMID: 12450040]
[47]
Steiniger, S.C.; Kreuter, J.; Khalansky, A.S.; Skidan, I.N.; Bobruskin, A.I.; Smirnova, Z.S.; Severin, S.E.; Uhl, R.; Kock, M.; Geiger, K.D.; Gelperina, S.E. Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles. Int. J. Cancer, 2004, 109(5), 759-767.
[http://dx.doi.org/10.1002/ijc.20048] [PMID: 14999786]
[48]
Abubaker, K.; Latifi, A.; Luwor, R.; Nazaretian, S.; Zhu, H.; Quinn, M.A.; Thompson, E.W.; Findlay, J.K.; Ahmed, N. Short-term single treatment of chemotherapy results in the enrichment of ovarian cancer stem cell-like cells leading to an increased tumor burden. Mol. Cancer, 2013, 12(1), 24.
[http://dx.doi.org/10.1186/1476-4598-12-24] [PMID: 23537295]
[49]
Wallace, J. Humane endpoints and cancer research. ILAR J., 2000, 41(2), 87-93.
[http://dx.doi.org/10.1093/ilar.41.2.87] [PMID: 11417496]
[50]
Yang, S.; Gu, C.; Mandeville, E.T.; Dong, Y.; Esposito, E.; Zhang, Y.; Yang, G.; Shen, Y.; Fu, X.; Lo, E.H.; Xie, Z. Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Front. Immunol., 2017, 8, 902.
[http://dx.doi.org/10.3389/fimmu.2017.00902] [PMID: 28848542]
[51]
Fisher, S.; Burgess, W.L.; Hines, K.D.; Mason, G.L.; Owiny, J.R. interstrain differences in CO2-induced pulmonary hemorrhage in mice. J. Am. Assoc. Lab. Anim. Sci., 2016, 55(6), 811-815.
[PMID: 27931322]
[52]
Chan, E.; Luwor, R.; Burns, C.; Kannourakis, G.; Findlay, J.K.; Ahmed, N. Momelotinib decreased cancer stem cell associated tumor burden and prolonged disease-free remission period in a mouse model of human ovarian cancer. Oncotarget, 2018, 9(24), 16599-16618.
[http://dx.doi.org/10.18632/oncotarget.24615] [PMID: 29682172]
[53]
Wang, J.M.; Ju, B.H.; Pan, C.J.; Gu, Y.; Li, M.Q.; Sun, L.; Xu, Y.Y.; Yin, L.R. MiR-214 inhibits cell migration, invasion and promotes the drug sensitivity in human cervical cancer by targeting FOXM1. Am. J. Transl. Res., 2017, 9(8), 3541-3557.
[PMID: 28861147]
[54]
Sirota, M.; Dudley, J.T.; Kim, J.; Chiang, A.P.; Morgan, A.A.; Sweet-Cordero, A.; Sage, J.; Butte, A.J. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci. Transl. Med., 2011, 3(96), 96ra77.
[http://dx.doi.org/10.1126/scitranslmed.3001318] [PMID: 21849665]
[55]
Wu, Z.C.F.; Li, J. Sdtnbi: An Integrated Network and Chemoinformatics Tool for Systematic Prediction of Drugtarget Interactions and Drug Repositioning. Brief. Bioinform., 2016.
[http://dx.doi.org/10.1093/bib/bbw012] [PMID: 26944082]
[56]
Sampath, P.; Amundson, E.; Wall, M.E.; Tyler, B.M.; Wani, M.C.; Alderson, L.M.; Colvin, M.; Brem, H.; Weingart, J.D. Camptothecin analogs in malignant gliomas: Comparative analysis and characterization. J. Neurosurg., 2003, 98(3), 570-577.
[http://dx.doi.org/10.3171/jns.2003.98.3.0570] [PMID: 12650430]
[57]
Tewes, F.; Munnier, E.; Antoon, B.; Ngaboni Okassa, L.; Cohen-Jonathan, S.; Marchais, H.; Douziech-Eyrolles, L. SoucA(c), M.; Dubois, P.; Chourpa, I. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. Eur. J. Pharm. Biopharm., 2007, 66(3), 488-492.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.016] [PMID: 17433641]
[58]
Koshy, M.; Villano, J.L.; Dolecek, T.A.; Howard, A.; Mahmood, U.; Chmura, S.J.; Weichselbaum, R.R.; McCarthy, B.J. Improved survival time trends for glioblastoma using the SEER 17 population-based registries. J. Neurooncol., 2012, 107(1), 207-212.
[http://dx.doi.org/10.1007/s11060-011-0738-7] [PMID: 21984115]
[59]
Yang, J.; Shi, Z.; Liu, R.; Wu, Y.; Zhang, X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics, 2020, 10(7), 3223-3239.
[http://dx.doi.org/10.7150/thno.40298] [PMID: 32194864]
[60]
Michael, J.S.; Lee, B.S.; Zhang, M.; Yu, J.S. Nanotechnology for Treatment of Glioblastoma Multiforme. J. Transl. Int. Med., 2018, 6(3), 128-133.
[http://dx.doi.org/10.2478/jtim-2018-0025] [PMID: 30425948]
[61]
Mehta, A.; Awah, C.U.; Sonabend, A.M. Topoisomerase II poisons for glioblastoma; existing challenges and opportunities to personalize therapy. Front. Neurol., 2018, 9, 459.
[http://dx.doi.org/10.3389/fneur.2018.00459] [PMID: 29988316]
[62]
Noble, C.O.; Krauze, M.T.; Drummond, D.C.; Yamashita, Y.; Saito, R.; Berger, M.S.; Kirpotin, D.B.; Bankiewicz, K.S.; Park, J.W. Novel nanoliposomal CPT-11 infused by convection-enhanced delivery in intracranial tumors: Pharmacology and efficacy. Cancer Res., 2006, 66(5), 2801-2806.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3535] [PMID: 16510602]
[63]
Ye, Z.; Zhang, T.; He, W.; Jin, H.; Liu, C.; Yang, Z.; Ren, J. Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl. Mater. Interfaces, 2018, 10(15), 12341-12350.
[http://dx.doi.org/10.1021/acsami.7b18135] [PMID: 29564886]
[64]
Lotfi Shahreza, M.; Ghadiri, N.; Mousavi, S.R.; Varshosaz, J.; Green, J.R. A review of network-based approaches to drug repositioning. Brief. Bioinform., 2018, 19(5), 878-892.
[http://dx.doi.org/10.1093/bib/bbx017] [PMID: 28334136]
[65]
Ding, H.; Takigawa, I.; Mamitsuka, H.; Zhu, S. Similarity-based machine learning methods for predicting drug-target interactions: A brief review. Brief. Bioinform., 2014, 15(5), 734-747.
[http://dx.doi.org/10.1093/bib/bbt056] [PMID: 23933754]
[66]
Broggi, G.; Ferroli, P.; Franzini, A.; Silvani, A.; Salmaggi, A.; Eoli, M.; Boiardi, A. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats. J. Neurosurg., 2003, 98(4), 935-936.
[PMID: 12691429]
[67]
Yang, H.T.; Ju, J.H.; Wong, Y.T.; Shmulevich, I.; Chiang, J.H. Literature-based discovery of new candidates for drug repurposing. Brief. Bioinform., 2017, 18(3), 488-497.
[http://dx.doi.org/10.1093/bib/bbw030] [PMID: 27113728]
[68]
McGarry. K data mining open source databases for drug repositioning using graph based techniques. Drug Discov World, 2015, 16, 64-71.
[69]
Ye, H.; Liu, Q.; Wei, J. Construction of drug network based on side effects and its application for drug repositioning. construction of drug network based on side effects and its application for drug repositioning. PLoS One, 2014, 9(2), e87864.
[http://dx.doi.org/10.1371/journal.pone.0087864] [PMID: 24505324]
[70]
Yamanishi, Y.; Araki, M.; Gutteridge, A.; Honda, W.; Kanehisa, M. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 2008, 24(13), i232-i240.
[http://dx.doi.org/10.1093/bioinformatics/btn162] [PMID: 18586719]

© 2024 Bentham Science Publishers | Privacy Policy