Review Article

伤口愈合的策略和疗法:回顾

卷 23, 期 1, 2022

发表于: 15 April, 2021

页: [87 - 98] 页: 12

弟呕挨: 10.2174/1389450122666210415101218

价格: $65

摘要

伤口愈合是一个复杂且永无止境的过程,涉及许多直接或间接参与该机制的介质、酶级联反应。 因此,在设计伤口敷料时,有必要仔细检查气体交换、潮湿环境、抗菌活性和渗出液的吸收等关键因素。 有大量可供人类使用的伤口敷料,但它们都与理想的敷料相去甚远。 使用生物聚合物可能是解决诸如与可引发伤口愈合的生长因子和细胞结合等困难的解决方案。 本文回顾了用于伤口愈合应用的此类疗法。

关键词: 伤口愈合、水凝胶、皮肤替代物、三维打印、水胶体、创伤组织。

« Previous
图形摘要

[1]
Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol 2017; 137(6): 1213-4.
[http://dx.doi.org/10.1016/j.jid.2016.11.045] [PMID: 28395897]
[2]
Hearing VJ. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci 2005; 37(1): 3-14.
[http://dx.doi.org/10.1016/j.jdermsci.2004.08.014] [PMID: 15619429]
[3]
Lehmann B, Querings K, Reichrath J. Vitamin D and skin: New aspects for dermatology. Exp Dermatol 2004; 13: 11-5.
[4]
Garssen J, Vandebriel RJ, van Loveren H. Molecular aspects of UVB-lnduced immunosuppression. Applied Toxicology: Approaches Through Basic Science Springer. Berlin, Heidelberg: Springer 1997; pp. 97-109.
[http://dx.doi.org/10.1007/978-3-642-60682-3_9]
[5]
Campbell I. Body temperature and its regulation. Anaesth Intensive Care Med 2008; 9(6): 259-63.
[http://dx.doi.org/10.1016/j.mpaic.2008.04.009]
[6]
Fuchs E. Skin stem cells: rising to the surface. J Cell Biol 2008; 180(2): 273-84.
[http://dx.doi.org/10.1083/jcb.200708185] [PMID: 18209104]
[7]
Kujath P, Michelsen A. Wounds - from physiology to wound dressing. Dtsch Arztebl Int 2008; 105(13): 239-48.
[http://dx.doi.org/10.3238/arztebl.2008.0558] [PMID: 19629204]
[8]
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14(2): 244-69.
[http://dx.doi.org/10.1128/CMR.14.2.244-269.2001] [PMID: 11292638]
[9]
Pereira RF, Bártolo PJ. Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle) 2016; 5(5): 208-29.
[http://dx.doi.org/10.1089/wound.2013.0506] [PMID: 27134765]
[10]
Sarabahi S. Recent advances in topical wound care. Indian J Plast Surg 2012; 45(2): 379-87.
[http://dx.doi.org/10.4103/0970-0358.101321] [PMID: 23162238]
[11]
Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: a comprehensive review. Int J Inflamm 2019; 2019: 3706315.
[http://dx.doi.org/10.1155/2019/3706315] [PMID: 31275545]
[12]
Martin C, Low WL, Amin MC, Radecka I, Raj P, Kenward K. Current trends in the development of wound dressings, biomaterials and devices. Pharm Pat Anal 2013; 2(3): 341-59.
[http://dx.doi.org/10.4155/ppa.13.18] [PMID: 24237061]
[13]
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019; 111: 134-51.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.12.019]
[14]
Dhivya S, Padma VV, Santhini E. Wound dressings: a review. Biomedicine (Taipei) 2015; 5(4): 24-8.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615540]
[15]
Kamoun EA, Kenawy ES, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8(3): 217-33.
[http://dx.doi.org/10.1016/j.jare.2017.01.005] [PMID: 28239493]
[16]
Moshakis V, Fordyce MJ, Griffiths JD, McKinna JA. Tegadern versus gauze dressing in breast surgery. Br J Clin Pract 1984; 38(4): 149-52.
[PMID: 6722002]
[17]
Weller CD, Team V, Sussman G. First-line interactive wound dressing update: A comprehensive review of the evidence. Front Pharmacol 2020; 11(155): 155.
[http://dx.doi.org/10.3389/fphar.2020.00155] [PMID: 32180720]
[18]
Üstündağ Okur N, Hökenek N, Okur ME, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 2019; 27(5): 738-52.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[19]
Jenks M, Craig J, Green W, Hewitt N, Arber M, Sims A. Tegaderm CHG IV securement dressing for central venous and arterial catheter insertion sites: a NICE medical technology guidance. Appl Health Econ Health Policy 2016; 14(2): 135-49.
[http://dx.doi.org/10.1007/s40258-015-0202-5] [PMID: 26458938]
[20]
Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018; 7(1): 1-21.
[http://dx.doi.org/10.1007/s40204-018-0083-4] [PMID: 29446015]
[21]
Dealey C. Role of hydrocolloids in wound management. Br J Nurs 1993; 2(7): 358-65.
[http://dx.doi.org/10.12968/bjon.1993.2.7.358] [PMID: 8508017]
[22]
Stashak TS, Farstvedt E, Othic A. Update on wound dressings: indications and best use. Clin Tech Equine Pract 2004; 3(2): 148-63.
[http://dx.doi.org/10.1053/j.ctep.2004.08.006]
[23]
Barr JE, Day AL, Weaver VA, Taler GM. Assessing clinical efficacy of a hydrocolloid/alginate dressing on full-thickness pressure ulcers. Ostomy Wound Manage 1995; 41(3): 28-30.
[PMID: 7546113]
[24]
Hermans MH. HydroColloid dressing (Duoderm) for the treatment of superficial and deep partial thickness burns. Scand J Plast Reconstr Surg Hand Surg 1987; 21(3): 283-5.
[http://dx.doi.org/10.3109/02844318709086461] [PMID: 3327160]
[25]
Boyko TV, Longaker MT, Yang GP. Review of the current management of pressure ulcers. Adv Wound Care (New Rochelle) 2018; 7(2): 57-67.
[http://dx.doi.org/10.1089/wound.2016.0697] [PMID: 29392094]
[26]
Hutchinson JJ, Lawrence JC. Wound infection under occlusive dressings. J Hosp Infect 1991; 17(2): 83-94.
[http://dx.doi.org/10.1016/0195-6701(91)90172-5] [PMID: 1674265]
[27]
Nguyen CV, Washington CV, Soon SL. Hydrocolloid dressings promote granulation tissue on exposed bone. Dermatol Surg 2013; 39(1 Pt 1): 123-5.
[http://dx.doi.org/10.1111/dsu.12021] [PMID: 23252680]
[28]
Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 2016; 4(82): 82.
[http://dx.doi.org/10.3389/fbioe.2016.00082] [PMID: 27843895]
[29]
Churochkina NA, Starodoubtsev SG, Khokhlov AR. Swelling and collapse of the gel composites based on neutral and slightly charged poly (acrylamide) gels containing Na-montmorillonite. Polym Gels Netw 1998; 6(3-4): 205-15.
[http://dx.doi.org/10.1016/S0966-7822(97)00014-2]
[30]
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 2010; 21(2): 77-95.
[http://dx.doi.org/10.1002/pat.1625]
[31]
Nielsen J, Fogh K. Clinical utility of foam dressings in wound management: a review. Chronic Wound Care Management and Research 2015; 2: 31-8.
[http://dx.doi.org/10.2147/cwcmr.s50832]
[32]
Queen D, Evans JH, Gaylor JD, Courtney JM, Reid WH. Burn wound dressings- a review. Burns 1987; 13(3): 218-28.
[http://dx.doi.org/10.1016/0305-4179(87)90170-7] [PMID: 3607565]
[33]
Namviriyachote N, Lipipun V, Akkhawattanangkul Y, Charoonrut P, Ritthidej GC. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm Sci 2019; 14(1): 63-77.
[http://dx.doi.org/10.1016/j.ajps.2018.09.001] [PMID: 32104439]
[34]
Karlsson M, Elmasry M, Steinvall I, Sjöberg F, Olofsson P, Thorfinn J. Superiority of silver-foam over porcine xenograft dressings for treatment of scalds in children: A prospective randomised controlled trial. Burns 2019; 45(6): 1401-9.
[http://dx.doi.org/10.1016/j.burns.2019.04.004] [PMID: 31230798]
[35]
Bužarovska A, Dinescu S, Lazar AD, et al. Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mater Sci Eng C 2019; 104(109893): 109893.
[http://dx.doi.org/10.1016/j.msec.2019.109893] [PMID: 31500045]
[36]
Kim JW, Kim EH, Han GD, et al. Preparation of UV-curable alginate derivatives for drug immobilization on dressing foam. J Ind Eng Chem 2017; 54: 350-8.
[http://dx.doi.org/10.1016/j.jiec.2017.06.015]
[37]
Song EH, Jeong SH, Park JU, Kim S, Kim HE, Song J. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Mater Sci Eng C 2017; 79: 866-74.
[http://dx.doi.org/10.1016/j.msec.2017.05.041] [PMID: 28629091]
[38]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[39]
Kopeček J. Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials. J Polym Sci A Polym Chem 2009; 47(22): 5929-46.
[http://dx.doi.org/10.1002/pola.23607] [PMID: 19918374]
[40]
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 2015; 65: 252-67.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[41]
Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 2014; 190: 254-73.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.052] [PMID: 24746623]
[42]
Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem 2018; 6(499): 499.
[http://dx.doi.org/10.3389/fchem.2018.00499] [PMID: 30406081]
[43]
Mostafalu P, Tamayol A, Rahimi R, et al. Smart bandage for monitoring and treatment of chronic wounds. Small 2018; 14(33): e1703509.
[http://dx.doi.org/10.1002/smll.201703509] [PMID: 29978547]
[44]
Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[45]
Crowe CS, Chattopadhyay A, McGoldrick R, Chiou G, Pham H, Chang J. Characteristics of reconstituted lyophilized tendon hydrogel: an injectable scaffold for tendon regeneration. Plast Reconstr Surg 2016; 137(3): 843-51.
[http://dx.doi.org/10.1097/01.prs.0000480012.41411.7c] [PMID: 26910664]
[46]
Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics. Adv Wound Care (New Rochelle) 2016; 5(1): 32-41.
[http://dx.doi.org/10.1089/wound.2014.0586] [PMID: 26858913]
[47]
Sarheed O, Rasool BK, Abu-Gharbieh E, Aziz US. An investigation and characterization on alginate hydogel dressing loaded with metronidazole prepared by combined inotropic gelation and freeze-thawing cycles for controlled release. AAPS PharmSciTech 2015; 16(3): 601-9.
[http://dx.doi.org/10.1208/s12249-014-0237-1] [PMID: 25425388]
[48]
Chakavala SR, Patel NG, Pate NV, Thakkar VT, Patel KV, Gandhi TR. Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 2012; 4(Suppl. 1): S54-6.
[http://dx.doi.org/10.4103/0975-7406.94131] [PMID: 23066206]
[49]
Naidu VG, Madhusudhana K, Sashidhar RB, et al. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym 2009; 76(3): 464-71.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.010]
[50]
Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005; 26(32): 6335-42.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.012] [PMID: 15919113]
[51]
Chen T, Chen Y, Rehman HU, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces 2018; 10(39): 33523-31.
[http://dx.doi.org/10.1021/acsami.8b10064] [PMID: 30204399]
[52]
Singh B, Singh B, Kumar A, Aery S. Polysaccharides sterculia gum/psyllium based hydrogel dressings for drug delivery applications. Polym Sci Ser A 2019; 61(6): 865-74.
[http://dx.doi.org/10.1134/S0965545X19060105]
[53]
Mndlovu H, du Toit LC, Kumar P, et al. Development of a fluid-absorptive alginate-chitosan bioplatform for potential application as a wound dressing. Carbohydr Polym 2019; 222(114988): 114988.
[http://dx.doi.org/10.1016/j.carbpol.2019.114988] [PMID: 31320082]
[54]
Xing L, Ma Y, Tan H, et al. Alginate membrane dressing toughened by chitosan floccule to load antibacterial drugs for wound healing. Polymer Testing 2019; 79: 1-9.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106039]
[55]
Mogrovejo-Valdivia A, Rahmouni O, Tabary N, et al. In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system. Int J Pharm 2019; 556: 301-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.018] [PMID: 30553954]
[56]
Trinca RB, Westin CB, da Silva JA, Moraes ÂM. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 2017; 88: 161-70.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.021]
[57]
Li X, Wang C, Yang S, Liu P, Zhang B. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int J Nanomedicine 2018; 13: 5287-99.
[http://dx.doi.org/10.2147/IJN.S177256] [PMID: 30237715]
[58]
Nejaddehbashi F, Hashemitabar M, Bayati V, Abbaspour M, Moghimipour E, Orazizadeh M. Application of polycaprolactone, chitosan, and collagen composite as a nanofibrous mat loaded with silver sulfadiazine and growth factors for wound dressing. Artif Organs 2019; 43(4): 413-23.
[http://dx.doi.org/10.1111/aor.13369] [PMID: 30311249]
[59]
Huang Y, Dan N, Dan W, et al. Bilayered antimicrobial nanofiber membranes for wound dressings via in situ cross-Linking polymerization and electrospinning. Ind Eng Chem Res 2018; 57(50): 17048-57.
[http://dx.doi.org/10.1021/acs.iecr.8b03122]
[60]
Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Biol Macromol 2020; 147: 547-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.067] [PMID: 31931054]
[61]
Greaves NS, Iqbal SA, Hodgkinson T, et al. Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen 2015; 23(4): 483-94.
[http://dx.doi.org/10.1111/wrr.12308] [PMID: 26053202]
[62]
Shores JT, Gabriel A, Gupta S. Skin substitutes and alternatives: a review. Adv Skin Wound Care 2007; 20(9 Pt 1): 493-508.
[http://dx.doi.org/10.1097/01.ASW.0000288217.83128.f3] [PMID: 17762218]
[63]
Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21(4): 243-8.
[http://dx.doi.org/10.1016/0305-4179(95)93866-I] [PMID: 7662122]
[64]
Munster AM, Smith-Meek M, Shalom A. Acellular allograft dermal matrix: immediate or delayed epidermal coverage? Burns 2001; 27(2): 150-3.
[http://dx.doi.org/10.1016/S0305-4179(00)00096-6] [PMID: 11226653]
[65]
Achauer BM, VanderKam VM, Celikoz B, Jacobson DG. Augmentation of facial soft-tissue defects with Alloderm dermal graft. Ann Plast Surg 1998; 41(5): 503-7.
[http://dx.doi.org/10.1097/00000637-199811000-00009] [PMID: 9827953]
[66]
Nahabedian MY. AlloDerm performance in the setting of prosthetic breast surgery, infection, and irradiation. Plast Reconstr Surg 2009; 124(6): 1743-53.
[http://dx.doi.org/10.1097/PRS.0b013e3181bf8087] [PMID: 19952629]
[67]
Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast Reconstr Surg 2005; 116(5): 1263-75.
[http://dx.doi.org/10.1097/01.prs.0000181692.71901.bd] [PMID: 16217466]
[68]
Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg 2004; 52(2): 188-94.
[http://dx.doi.org/10.1097/01.sap.0000100895.41198.27] [PMID: 14745271]
[69]
Tobin HA, Karas ND. Lip augmentation using an alloderm graft. J Oral Maxillofac Surg 1998; 56(6): 722-7.
[http://dx.doi.org/10.1016/S0278-2391(98)90805-9] [PMID: 9632330]
[70]
Pearl AW, Woo P, Ostrowski R, Mojica J, Mandell DL, Costantino P. A preliminary report on micronized AlloDerm injection laryngoplasty. Laryngoscope 2002; 112(6): 990-6.
[http://dx.doi.org/10.1097/00005537-200206000-00010] [PMID: 12160297]
[71]
Clemons JL, Myers DL, Aguilar VC, Arya LA. Vaginal paravaginal repair with an AlloDerm graft. Am J Obstet Gynecol 2003; 189(6): 1612-8.
[http://dx.doi.org/10.1016/S0002-9378(03)00929-3] [PMID: 14710083]
[72]
Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2001; 2(5): 305-13.
[http://dx.doi.org/10.2165/00128071-200102050-00005] [PMID: 11721649]
[73]
Urciuolo F, Casale C, Imparato G, Netti PA. Bioengineered skin substitutes: The role of extracellular matrix and vascularization in the healing of deep wounds. J Clin Med 2019; 8(12): 1-27.
[http://dx.doi.org/10.3390/jcm8122083]
[74]
Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD. Clinical trials of a biosynthetic temporary skin replacement, dermagraft-transitional Covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 1997; 18(1 Pt 1): 43-51.
[http://dx.doi.org/10.1097/00004630-199701000-00008] [PMID: 9063787]
[75]
Demling RH, DeSanti L. Management of partial thickness facial burns (comparison of topical antibiotics and bio-engineered skin substitutes). Burns 1999; 25(3): 256-61.
[http://dx.doi.org/10.1016/S0305-4179(98)00165-X] [PMID: 10323611]
[76]
Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing: present status and future directions. Gene Ther 2007; 14(1): 1-10.
[http://dx.doi.org/10.1038/sj.gt.3302837] [PMID: 16929353]
[77]
Khavari PA. Therapeutic gene delivery to the skin. Mol Med Today 1997; 3(12): 533-8.
[http://dx.doi.org/10.1016/S1357-4310(97)01143-X] [PMID: 9449124]
[78]
Khavari PA, Krueger GG. Cutaneous gene therapy. Dermatol Clin 1997; 15(1): 27-35.
[http://dx.doi.org/10.1016/S0733-8635(05)70412-5] [PMID: 9001858]
[79]
Evans CH, Ghivizzani SC, Robbins PD. Progress and Prospects: genetic treatments for disorders of bones and joints. Gene Ther 2009; 16(8): 944-52.
[http://dx.doi.org/10.1038/gt.2009.73] [PMID: 19675584]
[80]
Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 2000; 33(2): 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[81]
Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999; 354(Suppl. 1): SI32-4.
[http://dx.doi.org/10.1016/S0140-6736(99)90247-7] [PMID: 10437854]
[82]
Chopra H, Kumar S, Singh I. Bioinks for 3D printing of artificial extracellular matrices.Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering. Elsevier 2020; pp. 1-37.
[83]
Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging 2017; 33(1): 137-44.
[http://dx.doi.org/10.1007/s10554-016-0981-2] [PMID: 27677762]
[84]
Kiraly L. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery. Transl Pediatr 2018; 7(2): 129-38.
[http://dx.doi.org/10.21037/tp.2018.01.02] [PMID: 29770294]
[85]
Wang S, Xiong Y, Chen J, et al. Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol 2019; 7(348): 348.
[http://dx.doi.org/10.3389/fbioe.2019.00348] [PMID: 31803738]
[86]
Xu C, Zhang Molino B, Wang X, et al. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B Mater Biol Med 2018; 6(43): 7066-75.
[http://dx.doi.org/10.1039/C8TB01757C] [PMID: 32254590]
[87]
Cereceres S, Lan Z, Bryan L, et al. Bactericidal activity of 3D-printed hydrogel dressing loaded with gallium maltolate. APL Bioengineering 2019; 3(2): 1-12.
[88]
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 2019; 104(109873): 109873.
[http://dx.doi.org/10.1016/j.msec.2019.109873] [PMID: 31500054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy