Review Article

Strategies and Therapies for Wound Healing: A Review

Author(s): Hitesh Chopra, Sandeep Kumar and Inderbir Singh*

Volume 23, Issue 1, 2022

Published on: 15 April, 2021

Page: [87 - 98] Pages: 12

DOI: 10.2174/1389450122666210415101218

Price: $65

Abstract

Abstract: Wound healing is a complex and never-ending process that involves numerous mediators, enzymatic cascades that are directly or indirectly involved in the mechanism. So, it becomes necessary to closely examine critical factors such as gaseous exchange, a moist environment, anti- microbial activity, and exudation liquids' absorption while designing wound dressings. There is a heap of wound dressings available for human use, but they all are way apart from the ideal dressing. The use of biopolymers may be a solution to tackle the difficulties such as combining with growth factors and cells that can trigger wound healing. This article reviews such therapies for wound healing application.

Keywords: Wound healing, hydrogels, skin substitutes, three dimensional printing, hydrocolloids, traumatic tissue.

« Previous
Graphical Abstract

[1]
Gallo RL. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol 2017; 137(6): 1213-4.
[http://dx.doi.org/10.1016/j.jid.2016.11.045] [PMID: 28395897]
[2]
Hearing VJ. Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci 2005; 37(1): 3-14.
[http://dx.doi.org/10.1016/j.jdermsci.2004.08.014] [PMID: 15619429]
[3]
Lehmann B, Querings K, Reichrath J. Vitamin D and skin: New aspects for dermatology. Exp Dermatol 2004; 13: 11-5.
[4]
Garssen J, Vandebriel RJ, van Loveren H. Molecular aspects of UVB-lnduced immunosuppression. Applied Toxicology: Approaches Through Basic Science Springer. Berlin, Heidelberg: Springer 1997; pp. 97-109.
[http://dx.doi.org/10.1007/978-3-642-60682-3_9]
[5]
Campbell I. Body temperature and its regulation. Anaesth Intensive Care Med 2008; 9(6): 259-63.
[http://dx.doi.org/10.1016/j.mpaic.2008.04.009]
[6]
Fuchs E. Skin stem cells: rising to the surface. J Cell Biol 2008; 180(2): 273-84.
[http://dx.doi.org/10.1083/jcb.200708185] [PMID: 18209104]
[7]
Kujath P, Michelsen A. Wounds - from physiology to wound dressing. Dtsch Arztebl Int 2008; 105(13): 239-48.
[http://dx.doi.org/10.3238/arztebl.2008.0558] [PMID: 19629204]
[8]
Bowler PG, Duerden BI, Armstrong DG. Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 2001; 14(2): 244-69.
[http://dx.doi.org/10.1128/CMR.14.2.244-269.2001] [PMID: 11292638]
[9]
Pereira RF, Bártolo PJ. Traditional therapies for skin wound healing. Adv Wound Care (New Rochelle) 2016; 5(5): 208-29.
[http://dx.doi.org/10.1089/wound.2013.0506] [PMID: 27134765]
[10]
Sarabahi S. Recent advances in topical wound care. Indian J Plast Surg 2012; 45(2): 379-87.
[http://dx.doi.org/10.4103/0970-0358.101321] [PMID: 23162238]
[11]
Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: a comprehensive review. Int J Inflamm 2019; 2019: 3706315.
[http://dx.doi.org/10.1155/2019/3706315] [PMID: 31275545]
[12]
Martin C, Low WL, Amin MC, Radecka I, Raj P, Kenward K. Current trends in the development of wound dressings, biomaterials and devices. Pharm Pat Anal 2013; 2(3): 341-59.
[http://dx.doi.org/10.4155/ppa.13.18] [PMID: 24237061]
[13]
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019; 111: 134-51.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.12.019]
[14]
Dhivya S, Padma VV, Santhini E. Wound dressings: a review. Biomedicine (Taipei) 2015; 5(4): 24-8.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615540]
[15]
Kamoun EA, Kenawy ES, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8(3): 217-33.
[http://dx.doi.org/10.1016/j.jare.2017.01.005] [PMID: 28239493]
[16]
Moshakis V, Fordyce MJ, Griffiths JD, McKinna JA. Tegadern versus gauze dressing in breast surgery. Br J Clin Pract 1984; 38(4): 149-52.
[PMID: 6722002]
[17]
Weller CD, Team V, Sussman G. First-line interactive wound dressing update: A comprehensive review of the evidence. Front Pharmacol 2020; 11(155): 155.
[http://dx.doi.org/10.3389/fphar.2020.00155] [PMID: 32180720]
[18]
Üstündağ Okur N, Hökenek N, Okur ME, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 2019; 27(5): 738-52.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[19]
Jenks M, Craig J, Green W, Hewitt N, Arber M, Sims A. Tegaderm CHG IV securement dressing for central venous and arterial catheter insertion sites: a NICE medical technology guidance. Appl Health Econ Health Policy 2016; 14(2): 135-49.
[http://dx.doi.org/10.1007/s40258-015-0202-5] [PMID: 26458938]
[20]
Mir M, Ali MN, Barakullah A, et al. Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 2018; 7(1): 1-21.
[http://dx.doi.org/10.1007/s40204-018-0083-4] [PMID: 29446015]
[21]
Dealey C. Role of hydrocolloids in wound management. Br J Nurs 1993; 2(7): 358-65.
[http://dx.doi.org/10.12968/bjon.1993.2.7.358] [PMID: 8508017]
[22]
Stashak TS, Farstvedt E, Othic A. Update on wound dressings: indications and best use. Clin Tech Equine Pract 2004; 3(2): 148-63.
[http://dx.doi.org/10.1053/j.ctep.2004.08.006]
[23]
Barr JE, Day AL, Weaver VA, Taler GM. Assessing clinical efficacy of a hydrocolloid/alginate dressing on full-thickness pressure ulcers. Ostomy Wound Manage 1995; 41(3): 28-30.
[PMID: 7546113]
[24]
Hermans MH. HydroColloid dressing (Duoderm) for the treatment of superficial and deep partial thickness burns. Scand J Plast Reconstr Surg Hand Surg 1987; 21(3): 283-5.
[http://dx.doi.org/10.3109/02844318709086461] [PMID: 3327160]
[25]
Boyko TV, Longaker MT, Yang GP. Review of the current management of pressure ulcers. Adv Wound Care (New Rochelle) 2018; 7(2): 57-67.
[http://dx.doi.org/10.1089/wound.2016.0697] [PMID: 29392094]
[26]
Hutchinson JJ, Lawrence JC. Wound infection under occlusive dressings. J Hosp Infect 1991; 17(2): 83-94.
[http://dx.doi.org/10.1016/0195-6701(91)90172-5] [PMID: 1674265]
[27]
Nguyen CV, Washington CV, Soon SL. Hydrocolloid dressings promote granulation tissue on exposed bone. Dermatol Surg 2013; 39(1 Pt 1): 123-5.
[http://dx.doi.org/10.1111/dsu.12021] [PMID: 23252680]
[28]
Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol 2016; 4(82): 82.
[http://dx.doi.org/10.3389/fbioe.2016.00082] [PMID: 27843895]
[29]
Churochkina NA, Starodoubtsev SG, Khokhlov AR. Swelling and collapse of the gel composites based on neutral and slightly charged poly (acrylamide) gels containing Na-montmorillonite. Polym Gels Netw 1998; 6(3-4): 205-15.
[http://dx.doi.org/10.1016/S0966-7822(97)00014-2]
[30]
Zahedi P, Rezaeian I, Ranaei-Siadat SO, Jafari SH, Supaphol P. A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol 2010; 21(2): 77-95.
[http://dx.doi.org/10.1002/pat.1625]
[31]
Nielsen J, Fogh K. Clinical utility of foam dressings in wound management: a review. Chronic Wound Care Management and Research 2015; 2: 31-8.
[http://dx.doi.org/10.2147/cwcmr.s50832]
[32]
Queen D, Evans JH, Gaylor JD, Courtney JM, Reid WH. Burn wound dressings- a review. Burns 1987; 13(3): 218-28.
[http://dx.doi.org/10.1016/0305-4179(87)90170-7] [PMID: 3607565]
[33]
Namviriyachote N, Lipipun V, Akkhawattanangkul Y, Charoonrut P, Ritthidej GC. Development of polyurethane foam dressing containing silver and asiaticoside for healing of dermal wound. Asian J Pharm Sci 2019; 14(1): 63-77.
[http://dx.doi.org/10.1016/j.ajps.2018.09.001] [PMID: 32104439]
[34]
Karlsson M, Elmasry M, Steinvall I, Sjöberg F, Olofsson P, Thorfinn J. Superiority of silver-foam over porcine xenograft dressings for treatment of scalds in children: A prospective randomised controlled trial. Burns 2019; 45(6): 1401-9.
[http://dx.doi.org/10.1016/j.burns.2019.04.004] [PMID: 31230798]
[35]
Bužarovska A, Dinescu S, Lazar AD, et al. Nanocomposite foams based on flexible biobased thermoplastic polyurethane and ZnO nanoparticles as potential wound dressing materials. Mater Sci Eng C 2019; 104(109893): 109893.
[http://dx.doi.org/10.1016/j.msec.2019.109893] [PMID: 31500045]
[36]
Kim JW, Kim EH, Han GD, et al. Preparation of UV-curable alginate derivatives for drug immobilization on dressing foam. J Ind Eng Chem 2017; 54: 350-8.
[http://dx.doi.org/10.1016/j.jiec.2017.06.015]
[37]
Song EH, Jeong SH, Park JU, Kim S, Kim HE, Song J. Polyurethane-silica hybrid foams from a one-step foaming reaction, coupled with a sol-gel process, for enhanced wound healing. Mater Sci Eng C 2017; 79: 866-74.
[http://dx.doi.org/10.1016/j.msec.2017.05.041] [PMID: 28629091]
[38]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[39]
Kopeček J. Hydrogels: From soft contact lenses and implants to self‐assembled nanomaterials. J Polym Sci A Polym Chem 2009; 47(22): 5929-46.
[http://dx.doi.org/10.1002/pola.23607] [PMID: 19918374]
[40]
Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: A review of patents and commercial products. Eur Polym J 2015; 65: 252-67.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[41]
Buwalda SJ, Boere KW, Dijkstra PJ, Feijen J, Vermonden T, Hennink WE. Hydrogels in a historical perspective: from simple networks to smart materials. J Control Release 2014; 190: 254-73.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.052] [PMID: 24746623]
[42]
Li X, Sun Q, Li Q, Kawazoe N, Chen G. Functional hydrogels with tunable structures and properties for tissue engineering applications. Front Chem 2018; 6(499): 499.
[http://dx.doi.org/10.3389/fchem.2018.00499] [PMID: 30406081]
[43]
Mostafalu P, Tamayol A, Rahimi R, et al. Smart bandage for monitoring and treatment of chronic wounds. Small 2018; 14(33): e1703509.
[http://dx.doi.org/10.1002/smll.201703509] [PMID: 29978547]
[44]
Boateng JS, Matthews KH, Stevens HN, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci 2008; 97(8): 2892-923.
[http://dx.doi.org/10.1002/jps.21210] [PMID: 17963217]
[45]
Crowe CS, Chattopadhyay A, McGoldrick R, Chiou G, Pham H, Chang J. Characteristics of reconstituted lyophilized tendon hydrogel: an injectable scaffold for tendon regeneration. Plast Reconstr Surg 2016; 137(3): 843-51.
[http://dx.doi.org/10.1097/01.prs.0000480012.41411.7c] [PMID: 26910664]
[46]
Dabiri G, Damstetter E, Phillips T. Choosing a wound dressing based on common wound characteristics. Adv Wound Care (New Rochelle) 2016; 5(1): 32-41.
[http://dx.doi.org/10.1089/wound.2014.0586] [PMID: 26858913]
[47]
Sarheed O, Rasool BK, Abu-Gharbieh E, Aziz US. An investigation and characterization on alginate hydogel dressing loaded with metronidazole prepared by combined inotropic gelation and freeze-thawing cycles for controlled release. AAPS PharmSciTech 2015; 16(3): 601-9.
[http://dx.doi.org/10.1208/s12249-014-0237-1] [PMID: 25425388]
[48]
Chakavala SR, Patel NG, Pate NV, Thakkar VT, Patel KV, Gandhi TR. Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 2012; 4(Suppl. 1): S54-6.
[http://dx.doi.org/10.4103/0975-7406.94131] [PMID: 23066206]
[49]
Naidu VG, Madhusudhana K, Sashidhar RB, et al. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym 2009; 76(3): 464-71.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.010]
[50]
Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005; 26(32): 6335-42.
[http://dx.doi.org/10.1016/j.biomaterials.2005.04.012] [PMID: 15919113]
[51]
Chen T, Chen Y, Rehman HU, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces 2018; 10(39): 33523-31.
[http://dx.doi.org/10.1021/acsami.8b10064] [PMID: 30204399]
[52]
Singh B, Singh B, Kumar A, Aery S. Polysaccharides sterculia gum/psyllium based hydrogel dressings for drug delivery applications. Polym Sci Ser A 2019; 61(6): 865-74.
[http://dx.doi.org/10.1134/S0965545X19060105]
[53]
Mndlovu H, du Toit LC, Kumar P, et al. Development of a fluid-absorptive alginate-chitosan bioplatform for potential application as a wound dressing. Carbohydr Polym 2019; 222(114988): 114988.
[http://dx.doi.org/10.1016/j.carbpol.2019.114988] [PMID: 31320082]
[54]
Xing L, Ma Y, Tan H, et al. Alginate membrane dressing toughened by chitosan floccule to load antibacterial drugs for wound healing. Polymer Testing 2019; 79: 1-9.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106039]
[55]
Mogrovejo-Valdivia A, Rahmouni O, Tabary N, et al. In vitro evaluation of drug release and antibacterial activity of a silver-loaded wound dressing coated with a multilayer system. Int J Pharm 2019; 556: 301-10.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.018] [PMID: 30553954]
[56]
Trinca RB, Westin CB, da Silva JA, Moraes ÂM. Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 2017; 88: 161-70.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.01.021]
[57]
Li X, Wang C, Yang S, Liu P, Zhang B. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int J Nanomedicine 2018; 13: 5287-99.
[http://dx.doi.org/10.2147/IJN.S177256] [PMID: 30237715]
[58]
Nejaddehbashi F, Hashemitabar M, Bayati V, Abbaspour M, Moghimipour E, Orazizadeh M. Application of polycaprolactone, chitosan, and collagen composite as a nanofibrous mat loaded with silver sulfadiazine and growth factors for wound dressing. Artif Organs 2019; 43(4): 413-23.
[http://dx.doi.org/10.1111/aor.13369] [PMID: 30311249]
[59]
Huang Y, Dan N, Dan W, et al. Bilayered antimicrobial nanofiber membranes for wound dressings via in situ cross-Linking polymerization and electrospinning. Ind Eng Chem Res 2018; 57(50): 17048-57.
[http://dx.doi.org/10.1021/acs.iecr.8b03122]
[60]
Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Biol Macromol 2020; 147: 547-59.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.067] [PMID: 31931054]
[61]
Greaves NS, Iqbal SA, Hodgkinson T, et al. Skin substitute-assisted repair shows reduced dermal fibrosis in acute human wounds validated simultaneously by histology and optical coherence tomography. Wound Repair Regen 2015; 23(4): 483-94.
[http://dx.doi.org/10.1111/wrr.12308] [PMID: 26053202]
[62]
Shores JT, Gabriel A, Gupta S. Skin substitutes and alternatives: a review. Adv Skin Wound Care 2007; 20(9 Pt 1): 493-508.
[http://dx.doi.org/10.1097/01.ASW.0000288217.83128.f3] [PMID: 17762218]
[63]
Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 1995; 21(4): 243-8.
[http://dx.doi.org/10.1016/0305-4179(95)93866-I] [PMID: 7662122]
[64]
Munster AM, Smith-Meek M, Shalom A. Acellular allograft dermal matrix: immediate or delayed epidermal coverage? Burns 2001; 27(2): 150-3.
[http://dx.doi.org/10.1016/S0305-4179(00)00096-6] [PMID: 11226653]
[65]
Achauer BM, VanderKam VM, Celikoz B, Jacobson DG. Augmentation of facial soft-tissue defects with Alloderm dermal graft. Ann Plast Surg 1998; 41(5): 503-7.
[http://dx.doi.org/10.1097/00000637-199811000-00009] [PMID: 9827953]
[66]
Nahabedian MY. AlloDerm performance in the setting of prosthetic breast surgery, infection, and irradiation. Plast Reconstr Surg 2009; 124(6): 1743-53.
[http://dx.doi.org/10.1097/PRS.0b013e3181bf8087] [PMID: 19952629]
[67]
Butler CE, Langstein HN, Kronowitz SJ. Pelvic, abdominal, and chest wall reconstruction with AlloDerm in patients at increased risk for mesh-related complications. Plast Reconstr Surg 2005; 116(5): 1263-75.
[http://dx.doi.org/10.1097/01.prs.0000181692.71901.bd] [PMID: 16217466]
[68]
Buinewicz B, Rosen B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg 2004; 52(2): 188-94.
[http://dx.doi.org/10.1097/01.sap.0000100895.41198.27] [PMID: 14745271]
[69]
Tobin HA, Karas ND. Lip augmentation using an alloderm graft. J Oral Maxillofac Surg 1998; 56(6): 722-7.
[http://dx.doi.org/10.1016/S0278-2391(98)90805-9] [PMID: 9632330]
[70]
Pearl AW, Woo P, Ostrowski R, Mojica J, Mandell DL, Costantino P. A preliminary report on micronized AlloDerm injection laryngoplasty. Laryngoscope 2002; 112(6): 990-6.
[http://dx.doi.org/10.1097/00005537-200206000-00010] [PMID: 12160297]
[71]
Clemons JL, Myers DL, Aguilar VC, Arya LA. Vaginal paravaginal repair with an AlloDerm graft. Am J Obstet Gynecol 2003; 189(6): 1612-8.
[http://dx.doi.org/10.1016/S0002-9378(03)00929-3] [PMID: 14710083]
[72]
Bello YM, Falabella AF, Eaglstein WH. Tissue-engineered skin. Current status in wound healing. Am J Clin Dermatol 2001; 2(5): 305-13.
[http://dx.doi.org/10.2165/00128071-200102050-00005] [PMID: 11721649]
[73]
Urciuolo F, Casale C, Imparato G, Netti PA. Bioengineered skin substitutes: The role of extracellular matrix and vascularization in the healing of deep wounds. J Clin Med 2019; 8(12): 1-27.
[http://dx.doi.org/10.3390/jcm8122083]
[74]
Hansbrough JF, Mozingo DW, Kealey GP, Davis M, Gidner A, Gentzkow GD. Clinical trials of a biosynthetic temporary skin replacement, dermagraft-transitional Covering, compared with cryopreserved human cadaver skin for temporary coverage of excised burn wounds. J Burn Care Rehabil 1997; 18(1 Pt 1): 43-51.
[http://dx.doi.org/10.1097/00004630-199701000-00008] [PMID: 9063787]
[75]
Demling RH, DeSanti L. Management of partial thickness facial burns (comparison of topical antibiotics and bio-engineered skin substitutes). Burns 1999; 25(3): 256-61.
[http://dx.doi.org/10.1016/S0305-4179(98)00165-X] [PMID: 10323611]
[76]
Branski LK, Pereira CT, Herndon DN, Jeschke MG. Gene therapy in wound healing: present status and future directions. Gene Ther 2007; 14(1): 1-10.
[http://dx.doi.org/10.1038/sj.gt.3302837] [PMID: 16929353]
[77]
Khavari PA. Therapeutic gene delivery to the skin. Mol Med Today 1997; 3(12): 533-8.
[http://dx.doi.org/10.1016/S1357-4310(97)01143-X] [PMID: 9449124]
[78]
Khavari PA, Krueger GG. Cutaneous gene therapy. Dermatol Clin 1997; 15(1): 27-35.
[http://dx.doi.org/10.1016/S0733-8635(05)70412-5] [PMID: 9001858]
[79]
Evans CH, Ghivizzani SC, Robbins PD. Progress and Prospects: genetic treatments for disorders of bones and joints. Gene Ther 2009; 16(8): 944-52.
[http://dx.doi.org/10.1038/gt.2009.73] [PMID: 19675584]
[80]
Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory’s experience. Acc Chem Res 2000; 33(2): 94-101.
[http://dx.doi.org/10.1021/ar9800993] [PMID: 10673317]
[81]
Vacanti JP, Langer R. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 1999; 354(Suppl. 1): SI32-4.
[http://dx.doi.org/10.1016/S0140-6736(99)90247-7] [PMID: 10437854]
[82]
Chopra H, Kumar S, Singh I. Bioinks for 3D printing of artificial extracellular matrices.Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering. Elsevier 2020; pp. 1-37.
[83]
Cantinotti M, Valverde I, Kutty S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging 2017; 33(1): 137-44.
[http://dx.doi.org/10.1007/s10554-016-0981-2] [PMID: 27677762]
[84]
Kiraly L. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery. Transl Pediatr 2018; 7(2): 129-38.
[http://dx.doi.org/10.21037/tp.2018.01.02] [PMID: 29770294]
[85]
Wang S, Xiong Y, Chen J, et al. Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol 2019; 7(348): 348.
[http://dx.doi.org/10.3389/fbioe.2019.00348] [PMID: 31803738]
[86]
Xu C, Zhang Molino B, Wang X, et al. 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. J Mater Chem B Mater Biol Med 2018; 6(43): 7066-75.
[http://dx.doi.org/10.1039/C8TB01757C] [PMID: 32254590]
[87]
Cereceres S, Lan Z, Bryan L, et al. Bactericidal activity of 3D-printed hydrogel dressing loaded with gallium maltolate. APL Bioengineering 2019; 3(2): 1-12.
[88]
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C 2019; 104(109873): 109873.
[http://dx.doi.org/10.1016/j.msec.2019.109873] [PMID: 31500054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy