Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Endocrine-Disrupting Chemicals: Introduction to the Theme

Author(s): Giuseppe Lisco, Vito Angelo Giagulli, Michele Iovino, Edoardo Guastamacchia, Giovanni De Pergola and Vincenzo Triggiani*

Volume 22, Issue 7, 2022

Published on: 12 January, 2022

Page: [677 - 685] Pages: 9

DOI: 10.2174/1871530321666210413124425

Price: $65

Abstract

Background: Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds deriving from different human activities and are widely spread into the environment, contributing to indoor and outdoor pollution. EDCs may be conveyed by food and water consumption and skin, airways, placental, and breastfeeding. Upon entering the circulation, they can interfere with endocrine system homeostasis by several mechanisms.

Aim: In this narrative review, the authors overviewed the leading mechanisms by which EDCs interact and disrupt the endocrine system, leading to possible human health concerns.

Results: The leading mechanisms of EDCs-related toxicity have been illustrated in in vitro studies and animal models and may be summarized as follows: receptor agonism and antagonism; modulation of hormone receptor expression; interference with signal transduction in hormone-responsive cells; epigenetic modifications in hormone-producing or hormone-responsive cells; interference with hormone synthesis; interference with hormone transport across cell membranes; interference with hormone metabolism or clearance; interference with the destiny of hormone-producing or hormone- responsive cells.

Discussion: Despite these well-defined mechanisms, some limitations do not allow for conclusive assumptions. Indeed, epidemiological and ecological studies are currently lacking and usually refer to a specific cluster of patients (occupational exposure). Methodological aspects could further complicate the issue since these studies could require a long time to provide useful information. The lack of a real unexposed group in environmental conditions, possible interference of EDCs mixture on biological results, and unpredictable dose-response curves for some EDCs should also be considered significant limitations.

Conclusion: Given these limitations, specific observational and long-term studies are needed to identify at-risk populations for adequate treatment of exposed patients and effective prevention plans against excessive exposure to EDCs.

Keywords: Endocrine disruptors, bisphenol A, dioxins, polycyclic aromatic hydrocarbons, polychlorobiphenyls, phthalates, paraben.

Graphical Abstract

[1]
Zoeller, R.T.; Brown, T.R.; Doan, L.L.; Gore, A.C.; Skakkebaek, N.E.; Soto, A.M.; Woodruff, T.J.; Vom Saal, F.S. Endocrine-disrupting chemicals and public health protection: a statement of principles from The Endocrine Society. Endocrinology, 2012, 153(9), 4097-4110.
[http://dx.doi.org/10.1210/en.2012-1422] [PMID: 22733974]
[2]
Koneff, A.A.; Simpson, M.E.; Evans, H.M. Effects of chronic administration of diethylstilbestrol on the pituitary and other endocrine organs of hamsters. Anat. Rec., 1946, 94, 169-195.
[http://dx.doi.org/10.1002/ar.1090940206] [PMID: 21015604]
[3]
Herbst, A.L.; Ulfelder, H.; Poskanzer, D.C. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med., 1971, 284(15), 878-881.
[http://dx.doi.org/10.1056/NEJM197104222841604] [PMID: 5549830]
[4]
Newbold, R.R. Prenatal exposure to diethylstilbestrol (DES). Fertil. Steril., 2008, 89(2)(Suppl.), e55-e56.
[http://dx.doi.org/10.1016/j.fertnstert.2008.01.062] [PMID: 18308064]
[5]
Reed, C.E.; Fenton, S.E. Exposure to diethylstilbestrol during sensitive life stages: a legacy of heritable health effects. Birth Defects Res. C Embryo Today, 2013, 99(2), 134-146.
[http://dx.doi.org/10.1002/bdrc.21035] [PMID: 23897597]
[6]
Hill, K.R.; Robinson, G. A fatal case of D.D.T. poisoning in a child, with an account of two accidental deaths in dogs. BMJ, 1945, 2, 845-847.
[http://dx.doi.org/10.1136/bmj.2.4432.845] [PMID: 21007170]
[7]
Hill, W.R.; Damiani, C.R. Death following exposure to DDT; report of a case. N. Engl. J. Med., 1946, 235(25), 897-899.
[http://dx.doi.org/10.1056/NEJM194612192352503] [PMID: 20277651]
[8]
Bing, R.J.; NcNAMARA, B.; Hopkins, F.H. Studies on the pharmacology of DDT (2,2 bis-para-chlorophenyl-l,l,l,trichloro- ethane); the chronic toxicity of DDT in the dog. Bull. Johns Hopkins Hosp., 1946, 78, 308-315.
[PMID: 20982234]
[9]
Bornman, M.; Delport, R.; Farías, P.; Aneck-Hahn, N.; Patrick, S.; Millar, R.P.; de Jager, C. Alterations in male reproductive hormones in relation to environmental DDT exposure. Environ. Int., 2018, 113, 281-289.
[http://dx.doi.org/10.1016/j.envint.2017.12.039] [PMID: 29373146]
[10]
Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev., 2015, 36(6), E1-E150.
[http://dx.doi.org/10.1210/er.2015-1010] [PMID: 26544531]
[11]
Petersen, S.L.; Krishnan, S.; Hudgens, E.D. The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology, 2006, 147(6)(Suppl.), S33-S42.
[http://dx.doi.org/10.1210/en.2005-1157] [PMID: 16690800]
[12]
Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An endocrine society scientific statement. Endocr. Rev., 2009, 30(4), 293-342.
[http://dx.doi.org/10.1210/er.2009-0002] [PMID: 19502515]
[13]
Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol., 2015, 40(1), 241-258.
[http://dx.doi.org/10.1016/j.etap.2015.06.009] [PMID: 26164742]
[14]
Heindel, J.J.; Blumberg, B.; Cave, M.; Machtinger, R.; Mantovani, A.; Mendez, M.A.; Nadal, A.; Palanza, P.; Panzica, G.; Sargis, R.; Vandenberg, L.N.; Vom Saal, F. Metabolism disrupting chemicals and metabolic disorders. Reprod. Toxicol., 2017, 68, 3-33.
[http://dx.doi.org/10.1016/j.reprotox.2016.10.001] [PMID: 27760374]
[15]
Lee, D.H.; Porta, M.; Jacobs, D.R., Jr; Vandenberg, L.N. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr. Rev., 2014, 35(4), 557-601.
[http://dx.doi.org/10.1210/er.2013-1084] [PMID: 24483949]
[16]
Persistant Organic Pollutants - Environment - European Commission., Available at: https://ec.europa.eu/environment/chemicals/international_conventions/index_en.htmAccessed February 20, 2020
[17]
Zacharia, T.J. Degradation pathways of persistent organic pollutants (POPs) in the environment. Persistent Organic Pollutants; IntechOpen, 2019.
[18]
Ying, G.G.; Kookana, R.S. Sorption and degradation of estrogen-like-endocrine disrupting chemicals in soil. Environ. Toxicol. Chem., 2005, 24(10), 2640-2645.
[http://dx.doi.org/10.1897/05-074R.1] [PMID: 16268167]
[19]
Field, J.A.; Sierra-Alvarez, R. Microbial degradation of chlorinated dioxins. Chemosphere, 2008, 71(6), 1005-1018.
[http://dx.doi.org/10.1016/j.chemosphere.2007.10.039] [PMID: 18083210]
[20]
Wong, K.H.; Durrani, T.S. Exposures to endocrine disrupting chemicals in consumer products-A guide for pediatricians. Curr. Probl. Pediatr. Adolesc. Health Care, 2017, 47(5), 107-118.
[http://dx.doi.org/10.1016/j.cppeds.2017.04.002] [PMID: 28526231]
[21]
Fucic, A.; Galea, K.S.; Duca, R.C.; El Yamani, M.; Frery, N.; Godderis, L.; Halldorsson, T.I.; Iavicoli, I.; Ndaw, S.; Ribeiro, E.; Viegas, S.; Moshammer, H. Potential health risk of endocrine disruptors in construction sector and plastics industry: A new paradigm in occupational health. Int. J. Environ. Res. Public Health, 2018, 15(6), 1229.
[http://dx.doi.org/10.3390/ijerph15061229] [PMID: 29891786]
[22]
Combarnous, Y. Endocrine disruptor compounds (EDCs) and agriculture: The case of pesticides. C. R. Biol., 2017, 340(9-10), 406-409.
[http://dx.doi.org/10.1016/j.crvi.2017.07.009] [PMID: 28826788]
[23]
Cooper, J.E.; Kendig, E.L.; Belcher, S.M. Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere, 2011, 85(6), 943-947.
[http://dx.doi.org/10.1016/j.chemosphere.2011.06.060] [PMID: 21741673]
[24]
Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A.A.; Bisphenol, A. Bisphenol a analogues in food and their hormonal and obesogenic effects: A review. Nutrients, 2019, 11(9), 2136.
[http://dx.doi.org/10.3390/nu11092136] [PMID: 31500194]
[25]
Noorlander, C.W.; van Leeuwen, S.P.; Te Biesebeek, J.D.; Mengelers, M.J.; Zeilmaker, M.J. Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in the Netherlands. J. Agric. Food Chem., 2011, 59(13), 7496-7505.
[http://dx.doi.org/10.1021/jf104943p] [PMID: 21591675]
[26]
Zhang, T.; Sun, H.W.; Wu, Q.; Zhang, X.Z.; Yun, S.H.; Kannan, K. Perfluorochemicals in meat, eggs and indoor dust in China: assessment of sources and pathways of human exposure to perfluorochemicals. Environ. Sci. Technol., 2010, 44(9), 3572-3579.
[http://dx.doi.org/10.1021/es1000159] [PMID: 20377175]
[27]
Trudel, D.; Horowitz, L.; Wormuth, M.; Scheringer, M.; Cousins, I.T.; Hungerbühler, K. Estimating consumer exposure to PFOS and PFOA. Risk Anal., 2008, 28(2), 251-269.
[http://dx.doi.org/10.1111/j.1539-6924.2008.01017.x] [PMID: 18419647]
[28]
Afshari, A.; Gunnarsen, L.; Clausen, P.A.; Hansen, V. Emission of phthalates from PVC and other materials. Indoor Air, 2004, 14(2), 120-128.
[http://dx.doi.org/10.1046/j.1600-0668.2003.00220.x] [PMID: 15009418]
[29]
Szewczyńska, M.; Pośniak, M.; Dobrzyńska, E. Determination of phthalates in particulate matter and gaseous phase emitted into the air of the working environment. Int. J. Environ. Sci. Technol., 2020, 17(1), 175-186.
[http://dx.doi.org/10.1007/s13762-019-02435-y]
[30]
Darbre, P.D. Overview of air pollution and endocrine disorders. Int. J. Gen. Med., 2018, 11, 191-207.
[http://dx.doi.org/10.2147/IJGM.S102230] [PMID: 29872334]
[31]
Supply I of M (US) C on the I of D in the F. Sources of Dioxins and Dioxin-like Compounds in the Environment, 2003.
[32]
Bertanza, G.; Papa, M.; Pedrazzani, R.; Repice, C.; Dal Grande, M. Tertiary ozonation of industrial wastewater for the removal of estrogenic compounds (NP and BPA): a full-scale case study. Water Sci. Technol., 2013, 68(3), 567-574.
[http://dx.doi.org/10.2166/wst.2013.282] [PMID: 23925184]
[33]
Wilk, B.K.; Fudala-Ksiazek, S.; Szopińska, M.; Luczkiewicz, A. Landfill leachates and wastewater of maritime origin as possible sources of endocrine disruptors in municipal wastewater. Environ. Sci. Pollut. Res. Int., 2019, 26(25), 25690-25701.
[http://dx.doi.org/10.1007/s11356-019-05566-4] [PMID: 31267401]
[34]
Zhou, G.J.; Li, X.Y.; Leung, K.M.Y. Retinoids and oestrogenic endocrine disrupting chemicals in saline sewage treatment plants: Removal efficiencies and ecological risks to marine organisms. Environ. Int., 2019, 127, 103-113.
[http://dx.doi.org/10.1016/j.envint.2019.03.030] [PMID: 30909093]
[35]
Annamalai, J.; Namasivayam, V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ. Int., 2015, 76, 78-97.
[http://dx.doi.org/10.1016/j.envint.2014.12.006] [PMID: 25569353]
[36]
Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; Ochi, D.; Watanuki, Y.; Moore, C.; Viet, P.H.; Tana, T.S.; Prudente, M.; Boonyatumanond, R.; Zakaria, M.P.; Akkhavong, K.; Ogata, Y.; Hirai, H.; Iwasa, S.; Mizukawa, K.; Hagino, Y.; Imamura, A.; Saha, M.; Takada, H. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2009, 364(1526), 2027-2045.
[http://dx.doi.org/10.1098/rstb.2008.0284] [PMID: 19528054]
[37]
Roberts, P.; Roberts, J.P.; Jones, D.L. Behaviour of the endocrine disrupting chemical nonylphenol in soil: Assessing the risk associated with spreading contaminated waste to land. Soil Biol. Biochem., 2006, 38(7), 1812-1822.
[http://dx.doi.org/10.1016/j.soilbio.2005.12.006]
[38]
Gao, C.J.; Kannan, K. Phthalates, bisphenols, parabens, and triclocarban in feminine hygiene products from the United States and their implications for human exposure. Environ. Int., 2020, 136, 105465.
[http://dx.doi.org/10.1016/j.envint.2020.105465] [PMID: 31945693]
[39]
Govarts, E.; Iszatt, N.; Trnovec, T.; de Cock, M.; Eggesbø, M.; Palkovicova Murinova, L.; van de Bor, M.; Guxens, M.; Chevrier, C.; Koppen, G.; Lamoree, M.; Hertz-Picciotto, I.; Lopez-Espinosa, M.J.; Lertxundi, A.; Grimalt, J.O.; Torrent, M.; Goñi-Irigoyen, F.; Vermeulen, R.; Legler, J.; Schoeters, G. Prenatal exposure to endocrine disrupting chemicals and risk of being born small for gestational age: Pooled analysis of seven European birth cohorts. Environ. Int., 2018, 115, 267-278.
[http://dx.doi.org/10.1016/j.envint.2018.03.017] [PMID: 29605679]
[40]
Mallozzi, M.; Bordi, G.; Garo, C.; Caserta, D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: A review on the major concerns. Birth Defects Res. C Embryo Today, 2016, 108(3), 224-242.
[http://dx.doi.org/10.1002/bdrc.21137] [PMID: 27653964]
[41]
Lee, Y.M.; Kim, K.S.; Jacobs, D.R., Jr; Lee, D.H. Persistent organic pollutants in adipose tissue should be considered in obesity research. Obes. Rev., 2017, 18(2), 129-139.
[http://dx.doi.org/10.1111/obr.12481] [PMID: 27911986]
[42]
van der Meer, T.P.; Thio, C.H.L.; van Faassen, M.; van Beek, A.P.; Snieder, H.; van Berkum, F.N.R.; Kema, I.P.; Makris, K.C.; Wolffenbuttel, B.H.R.; van Vliet-Ostaptchouk, J.V. Endocrine disrupting chemicals during diet-induced weight loss - A post-hoc analysis of the LOWER study. Environ. Res., 2021, 192, 110262.
[http://dx.doi.org/10.1016/j.envres.2020.110262] [PMID: 33045228]
[43]
Kim, S.A.; Lee, Y.M.; Choi, J.Y.; Jacobs, D.R., Jr; Lee, D.H. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures. Environ. Pollut., 2018, 233, 725-734.
[http://dx.doi.org/10.1016/j.envpol.2017.10.124] [PMID: 29126094]
[44]
Street, M.E.; Angelini, S.; Bernasconi, S.; Burgio, E.; Cassio, A.; Catellani, C.; Cirillo, F.; Deodati, A.; Fabbrizi, E.; Fanos, V.; Gargano, G.; Grossi, E.; Iughetti, L.; Lazzeroni, P.; Mantovani, A.; Migliore, L.; Palanza, P.; Panzica, G.; Papini, A.M.; Parmigiani, S.; Predieri, B.; Sartori, C.; Tridenti, G.; Amarri, S. Current knowledge on endocrine disrupting chemicals (EDCs) from animal biology to humans, from pregnancy to adulthood: Highlights from a national Italian meeting. Int. J. Mol. Sci., 2018, 19(6), 1647.
[http://dx.doi.org/10.3390/ijms19061647] [PMID: 29865233]
[45]
Takeda, T.; Fujii, M.; Hattori, Y.; Yamamoto, M.; Shimazoe, T.; Ishii, Y.; Himeno, M.; Yamada, H. Maternal exposure to dioxin imprints sexual immaturity of the pups through fixing the status of the reduced expression of hypothalamic gonadotropin-releasing hormone. Mol. Pharmacol., 2014, 85(1), 74-82.
[http://dx.doi.org/10.1124/mol.113.088575] [PMID: 24132183]
[46]
Takeda, T.; Fujii, M.; Taura, J.; Ishii, Y.; Yamada, H. Dioxin silences gonadotropin expression in perinatal pups by inducing histone deacetylases: a new insight into the mechanism for the imprinting of sexual immaturity by dioxin. J. Biol. Chem., 2012, 287(22), 18440-18450.
[http://dx.doi.org/10.1074/jbc.M111.335158] [PMID: 22493514]
[47]
Hattori, Y.; Takeda, T.; Nakamura, A.; Nishida, K.; Shioji, Y.; Fukumitsu, H.; Yamada, H.; Ishii, Y. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats. Biochem. Pharmacol., 2018, 154, 213-221.
[http://dx.doi.org/10.1016/j.bcp.2018.05.008] [PMID: 29753751]
[48]
McLachlan, J.A. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev., 2001, 22(3), 319-341.
[http://dx.doi.org/10.1210/edrv.22.3.0432] [PMID: 11399747]
[49]
Eskenazi, B.; Warner, M.; Brambilla, P.; Signorini, S.; Ames, J.; Mocarelli, P. The Seveso accident: A look at 40 years of health research and beyond. Environ. Int., 2018, 121(Pt 1), 71-84.
[http://dx.doi.org/10.1016/j.envint.2018.08.051] [PMID: 30179766]
[50]
Mocarelli, P.; Gerthoux, P.M.; Patterson, D.G., Jr; Milani, S.; Limonta, G.; Bertona, M.; Signorini, S.; Tramacere, P.; Colombo, L.; Crespi, C.; Brambilla, P.; Sarto, C.; Carreri, V.; Sampson, E.J.; Turner, W.E.; Needham, L.L. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ. Health Perspect., 2008, 116(1), 70-77.
[http://dx.doi.org/10.1289/ehp.10399] [PMID: 18197302]
[51]
Regnier, S.M.; Kirkley, A.G.; Ruiz, D.; Kamau, W.; Wu, Q.; Kannan, K.; Sargis, R.M. Diet-dependence of metabolic perturbations mediated by the endocrine disruptor tolylfluanid. Endocr. Connect., 2018, 7(1), 159-168.
[http://dx.doi.org/10.1530/EC-17-0320] [PMID: 29187361]
[52]
Serra, H.; Beausoleil, C.; Habert, R.; Minier, C.; Picard-Hagen, N.; Michel, C. Evidence for bisphenol b endocrine properties: Scientific and regulatory perspectives. Environ. Health Perspect., 2019, 127(10), 106001.
[http://dx.doi.org/10.1289/EHP5200] [PMID: 31617754]
[53]
Wu, H.; Wei, Y.; Zhou, Y.; Long, C.; Hong, Y.; Fu, Y.; Zhao, T.; Wang, J.; Wu, Y.; Wu, S.; Shen, L.; Wei, G. Bisphenol S perturbs Sertoli cell junctions in male rats via alterations in cytoskeletal organization mediated by an imbalance between mTORC1 and mTORC2. Sci. Total Environ., 2021, 762, 144059.
[http://dx.doi.org/10.1016/j.scitotenv.2020.144059] [PMID: 33360459]
[54]
Barbagallo, F.; Condorelli, R.A.; Mongioì, L.M.; Cannarella, R.; Aversa, A.; Calogero, A.E.; La Vignera, S. Effects of bisphenols on testicular steroidogenesis. Front. Endocrinol. (Lausanne), 2020, 11, 373.
[http://dx.doi.org/10.3389/fendo.2020.00373] [PMID: 32714277]
[55]
Pallotti, F.; Pelloni, M.; Gianfrilli, D.; Lenzi, A.; Lombardo, F.; Paoli, D. Mechanisms of testicular disruption from exposure to bisphenol A and phtalates. J. Clin. Med., 2020, 9(2), 471.
[http://dx.doi.org/10.3390/jcm9020471] [PMID: 32046352]
[56]
Cariati, F.; Carbone, L.; Conforti, A.; Bagnulo, F.; Peluso, S.R.; Carotenuto, C.; Buonfantino, C.; Alviggi, E.; Alviggi, C.; Strina, I. Bisphenol A-induced epigenetic changes and its effects on the male reproductive system. Front. Endocrinol. (Lausanne), 2020, 11, 453.
[http://dx.doi.org/10.3389/fendo.2020.00453] [PMID: 32849263]
[57]
Tanner, E.M.; Hallerbäck, M.U.; Wikström, S.; Lindh, C.; Kiviranta, H.; Gennings, C.; Bornehag, C.G. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. Environ. Int., 2020, 134, 105185.
[http://dx.doi.org/10.1016/j.envint.2019.105185] [PMID: 31668669]
[58]
Kortenkamp, A. Endocrine disruptors: The burden of endocrine-disrupting chemicals in the USA. Nat. Rev. Endocrinol., 2016, 13(1), 6-7.
[http://dx.doi.org/10.1038/nrendo.2016.198] [PMID: 27929035]
[59]
Frye, C.A.; Bo, E.; Calamandrei, G.; Calzà, L.; Dessì-Fulgheri, F.; Fernández, M.; Fusani, L.; Kah, O.; Kajta, M.; Le Page, Y.; Patisaul, H.B.; Venerosi, A.; Wojtowicz, A.K.; Panzica, G.C. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol., 2012, 24(1), 144-159.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02229.x] [PMID: 21951193]
[60]
La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; Rieswijk, L.; Sone, H.; Korach, K.S.; Gore, A.C.; Zeise, L.; Zoeller, R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol., 2020, 16(1), 45-57.
[http://dx.doi.org/10.1038/s41574-019-0273-8] [PMID: 31719706]
[61]
Dees, C.; Askari, M.; Garrett, S.; Gehrs, K.; Henley, D.; Ardies, C.M. Estrogenic and DNA-damaging activity of Red No. 3 in human breast cancer cells. Environmental Health Perspectives; Public Health Services, US Dept of Health and Human Services, 1997, Vol. 105, pp. 625-632.
[62]
McCarty, M.F. Isoflavones made simple - genistein’s agonist activity for the beta-type estrogen receptor mediates their health benefits. Med. Hypotheses, 2006, 66(6), 1093-1114.
[http://dx.doi.org/10.1016/j.mehy.2004.11.046] [PMID: 16513288]
[63]
Martinez-Pinna, J.; Marroqui, L.; Hmadcha, A.; Lopez-Beas, J.; Soriano, S.; Villar-Pazos, S.; Alonso-Magdalena, P.; Dos Santos, R.S.; Quesada, I.; Martin, F.; Soria, B.; Gustafsson, J.Å.; Nadal, A. Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia, 2019, 62(9), 1667-1680.
[http://dx.doi.org/10.1007/s00125-019-4925-y] [PMID: 31250031]
[64]
Prasanth, G.K.; Divya, L.M.; Sadasivan, C. Bisphenol-A can bind to human glucocorticoid receptor as an agonist: an in silico study. J. Appl. Toxicol., 2010, 30(8), 769-774.
[http://dx.doi.org/10.1002/jat.1570] [PMID: 20669259]
[65]
Zhang, J.; Yang, Y.; Liu, W.; Schlenk, D.; Liu, J. Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. Environ. Int., 2019, 133(Pt A), 105133.
[http://dx.doi.org/10.1016/j.envint.2019.105133] [PMID: 31520960]
[66]
Lee, H.R.; Jeung, E.B.; Cho, M.H.; Kim, T.H.; Leung, P.C.K.; Choi, K.C. Molecular mechanism(s) of endocrine-disrupting chemicals and their potent oestrogenicity in diverse cells and tissues that express oestrogen receptors. J. Cell. Mol. Med., 2013, 17(1), 1-11.
[http://dx.doi.org/10.1111/j.1582-4934.2012.01649.x] [PMID: 23279634]
[67]
You, S.H.; Gauger, K.J.; Bansal, R.; Zoeller, R.T. 4-Hydroxy-PCB106 acts as a direct thyroid hormone receptor agonist in rat GH3 cells. Mol. Cell. Endocrinol., 2006, 257-258, 26-34.
[http://dx.doi.org/10.1016/j.mce.2006.06.009] [PMID: 16930818]
[68]
Munier, M.; Grouleff, J.; Gourdin, L.; Fauchard, M.; Chantreau, V.; Henrion, D.; Coutant, R.; Schiøtt, B.; Chabbert, M.; Rodien, P. In vitro effects of the endocrine disruptor p,p′-DDT on human follitropin receptor. Environ. Health Perspect., 2016, 124(7), 991-999.
[http://dx.doi.org/10.1289/ehp.1510006] [PMID: 26895433]
[69]
Périan, S.; Vanacker, J.M. GPER as a receptor for endocrine-disrupting chemicals (EDCs). Front. Endocrinol. (Lausanne), 2020, 11, 545.
[http://dx.doi.org/10.3389/fendo.2020.00545] [PMID: 32973678]
[70]
Marteinson, S.C.; Letcher, R.J.; Fernie, K.J. Exposure to the androgenic brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane alters reproductive and aggressive behaviors in birds. Environ. Toxicol. Chem., 2015, 34(10), 2395-2402.
[http://dx.doi.org/10.1002/etc.3078] [PMID: 26013366]
[71]
Kelce, W.R.; Stone, C.R.; Laws, S.C.; Gray, L.E.; Kemppainen, J.A.; Wilson, E.M. Persistent DDT metabolite p,p′-DDE is a potent androgen receptor antagonist. Nature, 1995, 375(6532), 581-585.
[http://dx.doi.org/10.1038/375581a0] [PMID: 7791873]
[72]
Danzo, B.J. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ. Health Perspect., 1997, 105(3), 294-301.
[http://dx.doi.org/10.1289/ehp.97105294] [PMID: 9171990]
[73]
Li, D.; Zhou, Z.; Qing, D.; He, Y.; Wu, T.; Miao, M.; Wang, J.; Weng, X.; Ferber, J.R.; Herrinton, L.J.; Zhu, Q.; Gao, E.; Checkoway, H.; Yuan, W. Occupational exposure to bisphenol-A (BPA) and the risk of self-reported male sexual dysfunction. Hum. Reprod., 2010, 25(2), 519-527.
[http://dx.doi.org/10.1093/humrep/dep381] [PMID: 19906654]
[74]
De Falco, M.; Forte, M.; Laforgia, V. Estrogenic and anti-androgenic endocrine disrupting chemicals and their impact on the male reproductive system. Front. Environ. Sci., 2015, 3, 3.
[http://dx.doi.org/10.3389/fenvs.2015.00003]
[75]
Hotchkiss, A.K.; Ostby, J.S.; Vandenburgh, J.G.; Gray, L.E., Jr Androgens and environmental antiandrogens affect reproductive development and play behavior in the Sprague-Dawley rat. Environ. Health Perspect., 2002, 110(Suppl. 3), 435-439.
[http://dx.doi.org/10.1289/ehp.02110s3435] [PMID: 12060841]
[76]
Victor-Costa, A.B.; Bandeira, S.M.C.; Oliveira, A.G.; Mahecha, G.A.B.; Oliveira, C.A. Changes in testicular morphology and steroidogenesis in adult rats exposed to Atrazine. Reprod. Toxicol., 2010, 29(3), 323-331.
[http://dx.doi.org/10.1016/j.reprotox.2009.12.006] [PMID: 20045047]
[77]
Tamura, H.; Maness, S.C.; Reischmann, K.; Dorman, D.C.; Gray, L.E.; Gaido, K.W. Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Toxicol. Sci., 2001, 60(1), 56-62.
[http://dx.doi.org/10.1093/toxsci/60.1.56] [PMID: 11222873]
[78]
Orton, F.; Rosivatz, E.; Scholze, M.; Kortenkamp, A. Competitive androgen receptor antagonism as a factor determining the predictability of cumulative antiandrogenic effects of widely used pesticides. Environ. Health Perspect., 2012, 120(11), 1578-1584.
[http://dx.doi.org/10.1289/ehp.1205391] [PMID: 23008280]
[79]
Martinez-Arguelles, D.B.; Culty, M.; Zirkin, B.R.; Papadopoulos, V. In utero exposure to di-(2-ethylhexyl) phthalate decreases mineralocorticoid receptor expression in the adult testis. Endocrinology, 2009, 150(12), 5575-5585.
[http://dx.doi.org/10.1210/en.2009-0847] [PMID: 19819939]
[80]
Cao, J.; Mickens, J.A.; McCaffrey, K.A.; Leyrer, S.M.; Patisaul, H.B. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology, 2012, 33(1), 23-36.
[http://dx.doi.org/10.1016/j.neuro.2011.11.002] [PMID: 22101008]
[81]
Sullivan, A.W.; Beach, E.C.; Stetzik, L.A.; Perry, A.; D’Addezio, A.S.; Cushing, B.S.; Patisaul, H.B. A novel model for neuroendocrine toxicology: neurobehavioral effects of BPA exposure in a prosocial species, the prairie vole (Microtus ochrogaster). Endocrinology, 2014, 155(10), 3867-3881.
[http://dx.doi.org/10.1210/en.2014-1379] [PMID: 25051448]
[82]
Patisaul, H.B. Endocrine disruption of vasopressin systems and related behaviors. Front. Endocrinol. (Lausanne), 2017, 8, 134.
[http://dx.doi.org/10.3389/fendo.2017.00134] [PMID: 28674520]
[83]
Adewale, H.B.; Todd, K.L.; Mickens, J.A.; Patisaul, H.B. The impact of neonatal bisphenol-A exposure on sexually dimorphic hypothalamic nuclei in the female rat. Neurotoxicology, 2011, 32(1), 38-49.
[http://dx.doi.org/10.1016/j.neuro.2010.07.008] [PMID: 20696184]
[84]
Wolstenholme, J.T.; Edwards, M.; Shetty, S.R.; Gatewood, J.D.; Taylor, J.A.; Rissman, E.F.; Connelly, J.J. Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology, 2012, 153(8), 3828-3838.
[http://dx.doi.org/10.1210/en.2012-1195] [PMID: 22707478]
[85]
Masuyama, H.; Hiramatsu, Y. Involvement of suppressor for Gal 1 in the ubiquitin/proteasome-mediated degradation of estrogen receptors. J. Biol. Chem., 2004, 279(13), 12020-12026.
[http://dx.doi.org/10.1074/jbc.M312762200] [PMID: 14702340]
[86]
Picchietti, S.; Belardinelli, M.; Taddei, A.R.; Fausto, A.M.; Pellegrino, M.; Maggio, R.; Rossi, M.; Giorgi, F. Thyroid disruptor 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) prevents internalization of TSH receptor. Cell Tissue Res., 2009, 336(1), 31-40.
[http://dx.doi.org/10.1007/s00441-008-0749-7] [PMID: 19214582]
[87]
Wang, T.; Liu, B.; Guan, Y.; Gong, M.; Zhang, W.; Pan, J.; Liu, Y.; Liang, R.; Yuan, Y.; Ye, L. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac. Cancer, 2018, 9(3), 368-375.
[http://dx.doi.org/10.1111/1759-7714.12587] [PMID: 29330934]
[88]
Walker, C.L. Minireview: Epigenomic plasticity and vulnerability to EDC exposures. Mol. Endocrinol., 2016, 30(8), 848-855.
[http://dx.doi.org/10.1210/me.2016-1086] [PMID: 27355193]
[89]
Walker, D.M.; Gore, A.C. Epigenetic impacts of endocrine disruptors in the brain. Front. Neuroendocrinol., 2017, 44, 1-26.
[http://dx.doi.org/10.1016/j.yfrne.2016.09.002] [PMID: 27663243]
[90]
Fénichel, P.; Chevalier, N. Environmental endocrine disruptors: New diabetogens? C. R. Biol., 2017, 340(9-10), 446-452.
[http://dx.doi.org/10.1016/j.crvi.2017.07.003] [PMID: 28826789]
[91]
Lisco, G.; De Tullio, A.; Giagulli, V.A.; De Pergola, G.; Triggiani, V. Interference on iodine uptake and human thyroid function by perchlorate-contaminated water and food. Nutrients, 2020, 12(6), 1669.
[http://dx.doi.org/10.3390/nu12061669] [PMID: 32512711]
[92]
Triggiani, V.; Tafaro, E.; Giagulli, V.A.; Sabbà, C.; Resta, F.; Licchelli, B.; Guastamacchia, E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets, 2009, 9(3), 277-294.
[http://dx.doi.org/10.2174/187153009789044392] [PMID: 19594417]
[93]
Parks, L.G.; Ostby, J.S.; Lambright, C.R.; Abbott, B.D.; Klinefelter, G.R.; Barlow, N.J.; Gray, L.E., Jr The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol. Sci., 2000, 58(2), 339-349.
[http://dx.doi.org/10.1093/toxsci/58.2.339] [PMID: 11099646]
[94]
Mylchreest, E.; Sar, M.; Wallace, D.G.; Foster, P.M.D. Fetal testosterone insufficiency and abnormal proliferation of Leydig cells and gonocytes in rats exposed to di(n-butyl) phthalate. Reprod. Toxicol., 2002, 16(1), 19-28.
[http://dx.doi.org/10.1016/S0890-6238(01)00201-5] [PMID: 11934529]
[95]
Jin, Y.; Wang, L.; Fu, Z. Oral exposure to atrazine modulates hormone synthesis and the transcription of steroidogenic genes in male peripubertal mice. Gen. Comp. Endocrinol., 2013, 184, 120-127.
[http://dx.doi.org/10.1016/j.ygcen.2013.01.010] [PMID: 23376530]
[96]
Villar-Pazos, S.; Martinez-Pinna, J.; Castellano-Muñoz, M.; Alonso-Magdalena, P.; Marroqui, L.; Quesada, I.; Gustafsson, J.A.; Nadal, A. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic β-cells. Sci. Rep., 2017, 7(1), 11770.
[http://dx.doi.org/10.1038/s41598-017-11995-3] [PMID: 28924161]
[97]
Zhang, Y.; Wu, L.; Zhang, G.; Guan, Y.; Wang, Z. Effect of low-dose malathion on the gonadal development of adult rare minnow Gobiocypris rarus. Ecotoxicol. Environ. Saf., 2016, 125, 135-140.
[http://dx.doi.org/10.1016/j.ecoenv.2015.11.041] [PMID: 26685786]
[98]
Sheikh, I.A.; Turki, R.F.; Abuzenadah, A.M.; Damanhouri, G.A.; Beg, M.A. Endocrine disruption: Computational perspectives on human sex hormone-binding globulin and phthalate plasticizers. PLoS One, 2016, 10, 11(3), e0151444.
[http://dx.doi.org/10.1371/journal.pone.0151444] [PMID: 26963243]
[99]
Zhou, Q.; Miao, M.; Ran, M.; Ding, L.; Bai, L.; Wu, T.; Yuan, W.; Gao, E.; Wang, J.; Li, G.; Li, D.K. Serum bisphenol-A concentration and sex hormone levels in men. Fertil. Steril., 2013, 100(2), 478-482.
[http://dx.doi.org/10.1016/j.fertnstert.2013.04.017] [PMID: 23651625]
[100]
Boas, M.; Feldt-Rasmussen, U.; Main, K.M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol., 2012, 355(2), 240-248.
[http://dx.doi.org/10.1016/j.mce.2011.09.005] [PMID: 21939731]
[101]
Brucker-Davis, F. Effects of environmental synthetic chemicals on thyroid function. Thyroid, 1998, 8(9), 827-856.
[http://dx.doi.org/10.1089/thy.1998.8.827] [PMID: 9777756]
[102]
Kester, M.H.; Bulduk, S.; Tibboel, D.; Meinl, W.; Glatt, H.; Falany, C.N.; Coughtrie, M.W.; Bergman, A.; Safe, S.H.; Kuiper, G.G.; Schuur, A.G.; Brouwer, A.; Visser, T.J. Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology, 2000, 141(5), 1897-1900.
[http://dx.doi.org/10.1210/endo.141.5.7530] [PMID: 10803601]
[103]
Toivanen, R.; Shen, M.M. Prostate organogenesis: tissue induction, hormonal regulation and cell type specification. Development, 2017, 144(8), 1382-1398.
[http://dx.doi.org/10.1242/dev.148270] [PMID: 28400434]
[104]
Inman, J.L.; Robertson, C.; Mott, J.D.; Bissell, M.J. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development, 2015, 142(6), 1028-1042.
[http://dx.doi.org/10.1242/dev.087643] [PMID: 25758218]
[105]
Rey, R.A.; Grinspon, R.P. Normal male sexual differentiation and aetiology of disorders of sex development. Best Pract. Res. Clin. Endocrinol. Metab., 2011, 25(2), 221-238.
[http://dx.doi.org/10.1016/j.beem.2010.08.013] [PMID: 21397195]
[106]
Bansal, R.; Zoeller, R.T. Polychlorinated biphenyls (Aroclor 1254) do not uniformly produce agonist actions on thyroid hormone responses in the developing rat brain. Endocrinology, 2008, 149(8), 4001-4008.
[http://dx.doi.org/10.1210/en.2007-1774] [PMID: 18420739]
[107]
Lagarde, F.; Beausoleil, C.; Belcher, S.M.; Belzunces, L.P.; Emond, C.; Guerbet, M.; Rousselle, C. Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environ. Health, 2015, 14, 13.
[http://dx.doi.org/10.1186/1476-069X-14-13] [PMID: 25971433]
[108]
Li, Z.; Romanoff, L.C.; Lewin, M.D.; Porter, E.N.; Trinidad, D.A.; Needham, L.L.; Patterson, D.G., Jr; Sjödin, A. Variability of urinary concentrations of polycyclic aromatic hydrocarbon metabolite in general population and comparison of spot, first-morning, and 24-h void sampling. J. Expo. Sci. Environ. Epidemiol., 2010, 20(6), 526-535.
[http://dx.doi.org/10.1038/jes.2009.41] [PMID: 19707251]
[109]
Preau, J.L., Jr; Wong, L.Y.; Silva, M.J.; Needham, L.L.; Calafat, A.M. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: an observational study. Environ. Health Perspect., 2010, 118(12), 1748-1754.
[http://dx.doi.org/10.1289/ehp.1002231] [PMID: 20797930]
[110]
Ye, X.; Wong, L.Y.; Bishop, A.M.; Calafat, A.M. Variability of urinary concentrations of bisphenol A in spot samples, first morning voids, and 24-hour collections. Environ. Health Perspect., 2011, 119(7), 983-988.
[http://dx.doi.org/10.1289/ehp.1002701] [PMID: 21406337]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy