Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Composite Materials Based on Metal-Organic Frameworks Designed for Sensors

Author(s): Mingmin Li, Changhua An and Tie Wang*

Volume 18, Issue 6, 2022

Published on: 12 April, 2021

Page: [630 - 645] Pages: 16

DOI: 10.2174/1573411017666210412094351

Price: $65

Abstract

Background: Integrating metal-organic frameworks (MOFs) with other functional materials to form MOF-composites has attracted great attention. Their diverse and synergetic performance (e.g., mechanical stability, conductivity, optical signal and catalytic activity) facilitates their applications in sensing of various target molecules.

Methods: Up to now, a wide range of MOF-composites have been designed and synthesized. The choice of appropriate parent materials, as well as their combination strategy, is of great importance for their performance. Prior to the design of MOF-composites for certain sensing applications, it is necessary to evaluate the advantages of the composites compared to the pristine MOFs and other functional materials.

Results: In this review, an overview of the significant advances in the development of diverse MOF-composites is presented, with special emphasis on the synergistic effects in sensing (e.g., optical, electrochemical and biological) applications of the composites. Additionally, the challenges and future prospects of MOF-composites as an innovative sensing platform have been discussed to seek further development in this emerging research area.

Conclusion: MOF-composites show great potential in sensing applications. Further efforts are still urgently required to advance their applications in point-of-care (POC) detection and in vitro diagnosis (IVD).

Keywords: MOFs, composites, electrochemical sensors, optical sensors, synergetic effects, chromatography.

Graphical Abstract

[1]
Cernat, A.; Ştefan, G.; Tertis, M.; Cristea, C.; Simon, I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry, 2020, 136, 107620-107620.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107620] [PMID: 32791486]
[2]
Jouyban, A.; Rahimpour, E. Sensors/nanosensors based on upconversion materials for the determination of pharmaceuticals and biomolecules: An overview. Talanta, 2020, 220, 121383-121383.
[http://dx.doi.org/10.1016/j.talanta.2020.121383] [PMID: 32928407]
[3]
Mahmud, M.A.P.; Ejeian, F.; Azadi, S.; Myers, M.; Pejcic, B.; Abbassi, R.; Razmjou, A.; Asadnia, M. Recent progress in sensing nitrate, nitrite, phosphate, and ammonium in aquatic environment. Chemosphere, 2020, 259, 127492-127516.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127492]
[4]
Piroozmand, F.; Mohammadipanah, F.; Faridbod, F. Emerging biosensors in detection of natural products. Synth Syst Biotechnol, 2020, 5(4), 293-303.
[http://dx.doi.org/10.1016/j.synbio.2020.08.002] [PMID: 32954023]
[5]
Razavi, S.A.A.; Morsali, A. Metal ion detection using luminescent-MOFs: principles, strategies and roadmap. Coord. Chem. Rev., 2020, 415, 213299-213342.
[http://dx.doi.org/10.1016/j.ccr.2020.213299]
[6]
Atapattu, S.N.; Poole, C.F. Recent advances in analytical methods for the determination of citrinin in food matrices. J. Chromatogr. A, 2020, 1627, 461399-461408.
[http://dx.doi.org/10.1016/j.chroma.2020.461399] [PMID: 32823104]
[7]
Derayea, S.M.; Samir, E. A review on the use of fluorescamine as versatile and convenient analytical probe. Microchem. J., 2020, 156, 104835-104841.
[http://dx.doi.org/10.1016/j.microc.2020.104835]
[8]
Rosini, E.; D’Antona, P.; Pollegioni, L. Biosensors for D-amino acids: detection methods and applications. Int. J. Mol. Sci., 2020, 21(13), 4574-4589.
[http://dx.doi.org/10.3390/ijms21134574] [PMID: 32605078]
[9]
Tuzimski, T.; Petruczynik, A. review of chromatographic methods coupled with modern detection techniques applied in the therapeutic drugs monitoring (TDM). Molecules, 2020, 25(17), 4026-4094.
[http://dx.doi.org/10.3390/molecules25174026] [PMID: 32899296]
[10]
Liu, C.S.; Li, J.; Pang, H. Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord. Chem. Rev., 2020, 410, 213222-213260.
[http://dx.doi.org/10.1016/j.ccr.2020.213222]
[11]
Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. Trac-Trend. Anal. Chem., 2019, 118, 401-425.
[http://dx.doi.org/10.1016/j.trac.2019.06.007]
[12]
Zhao, S.S.; Yang, J.; Liu, Y.Y.; Ma, J.F. Fluorescent aromatic tag-functionalized MOFs for highly selective sensing of metal ions and small organic molecules. Inorg. Chem., 2016, 55(5), 2261-2273.
[http://dx.doi.org/10.1021/acs.inorgchem.5b02666] [PMID: 26895464]
[13]
Shen, K.; Ju, Z.; Qin, L.; Wang, T.; Zheng, H. Two stable 3D porous metal-organic frameworks with high selectivity for detection of PA and metal ions. Dyes Pigments, 2017, 136, 515-521.
[http://dx.doi.org/10.1016/j.dyepig.2016.09.011]
[14]
Zou, J.P.; Peng, Q.; Wen, Z.; Zeng, G.S.; Xing, Q.J.; Guo, G.C. Two novel metal-organic frameworks (MOFs) with (3,6)-connected net topologies: syntheses, crystal structures, third-order nonlinear optical and luminescent properties. Cryst. Growth Des., 2010, 10(6), 2613-2619.
[http://dx.doi.org/10.1021/cg100104t]
[15]
Brondani, D.; Zapp, E.; Heying, R.S.; de Souza, B.; Vieira, I.C. Copper- based metal-organic framework applied in the development of an electrochemical biomimetic sensor for catechol determination. Electroanalysis, 2017, 29(12), 2810-2817.
[http://dx.doi.org/10.1002/elan.201700509]
[16]
Lopa, N.S.; Rahman, M.M.; Ahmed, F.; Sutradhar, S.C.; Ryu, T.; Kim, W. A Ni-based redox-active metal-organic framework for sensitive and non-enzymatic detection of glucose. J. Electroanal. Chem. (Lausanne Switz.), 2018, 822, 43-49.
[http://dx.doi.org/10.1016/j.jelechem.2018.05.014]
[17]
Hu, R.; Zhang, X.; Chi, K.N.; Yang, T.; Yang, Y.H. Bifunctional MOFs-based ratiometric electrochemical sensor for multiplex heavy metal ions. ACS Appl. Mater. Interfaces, 2020, 12(27), 30770-30778.
[http://dx.doi.org/10.1021/acsami.0c06291] [PMID: 32497422]
[18]
Ye, B.; Gheorghe, A.; van Hal, R.; Zevenbergen, M.; Tanase, S. CO2 sensing under ambient conditions using metal-organic frameworks. Mol. Syst. Des. Eng., 2020, 5(6), 1071-1076.
[http://dx.doi.org/10.1039/D0ME00004C]
[19]
Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.C. Stable metal-organic frameworks: design, dynthesis, and applications. Adv. Mater., 2018, 30(37), e1704303.
[http://dx.doi.org/10.1002/adma.201704303] [PMID: 29430732]
[20]
Furukawa, H.; Gándara, F.; Zhang, Y.B.; Jiang, J.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc., 2014, 136(11), 4369-4381.
[http://dx.doi.org/10.1021/ja500330a] [PMID: 24588307]
[21]
Lv, X.L.; Wang, K.; Wang, B.; Su, J.; Zou, X.; Xie, Y.; Li, J.R.; Zhou, H.C. A base-resistant metalloporphyrin metal-organic framework for C-H bond halogenation. J. Am. Chem. Soc., 2017, 139(1), 211-217.
[http://dx.doi.org/10.1021/jacs.6b09463] [PMID: 27936748]
[22]
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402(6759), 276-279.
[http://dx.doi.org/10.1038/46248]
[23]
Amini, A.; Kazemi, S.; Safarifard, V. Metal-organic framework-based nanocomposites for sensing applications-a review. Polyhedron, 2020, 177, 114260-114275.
[http://dx.doi.org/10.1016/j.poly.2019.114260]
[24]
Zhang, X.; Xu, Y.; Ye, B. An efficient electrochemical glucose sensor based on porous nickel-based metal organic framework/carbon nanotubes composite (Ni-MOF/CNTs). J. Alloys Compd., 2018, 767, 651-656.
[http://dx.doi.org/10.1016/j.jallcom.2018.07.175]
[25]
Lu, M.; Deng, Y.; Li, Y.; Li, T.; Xu, J.; Chen, S.W.; Wang, J. Core-shell MOF@MOF composites for sensitive nonenzymatic glucose sensing in human serum. Anal. Chim. Acta, 2020, 1110, 35-43.
[http://dx.doi.org/10.1016/j.aca.2020.02.023] [PMID: 32278398]
[26]
El Hankari, S.; Bousmina, M.; El Kadib, A. Biopolymer@metal-organic framework hybrid materials: a critical survey. Prog. Mater. Sci., 2019, 106, 100579-100615.
[http://dx.doi.org/10.1016/j.pmatsci.2019.100579]
[27]
Zhuang, J.; Young, A.P.; Tsung, C.K. Integration of biomolecules with metal-organic frameworks. Small, 2017, 13(32), 1700880-1700893.
[http://dx.doi.org/10.1002/smll.201700880] [PMID: 28640560]
[28]
Yu, L.; Song, Z.; Peng, J.; Yang, M.; Zhi, H.; He, H. Progress of gold nanomaterials for colorimetric sensing based on different strategies. Trac-Trend. Anal. Chem., 2020, 127, 115880-115897.
[http://dx.doi.org/10.1016/j.trac.2020.115880]
[29]
Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Nanomaterial-based biosensors for sensing key foodborne pathogens: Advances from recent decades. Compr. Rev. Food Sci. Food Saf., 2020, 19(4), 1465-1487.
[http://dx.doi.org/10.1111/1541-4337.12576] [PMID: 33337098]
[30]
Wu, C.; Wang, S.; Luo, X.; Yuan, R.; Yang, X. Adenosine triphosphate responsive metal-organic frameworks equipped with a DNA structure lock for construction of a ratiometric SERS biosensor. Chem. Commun. (Camb.), 2020, 56(9), 1413-1416.
[http://dx.doi.org/10.1039/C9CC08440A] [PMID: 31912820]
[31]
An, H.; Li, M.; Ga, J.; Zhang, Z.; Ma, S.; Chen, Y. Incorporation of biomolecules in metal-organic frameworks for advanced applications. Coord. Chem. Rev., 2019, 384, 90-106.
[http://dx.doi.org/10.1016/j.ccr.2019.01.001]
[32]
Anik, Ü.; Timur, S.; Dursun, Z. Metal organic frameworks in electrochemical and optical sensing platforms: a review. Mikrochim. Acta, 2019, 186(3), 196-210.
[http://dx.doi.org/10.1007/s00604-019-3321-0] [PMID: 30788595]
[33]
Yang, Q.; Xu, Q.; Jiang, H.L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev., 2017, 46(15), 4774-4808.
[http://dx.doi.org/10.1039/C6CS00724D] [PMID: 28621344]
[34]
Chen, L.; Luque, R.; Li, Y. Controllable design of tunable nanostructures inside metal-organic frameworks. Chem. Soc. Rev., 2017, 46(15), 4614-4630.
[http://dx.doi.org/10.1039/C6CS00537C] [PMID: 28516998]
[35]
Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res., 2016, 49(3), 483-493.
[http://dx.doi.org/10.1021/acs.accounts.5b00530] [PMID: 26878085]
[36]
Sosa, J.D.; Bennett, T.F.; Nelms, K.J.; Liu, B.M.; Tovar, R.C.; Liu, Y. Metal-organic framework hybrid materials and their applications. Crystals (Basel), 2018, 8(8), 325-347.
[http://dx.doi.org/10.3390/cryst8080325]
[37]
Zhu, Q.L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev., 2014, 43(16), 5468-5512.
[http://dx.doi.org/10.1039/C3CS60472A] [PMID: 24638055]
[38]
Bhardwaj, S.K.; Mohanta, G.C.; Sharma, A.L.; Kim, K.H.; Deep, A. A three-phase copper MOF-graphene-polyaniline composite for effective sensing of ammonia. Anal. Chim. Acta, 2018, 1043, 89-97.
[http://dx.doi.org/10.1016/j.aca.2018.09.003] [PMID: 30392673]
[39]
Gao, Y.; Qi, Y.; Zhao, K.; Wen, Q.; Shen, J.; Qiu, L.; Mou, W. An optical sensing platform for the dual channel detection of picric acid: The combination of rhodamine and metal-organic frameworks. Sens. Actuators B Chem., 2018, 257, 553-560.
[http://dx.doi.org/10.1016/j.snb.2017.11.007]
[40]
Rani, S.; Sharma, B.; Malhotra, R.; Kumar, S.; Varma, R.S.; Dilbaghi, N. Sn-MOF@CNT nanocomposite: An efficient electrochemical sensor for detection of hydrogen peroxide. Environ. Res., 2020, 191, 110005-110005.
[http://dx.doi.org/10.1016/j.envres.2020.110005] [PMID: 32926892]
[41]
Sachdeva, S.; Soccol, D.; Gravesteijn, D.J.; Kapteijn, F.; Sudholter, E.J.R.; Gascon, J.; de Smett, L.C.P.M. Polymer-metal organic framework composite films as affinity layer for capacitive sensor devices. ACS Sens., 2016, 1(10), 1188-1192.
[http://dx.doi.org/10.1021/acssensors.6b00295]
[42]
Tu, X.; Xie, Y.; Ma, X.; Gao, F.; Gong, L.; Wang, D.; Lu, L.; Liu, G.; Yu, Y.; Huang, X. Highly stable reduced graphene oxide-encapsulated Ce-MOF composite as sensing material for electrochemically detecting dichlorophen. J. Electroanal. Chem. (Lausanne Switz.), 2019, 848, 113268-113275.
[http://dx.doi.org/10.1016/j.jelechem.2019.113268]
[43]
Aguilera-Sigalat, J.; Bradshaw, D. Synthesis and applications of metal-organic framework-quantum dot (QD@MOF) composites. Coord. Chem. Rev., 2016, 307, 267-291.
[http://dx.doi.org/10.1016/j.ccr.2015.08.004]
[44]
Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev., 2017, 46(11), 3386-3401.
[http://dx.doi.org/10.1039/C7CS00058H] [PMID: 28451673]
[45]
Ricco, R.; Malfatti, L.; Takahashi, M.; Hill, A.J.; Falcaro, P. Applications of magnetic metal-organic framework composites. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(42), 13033-13045.
[http://dx.doi.org/10.1039/c3ta13140h]
[46]
Xu, H.; Zhou, S.; Xiao, L.; Wang, H.; Li, S.; Yuan, Q. Fabrication of a nitrogen-doped graphene quantum dot from MOF-derived porous carbon and its application for highly selective fluorescence detection of Fe3+. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(2), 291-297.
[http://dx.doi.org/10.1039/C4TC01991A]
[47]
Yu, J.; Mu, C.; Yan, B.; Qin, X.; Shen, C.; Xue, H.; Pang, H. Nanoparticle/MOF composites: preparations and applications. Mater. Horiz., 2017, 4(4), 557-569.
[http://dx.doi.org/10.1039/C6MH00586A]
[48]
Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev., 2014, 43(16), 5815-5840.
[http://dx.doi.org/10.1039/C4CS00010B] [PMID: 24577142]
[49]
Lim, S.Y.; Shen, W.; Gao, Z. Carbon quantum dots and their applications. Chem. Soc. Rev., 2015, 44(1), 362-381.
[http://dx.doi.org/10.1039/C4CS00269E] [PMID: 25316556]
[50]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[51]
Murphy, C.J.; Sau, T.K.; Gole, A.M.; Orendorff, C.J.; Gao, J.; Gou, L.; Hunyadi, S.E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B, 2005, 109(29), 13857-13870.
[http://dx.doi.org/10.1021/jp0516846] [PMID: 16852739]
[52]
Shipway, A.N.; Katz, E.; Willner, I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem, 2000, 1(1), 18-52.
[http://dx.doi.org/10.1002/1439-7641(20000804)1:1<18:AID-CPHC18>3.0.CO;2-L]
[53]
Stiles, P.L.; Dieringer, J.A.; Shah, N.C.; Van Duyne, R.P. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 2008, 1, 601-626.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112814] [PMID: 20636091]
[54]
Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science, 2013, 341(6149), 1230444.
[http://dx.doi.org/10.1126/science.1230444] [PMID: 23990564]
[55]
Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. Engl., 2010, 49(26), 4430-4434.
[http://dx.doi.org/10.1002/anie.200906154] [PMID: 20461744]
[56]
Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem., 2010, 2(12), 1015-1024.
[http://dx.doi.org/10.1038/nchem.907] [PMID: 21107364]
[57]
Ntziachristos, V. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng., 2006, 8, 1-33.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095831] [PMID: 16834550]
[58]
Wang, Y.; Hu, A. Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2(34), 6921-6939.
[http://dx.doi.org/10.1039/C4TC00988F]
[59]
Huang, N.H.; Li, R.T.; Fan, C.; Wu, K.Y.; Zhang, Z.; Chen, J.X. Rapid sequential detection of Hg2+ and biothiols by a probe DNA-MOF hybrid sensory system. J. Inorg. Biochem., 2019, 197, 110690.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.04.004] [PMID: 31075721]
[60]
Shen, X.; Yan, B. Photofunctional hybrids of lanthanide functionalized bio-MOF-1 for fluorescence tuning and sensing. J. Colloid Interface Sci., 2015, 451, 63-68.
[http://dx.doi.org/10.1016/j.jcis.2015.03.039] [PMID: 25881265]
[61]
Lin, X.; Gao, G.; Zheng, L.; Chi, Y.; Chen, G. Encapsulation of strongly fluorescent carbon quantum dots in metal-organic frameworks for enhancing chemical sensing. Anal. Chem., 2014, 86(2), 1223-1228.
[http://dx.doi.org/10.1021/ac403536a] [PMID: 24328057]
[62]
Liu, J.J.; Shan, Y.B.; Fan, C.R.; Lin, M.J.; Huang, C.C.; Dai, W.X. Encapsulating naphthalene in an electron-deficient MOF to enhance fluorescence for organic amines sensing. Inorg. Chem., 2016, 55(7), 3680-3684.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00252] [PMID: 27040717]
[63]
Masih, D.; Chernikova, V.; Shekhah, O.; Eddaoudi, M.; Mohammed, O.F. Zeolite-like metal-organic framework (MOF) encaged Pt(II)-porphyrin for anion-selective sensing. ACS Appl. Mater. Interfaces, 2018, 10(14), 11399-11405.
[http://dx.doi.org/10.1021/acsami.7b19282] [PMID: 29578682]
[64]
Hu, P.P.; Liu, N.; Wu, K.Y.; Zhai, L.Y.; Xie, B.P.; Sun, B.; Duan, W.J.; Zhang, W.H.; Chen, J.X. Successive and specific detection of Hg2+ and I- by a DNA@MOF biosensor: experimental and simulation studies. Inorg. Chem., 2018, 57(14), 8382-8389.
[http://dx.doi.org/10.1021/acs.inorgchem.8b01051] [PMID: 29943970]
[65]
Wu, F.; Ye, J.; Cao, Y.; Wang, Z.; Miao, T.; Shi, Q. Recent advances in fluorescence sensors based on DNA-MOF hybrids. Luminescence, 2020, 35(4), 440-446.
[http://dx.doi.org/10.1002/bio.3790] [PMID: 32064758]
[66]
Gao, Q.; Xu, S.; Guo, C.; Chen, Y.; Wang, L. Embedding nanocluster in MOF via crystalline ion-triggered growth strategy for improved emission and selective sensing. ACS Appl. Mater. Interfaces, 2018, 10(18), 16059-16065.
[http://dx.doi.org/10.1021/acsami.8b04531] [PMID: 29676559]
[67]
Das, A.; Das, S.; Trivedi, V.; Biswas, S. A dual functional MOF-based fluorescent sensor for intracellular phosphate and extracellular 4-nitrobenzaldehyde. Dalton Trans., 2019, 48(4), 1332-1343.
[http://dx.doi.org/10.1039/C8DT03964J] [PMID: 30608084]
[68]
Lu, G.; Li, S.; Guo, Z.; Farha, O.K.; Hauser, B.G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J.S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S.C.J.; Wei, W.D.; Yang, Y.; Hupp, J.T.; Huo, F. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem., 2012, 4(4), 310-316.
[http://dx.doi.org/10.1038/nchem.1272] [PMID: 22437717]
[69]
Dou, Z.; Yu, J.; Cui, Y.; Yang, Y.; Wang, Z.; Yang, D.; Qian, G. Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. J. Am. Chem. Soc., 2014, 136(15), 5527-5530.
[http://dx.doi.org/10.1021/ja411224j] [PMID: 24697214]
[70]
Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOFÉdye composite for ratiometric temperature sensing. Adv. Mater., 2015, 27(8), 1420-1425.
[http://dx.doi.org/10.1002/adma.201404700] [PMID: 25581401]
[71]
Shen, X.; Yan, B. A novel fluorescence probe for sensing organic amine vapors from a Eu3+ beta-diketonate functionalized bio-MOF-1 hybrid system. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(27), 7038-7044.
[http://dx.doi.org/10.1039/C5TC01287B]
[72]
Lyu, F.; Zhang, Y.; Zare, R.N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett., 2014, 14(10), 5761-5765.
[http://dx.doi.org/10.1021/nl5026419] [PMID: 25211437]
[73]
Kempahanumakkagari, S.; Kumar, V.; Samaddar, P.; Kumar, P.; Ramakrishnappa, T.; Kim, K.H. Biomolecule-embedded metal-organic frameworks as an innovative sensing platform. Biotechnol. Adv., 2018, 36(2), 467-481.
[http://dx.doi.org/10.1016/j.biotechadv.2018.01.014] [PMID: 29374596]
[74]
Qiu, W.; Gao, F.; Yano, N.; Kataoka, Y.; Handa, M.; Yang, W.; Tanaka, H.; Wang, Q. Specific coordination between Zr-MOF and phosphate-terminated DNA coupled with strand displacement for the construction of reusable and ultrasensitive aptasensor. Anal. Chem., 2020, 92(16), 11332-11340.
[http://dx.doi.org/10.1021/acs.analchem.0c02018] [PMID: 32678980]
[75]
Zhu, X.; Zheng, H.; Wei, X.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Metal-organic framework (MOF): a novel sensing platform for biomolecules. Chem. Commun. (Camb.), 2013, 49(13), 1276-1278.
[http://dx.doi.org/10.1039/c2cc36661d] [PMID: 23295434]
[76]
Yang, Q.; Hong, J.; Wu, Y.X.; Cao, Y.; Wu, D.; Hu, F.; Gan, N. A multicolor fluorescence nanoprobe platform using two-dimensional metal organic framework nanosheets and double stirring bar assisted target replacement for multiple bioanalytical applications. ACS Appl. Mater. Interfaces, 2019, 11(44), 41506-41515.
[http://dx.doi.org/10.1021/acsami.9b12475] [PMID: 31580049]
[77]
Wu, L.L.; Wang, Z.; Zhao, S.N.; Meng, X.; Song, X.Z.; Feng, J.; Song, S.Y.; Zhang, H.J. A metal-organic framework/DNA hybrid system as a novel fluorescent biosensor for mercury(II) ion detection. Chemistry, 2016, 22(2), 477-480.
[http://dx.doi.org/10.1002/chem.201503335] [PMID: 26555340]
[78]
Chen, P.; Liu, Z.; Liu, J.; Liu, H.; Bian, W.; Tian, D.; Xia, F.; Zhou, C. A novel electrochemiluminescence aptasensor based CdTe QDs@NH2-MIL-88(Fe) for signal amplification. Electrochim. Acta, 2020, 354, 136644-136653.
[http://dx.doi.org/10.1016/j.electacta.2020.136644]
[79]
Mondal, T.; Haldar, D.; Ghosh, A.; Ghorai, U.K.; Saha, S.K. A MOF functionalized with CdTe quantum dots as an efficient white light emitting phosphor material for applications in displays. New J. Chem., 2020, 44(1), 55-63.
[http://dx.doi.org/10.1039/C9NJ04304G]
[80]
Yang, Y.; Liu, W.; Cao, J.; Wu, Y. On-site, rapid and visual determination of Hg2+ and Cu2+ in red wine by ratiometric fluorescence sensor of metal-organic frameworks and CdTe QDs. Food Chem., 2020, 328, 127119-127125.
[http://dx.doi.org/10.1016/j.foodchem.2020.127119] [PMID: 32464555]
[81]
Kou, X.; Tong, L.; Shen, Y.; Zhu, W.; Yin, L.; Huang, S.; Zhu, F.; Chen, G.; Ouyang, G. Smartphone-assisted robust enzymes@MOFs-based paper biosensor for point-of-care detection. Biosens. Bioelectron., 2020, 156, 112095-112103.
[http://dx.doi.org/10.1016/j.bios.2020.112095] [PMID: 32174563]
[82]
Wang, L.; Ling, Y.; Han, L.; Zhou, J.; Sun, Z.; Li, N.B.; Luo, H.Q. Catalase active metal-organic framework synthesized by ligand regulation for the dual detection of glucose and cysteine. Anal. Chim. Acta, 2020, 1131, 118-125.
[http://dx.doi.org/10.1016/j.aca.2020.07.051] [PMID: 32928472]
[83]
Wang, X.; Wang, H.; Guo, L.; Chen, G.; Kong, R.; Qu, F.; Xia, L. Colorimetric detection of Hg(ii) based on the gold amalgam-triggered reductase mimetic activity in aqueous solution by employing AuNP@MOF nanoparticles. Analyst (Lond.), 2020, 145(4), 1362-1367.
[http://dx.doi.org/10.1039/C9AN02615K] [PMID: 32040108]
[84]
Hou, C.; Wang, Y.; Ding, Q.; Jiang, L.; Li, M.; Zhu, W.; Pan, D.; Zhu, H.; Liu, M. Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale, 2015, 7(44), 18770-18779.
[http://dx.doi.org/10.1039/C5NR04994F] [PMID: 26505865]
[85]
Yin, Y.; Gao, C.; Xiao, Q.; Lin, G.; Lin, Z.; Cai, Z.; Yang, H. Protein-metal organic framework hybrid composites with intrinsic peroxidase-like activity as a colorimetric biosensing platform. ACS Appl. Mater. Interfaces, 2016, 8(42), 29052-29061.
[http://dx.doi.org/10.1021/acsami.6b09893] [PMID: 27700042]
[86]
Bodelón, G.; Pastoriza-Santos, I. Recent progress in surface-enhanced raman scattering for the detection of chemical contaminants in water. Front Chem., 2020, 8, 478-485.
[http://dx.doi.org/10.3389/fchem.2020.00478] [PMID: 32582643]
[87]
Guo, Y.; Girmatsion, M.; Li, H.W.; Xie, Y.; Yao, W.; Qian, H.; Abraha, B.; Mahmud, A. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Crit. Rev. Food Sci. Nutr., 2021, 61(21), 3555-3568.
[http://dx.doi.org/10.1080/10408398.2020.1803197] [PMID: 32772549]
[88]
Shvalya, V.; Filipic, G.; Zavasnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev., 2020, 7(3)
[http://dx.doi.org/10.1063/5.0015246]]
[89]
Sun, Y.; Shi, L.; Mi, L.; Guo, R.; Li, T. Recent progress of SERS optical nanosensors for miRNA analysis. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(24), 5178-5183.
[http://dx.doi.org/10.1039/D0TB00280A] [PMID: 32432312]
[90]
Yaraki, M.T.; Tan, Y.N. Metal nanoparticles-enhanced biosensors: synthesis, design and applications in fluorescence enhancement and surface-enhanced raman scattering. Chem. Asian J., 2020, 15(20), 3180-3208.
[http://dx.doi.org/10.1002/asia.202000847] [PMID: 32808471]
[91]
Huang, C.; Li, A.; Chen, X.; Wang, T. Understanding the role of metal-organic frameworks in surface-enhanced raman scattering application. Small, 2020, 16(43), e2004802.
[http://dx.doi.org/10.1002/smll.202004802] [PMID: 32985111]
[92]
Ma, X.; Liu, H.; Wen, S.; Xie, Q.; Li, L.; Jin, J.; Wang, X.; Zhao, B.; Song, W. Ultra-sensitive SERS detection, rapid selective adsorption and degradation of cationic dyes on multifunctional magnetic metal-organic framework-based composite. Nanotechnology, 2020, 31(31), 315501.
[http://dx.doi.org/10.1088/1361-6528/ab8a8f] [PMID: 32303010]
[93]
He, L.; Liu, Y.; Liu, J.; Xiong, Y.; Zheng, J.; Liu, Y.; Tang, Z. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed. Engl., 2013, 52(13), 3741-3745.
[http://dx.doi.org/10.1002/anie.201209903] [PMID: 23417824]
[94]
Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and functional gold nanorod composites with a metal-organic framework crystalline shell. Chem. Mater., 2013, 25(13), 2565-2570.
[http://dx.doi.org/10.1021/cm302735b]
[95]
Adeel, M.; Rahman, M.M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosens. Bioelectron., 2020, 165, 112331-112331.
[http://dx.doi.org/10.1016/j.bios.2020.112331] [PMID: 32729477]
[96]
Laghrib, F.; Aghris, S.; Ajermoun, N.; Hrioua, A.; Bakasse, M.; Lahrich, S.; El Mhammedi, M.A. Recent progress in controlling the synthesis and assembly of nanostructures: Application for electrochemical determination of p-nitroaniline in water. Talanta, 2020, 219, 121234-121248.
[http://dx.doi.org/10.1016/j.talanta.2020.121234] [PMID: 32887125]
[97]
Lahcen, A.A.; Rauf, S.; Beduk, T.; Durmus, C.; Aljedaibi, A.; Timur, S.; Alshareef, H.N.; Amine, A.; Wolfbeis, O.S.; Salama, K.N. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosens. Bioelectron., 2020, 168, 112565-112565.
[http://dx.doi.org/10.1016/j.bios.2020.112565] [PMID: 32927277]
[98]
Liu, S.; Lai, C.; Liu, X.; Li, B.; Zhang, C.; Qin, L.; Huang, D.; Yi, H.; Zhang, M.; Li, L.; Wang, W.; Zhou, X.; Chen, L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord. Chem. Rev., 2020, 424, 213520-2135.
[http://dx.doi.org/10.1016/j.ccr.2020.213520]
[99]
Chuang, C.H.; Kung, C.W. Metal-organic frameworks toward electrochemical sensors: challenges and opportunities. Electroanalysis, 2020, 32(9), 1885-1895.
[http://dx.doi.org/10.1002/elan.202060111]
[100]
Wang, M.Q.; Zhang, Y.; Bao, S.J.; Yu, Y.N.; Ye, C. Ni(II)-based metal-organic framework anchored on carbon nanotubes for highly sensitive non-enzymatic hydrogen peroxide sensing. Electrochim. Acta, 2016, 190, 365-370.
[http://dx.doi.org/10.1016/j.electacta.2015.12.199]
[101]
Liu, L.; Zhou, Y.; Liu, S.; Xu, M. The applications of metal-organic frameworks in electrochemical sensors. ChemElectroChem, 2018, 5(1), 6-19.
[http://dx.doi.org/10.1002/celc.201700931]
[102]
Kim, S.e.; Muthurasu, A. Metal-organic framework-assisted bimetallic Ni@Cu microsphere for enzyme-free electrochemical sensing of glucose. J. Electroanal. Chem. (Lausanne Switz.), 2020, 873, 114356-114363.
[http://dx.doi.org/10.1016/j.jelechem.2020.114356]
[103]
Rani, S.; Kapoor, S.; Sharma, B.; Kumar, S.; Malhotra, R.; Dilbaghi, N. Fabrication of Zn-MOF@rGO based sensitive nanosensor for the real time monitoring of hydrazine. J. Alloys Compd., 2020, 816, 152509-152517.
[http://dx.doi.org/10.1016/j.jallcom.2019.152509]
[104]
Alavi, M.; Jabari, E.; Jabbari, E. Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Rev. Anti Infect. Ther., 2020, 1810569, 1-11.
[http://dx.doi.org/10.1080/14787210.2020.1810569] [PMID: 32791928]
[105]
Aoki, K.; Ogihara, N.; Tanaka, M.; Haniu, H.; Saito, N. Carbon nanotube-based biomaterials for orthopaedic applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(40), 9227-9238.
[http://dx.doi.org/10.1039/D0TB01440K] [PMID: 32935730]
[106]
Wu, X.; Mu, F.; Zhao, H. Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. J. Mater. Sci. Technol., 2020, 55, 16-34.
[http://dx.doi.org/10.1016/j.jmst.2019.05.063]
[107]
Zheng, Y.; Zheng, S.; Xue, H.; Pang, H. Metal-organic frameworks/graphene-based materials: preparations and applications. Adv. Funct. Mater., 2018, 28(47), 1804950-1804977.
[http://dx.doi.org/10.1002/adfm.201804950]
[108]
Zhang, W.; Jia, G.; Li, Z.; Yuan, C.; Bai, Y.; Fu, D. Selective electrochemical detection of dopamine on polyoxometalate-based metal-organic framework and its composite with reduced graphene oxide. Adv. Mater. Interfaces, 2017, 4(10), 1601214-1601220.
[http://dx.doi.org/10.1002/admi.201601241]
[109]
MacLean, M.W.; Kitao, T.; Suga, T.; Mizuno, M.; Seki, S.; Uemura, T.; Kitagawa, S. Unraveling Inter-and intrachain electronics in polythiophene assemblies mediated by coordination nanospaces. Angew. Chem. Int. Ed. Engl., 2016, 55(2), 708-713.
[http://dx.doi.org/10.1002/anie.201510084] [PMID: 26609906]
[110]
Uemura, T.; Uchida, N.; Asano, A.; Saeki, A.; Seki, S.; Tsujimoto, M.; Isoda, S.; Kitagawa, S. Highly photoconducting π-stacked polymer accommodated in coordination nanochannels. J. Am. Chem. Soc., 2012, 134(20), 8360-8363.
[http://dx.doi.org/10.1021/ja301903x] [PMID: 22574905]
[111]
Kitao, T.; Bracco, S.; Comotti, A.; Sozzani, P.; Naito, M.; Seki, S.; Uemura, T.; Kitagawa, S. Confinement of single polysilane chains in coordination nanospaces. J. Am. Chem. Soc., 2015, 137(15), 5231-5238.
[http://dx.doi.org/10.1021/jacs.5b02215] [PMID: 25835993]
[112]
Uemura, T.; Yanai, N.; Watanabe, S.; Tanaka, H.; Numaguchi, R.; Miyahara, M.T.; Ohta, Y.; Nagaoka, M.; Kitagawa, S. Unveiling thermal transitions of polymers in subnanometre pores. Nat. Commun., 2010, 1(83), 83.
[http://dx.doi.org/10.1038/ncomms1091] [PMID: 20981011]
[113]
Rangaraj, V.M.; Wahab, M.A.; Reddy, K.S.K.; Kakosimos, G.; Abdalla, O.; Favvas, E.P.; Reinalda, D.; Geuzebroek, F.; Abdala, A.; Karanikolos, G.N. Metal organic framework-based mixed matrix membranes for carbon dioxide separation: recent advances and future directions. Front Chem., 2020, 8, 534-558.
[http://dx.doi.org/10.3389/fchem.2020.00534] [PMID: 32719772]
[114]
Zhang, J.; Li, Z.; Qi, X.L.; Wang, D.Y. Recent progress on metal-organic framework and its derivatives as novel fire retardants to polymeric materials. Nano-Micro Lett., 2020, 12(1), 173-193.
[http://dx.doi.org/10.1007/s40820-020-00497-z]
[115]
Giliopoulos, D.; Zamboulis, A.; Giannakoudakis, D.; Bikiaris, D.; Triantafyllidis, K. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules, 2020, 25(1), 185.
[http://dx.doi.org/10.3390/molecules25010185] [PMID: 31906398]
[116]
Meng, J.; Liu, X.; Niu, C.; Pang, Q.; Li, J.; Liu, F.; Liu, Z.; Mai, L. Advances in metal-organic framework coatings: versatile synthesis and broad applications. Chem. Soc. Rev., 2020, 49(10), 3142-3186.
[http://dx.doi.org/10.1039/c9cs00806c] [PMID: 32249862]
[117]
Dhara, K.; Debiprosad, R.M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal. Biochem., 2019, 586, 113415-113431.
[http://dx.doi.org/10.1016/j.ab.2019.113415] [PMID: 31479632]
[118]
Dhara, K.; Mahapatra, D.R. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Mikrochim. Acta, 2017, 185(1), 49-80.
[http://dx.doi.org/10.1007/s00604-017-2609-1] [PMID: 29594566]
[119]
Liu, Y.; Zhang, X.; Zhang, Q.; Li, C. Microbial fuel cells: nanomaterials based on anode and their application. Energy Technol. (Weinheim), 2020, 8(9), 1-30.
[http://dx.doi.org/10.1002/ente.202000206]
[120]
Nasir, M.; Nawaz, M.H.; Latif, U.; Yaqub, M.; Hayat, A.; Rahim, A. An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Mikrochim. Acta, 2017, 184(2), 323-342.
[http://dx.doi.org/10.1007/s00604-016-2036-8]
[121]
Veerakumar, P.; Sangili, A.; Manavalan, S.; Thanasekaran, P.; Lin, K.C. Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind. Eng. Chem. Res., 2020, 59(14), 6347-6374.
[http://dx.doi.org/10.1021/acs.iecr.9b06010]
[122]
Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal oxides and metal organic frameworks for the photocatalytic degradation: a review. J. Environ. Chem. Eng., 2020, 8(3), 103726-103740.
[http://dx.doi.org/10.1016/j.jece.2020.103726]
[123]
Osterrieth, J.W.M.; Fairen-Jimenez, D. Metal-organic framework composites for theragnostics and drug delivery applications. Biotechnol. J., 2021, 16(2), e2000005.
[http://dx.doi.org/10.1002/biot.202000005] [PMID: 32330358]
[124]
Xu, Z.; Yang, L.; Xu, C. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range. Anal. Chem., 2015, 87(6), 3438-3444.
[http://dx.doi.org/10.1021/ac5047278] [PMID: 25700026]
[125]
Wang, X.; Yang, C.; Zhu, S.; Yan, M.; Ge, S.; Yu, J. 3D origami electrochemical device for sensitive Pb2+ testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens. Bioelectron., 2017, 87, 108-115.
[http://dx.doi.org/10.1016/j.bios.2016.08.016] [PMID: 27522484]
[126]
Lei, Z.; Gao, C.; Chen, L.; He, Y.; Ma, W.; Lin, Z. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(11), 1581-1594.
[http://dx.doi.org/10.1039/C7TB03310A] [PMID: 32254274]
[127]
Hartmann, M.; Kostrov, X. Immobilization of enzymes on porous silicas--benefits and challenges. Chem. Soc. Rev., 2013, 42(15), 6277-6289.
[http://dx.doi.org/10.1039/c3cs60021a] [PMID: 23765193]
[128]
Hudson, S.; Cooney, J.; Magner, E. Proteins in mesoporous silicates. Angew. Chem. Int. Ed. Engl., 2008, 47(45), 8582-8594.
[http://dx.doi.org/10.1002/anie.200705238] [PMID: 18833554]
[129]
Knedel, T.O.; Ricklefs, E.; Schlüsener, C.; Urlacher, V.B.; Janiak, C. Janiak; Christoph. Laccase encapsulation in ZIF-8 metal-organic framework shows stability enhancement and substrate selectivity. ChemistryOpen, 2019, 8(11), 1337-1344.
[http://dx.doi.org/10.1002/open.201900146] [PMID: 31692915]
[130]
Wu, X.; Yang, C.; Ge, J.; Liu, Z. Polydopamine tethered enzyme/metal-organic framework composites with high stability and reusability. Nanoscale, 2015, 7(45), 18883-18886.
[http://dx.doi.org/10.1039/C5NR05190H] [PMID: 26393314]
[131]
Dong, S.; Peng, L.; Wei, W.; Huang, T. Three MOF-templated carbon nanocomposites for potential platforms of enzyme immobilization with improved electrochemical performance. ACS Appl. Mater. Interfaces, 2018, 10(17), 14665-14672.
[http://dx.doi.org/10.1021/acsami.8b00702] [PMID: 29620852]
[132]
Wang, L.; Wang, W.; Zheng, X.; Li, Z.; Xie, Z. Nanoscale fluorescent metal-organic framework@microporous organic polymer composites for enhanced intracellular uptake and bioimaging. Chemistry, 2017, 23(6), 1379-1385.
[http://dx.doi.org/10.1002/chem.201604416] [PMID: 27874974]
[133]
Hao, C.; Wu, X.; Sun, M.; Zhang, H.; Yuan, A.; Xu, L.; Xu, C.; Kuang, H. Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc., 2019, 141(49), 19373-19378.
[http://dx.doi.org/10.1021/jacs.9b09360] [PMID: 31711292]
[134]
Luo, Z.; Fan, S.; Gu, C.; Liu, W.; Chen, J.; Li, B.; Liu, J. Metal-organic framework (MOF)-based nanomaterials for biomedical applications. Curr. Med. Chem., 2019, 26(18), 3341-3369.
[http://dx.doi.org/10.2174/0929867325666180214123500] [PMID: 29446726]
[135]
Wang, H.S. Metal-organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev., 2017, 349, 139-155.
[http://dx.doi.org/10.1016/j.ccr.2017.08.015]
[136]
Liu, Y.; Zhao, Y.; Chen, X. Bioengineering of metal-organic frameworks for nanomedicine. Theranostics, 2019, 9(11), 3122-3133.
[http://dx.doi.org/10.7150/thno.31918] [PMID: 31244945]
[137]
Zhou, J.; Li, Y.; Wang, W.; Tan, X.; Lu, Z.; Han, H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron., 2020, 164, 112332-112344.
[http://dx.doi.org/10.1016/j.bios.2020.112332] [PMID: 32553355]
[138]
Begum, S.; Hassan, Z.; Bräse, S.; Tsotsalas, M. Polymerization in MOF-confined nanospaces: tailored architectures, functions, and applications. Langmuir, 2020, 36(36), 10657-10673.
[http://dx.doi.org/10.1021/acs.langmuir.0c01832] [PMID: 32787055]
[139]
Mehrabani, M.; Ansari-Asl, Z.; Rostamzadeh, F.; Jafarinejad-Farsangi, S.; Hashemi, M.S.; Sheikholeslami, M.; Neisi, Z. Fabrication and biocompatibility assessment of polypyrrole/cobalt(II) metal-organic frameworks nanocomposites. Turk. J. Chem., 2020, 44(2), 472-485.
[http://dx.doi.org/10.3906/kim-1910-63] [PMID: 33488171]
[140]
Xu, W.; Jiao, L.; Yan, H.; Wu, Y.; Chen, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces, 2019, 11(25), 22096-22101.
[http://dx.doi.org/10.1021/acsami.9b03004] [PMID: 31134797]
[141]
Ma, W.; Jiang, Q.; Yu, P.; Yang, L.; Mao, L. Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements. Anal. Chem., 2013, 85(15), 7550-7557.
[http://dx.doi.org/10.1021/ac401576u] [PMID: 23815314]
[142]
Cheng, H.; Zhang, L.; He, J.; Guo, W.; Zhou, Z.; Zhang, X.; Nie, S.; Wei, H. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal. Chem., 2016, 88(10), 5489-5497.
[http://dx.doi.org/10.1021/acs.analchem.6b00975] [PMID: 27067749]
[143]
Cheng, H.; Liu, Y.; Hu, Y.; Ding, Y.; Lin, S.; Cao, W.; Wang, Q.; Wu, J.; Muhammad, F.; Zhao, X.; Zhao, D.; Li, Z.; Xing, H.; Wei, H. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem., 2017, 89(21), 11552-11559.
[http://dx.doi.org/10.1021/acs.analchem.7b02895] [PMID: 28992698]
[144]
Butler, K.S.; Pearce, C.J.; Nail, E.A.; Vincent, G.A.; Sava Gallis, D.F. Antibody targeted metal-organic frameworks for bioimaging applications. ACS Appl. Mater. Interfaces, 2020, 12(28), 31217-31224.
[http://dx.doi.org/10.1021/acsami.0c07835] [PMID: 32559362]
[145]
Lu, G.; Farha, O.K.; Kreno, L.E.; Schoenecker, P.M.; Walton, K.S.; Van Duyne, R.P.; Hupp, J.T. Fabrication of metal-organic framework-containing silica-colloidal crystals for vapor sensing. Adv. Mater., 2011, 23(38), 4449-4452.
[http://dx.doi.org/10.1002/adma.201102116] [PMID: 21858878]
[146]
Drobek, M.; Kim, J.H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S.S. MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces, 2016, 8(13), 8323-8328.
[http://dx.doi.org/10.1021/acsami.5b12062] [PMID: 27003470]
[147]
Li, Y. Temperature and humidity sensors based on luminescent metal-organic frameworks. Polyhedron, 2020, 179, 114413-114426.
[http://dx.doi.org/10.1016/j.poly.2020.114413]
[148]
Chappanda, K.N.; Shekhah, O.; Yassine, O.; Patole, S.P.; Eddaoudi, M.; Salama, K.N. The quest for highly sensitive QCM humidity sensors: The coating of CNT/MOF composite sensing films as case study. Sens. Actuators B Chem., 2018, 257, 609-619.
[http://dx.doi.org/10.1016/j.snb.2017.10.189]
[149]
Seo, Y.K.; Chitale, S.K.; Lee, U.H.; Patil, P.; Chang, J.S.; Hwang, Y.K. Formation of polyaniline-MOF nanocomposites using nanosized Fe(III)-MOF for humidity sensing application. J. Nanosci. Nanotechnol., 2019, 19(12), 8157-8162.
[http://dx.doi.org/10.1016/j.snb.2017.10.189]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy