Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Covalent Organic Frameworks for Electrochemical Sensors: Recent Research and Future Prospects

Author(s): Linyu Wang, Shasha Hong, Yuxi Yang, Yonghai Song* and Li Wang*

Volume 18, Issue 6, 2022

Published on: 24 March, 2021

Page: [646 - 663] Pages: 18

DOI: 10.2174/1573411017666210324141739

Price: $65

Abstract

Background: In recent years, electrochemical sensors are widely preferred because of their high sensitivity, rapid response, low cost and easy miniaturization. Covalent organic frameworks (COFs), a porous crystalline polymer formed by organic units connected by covalent bonds, have been widely used in gas adsorption and separation, drug transportation, energy storage, photoelectric catalysis, electrochemistry and other aspects due to their large specific surface, excellent stability, high inherent porosity, good crystallinity as well as structural and functional controllability. The topological structure of COFs can be designed in advance, the structural units and linkage are diversified, and the structure is easy to be functionalized, which are all beneficial to their application in electrochemical sensors.

Methods: The types, synthesis methods, properties of covalent organic frameworks and some examples of using covalent organic frameworks in electrochemical sensors are reviewed.

Results: Due to their characteristics of a large specific surface, high porosity, orderly channel and periodically arranged π electron cloud, COFs are often used to immobilize metal nanoparticles, aptamers or other materials to achieve the purpose of building electrochemical sensors with high sensitivity and good stability. Since the structure of COFs can be predicted, different organic units can build COFs with different structures and properties. Therefore, organic units with certain functional groups can be selected to build COFs with certain properties and used directly for electrochemical sensors.

Conclusion: COFs have a good application prospect in electrochemical sensors.

Keywords: Covalent organic frameworks, electrochemical sensors, synthesis, structure, applications, challenges.

Graphical Abstract

[1]
Asefifeyzabadi, N.; Alkhaldi, R.; Qamar, A.Z.; Pater, A.A.; Patwardhan, M.; Gagnon, K.T.; Talapatra, S.; Shamsi, M.H. Label-free electrochemical detection of CGG repeats on inkjet printable 2D layers of MoS2. ACS Appl. Mater. Interfaces, 2020, 12(46), 52156-52165.
[http://dx.doi.org/10.1021/acsami.0c14912] [PMID: 33151065]
[2]
Dong, H.; Zhou, Y.; Zhao, L.; Hao, Y.; Zhang, Y.; Ye, B.; Xu, M. Dual-response ratiometric electrochemical microsensor for effective simultaneous monitoring of hypochlorous acid and ascorbic acid in human body fluids. Anal. Chem., 2020, 92(22), 15079-15086.
[http://dx.doi.org/10.1021/acs.analchem.0c03089] [PMID: 33118803]
[3]
Jiang, Y.; Cui, S.; Xia, T.; Sun, T.; Tan, H.; Yu, F.; Su, Y.; Wu, S.; Wang, D.; Zhu, N. Real-time monitoring of heavy metals in healthcare via twistable and washable smartsensors. Anal. Chem., 2020, 92(21), 14536-14541.
[http://dx.doi.org/10.1021/acs.analchem.0c02723] [PMID: 33073993]
[4]
Li, J.; Liu, Y.; Zhu, X.; Chang, G.; He, H.; Zhang, X.; Wang, S. A novel electrochemical biosensor based on a double-signal technique for d(CAG)n trinucleotide repeats. ACS Appl. Mater. Interfaces, 2017, 9(50), 44231-44240.
[http://dx.doi.org/10.1021/acsami.7b15014] [PMID: 29155546]
[5]
Liang, W.; Ren, H.; Li, Y.; Qiu, H.; Ye, B.C. A robust electrochemical sensing based on bimetallic metal-organic framework mediated Mo2C for simultaneous determination of acetaminophen and isoniazid. Anal. Chim. Acta, 2020, 1136, 99-105.
[http://dx.doi.org/10.1016/j.aca.2020.08.044] [PMID: 33081955]
[6]
Urso, M.; Tumino, S.; Bruno, E.; Bordonaro, S.; Marletta, D.; Loria, G.R.; Avni, A.; Shacham-Diamand, Y.; Priolo, F.; Mirabella, S. Ultrasensitive Electrochemical Impedance Detection of Mycoplasma agalactiae DNA by Low-Cost and Disposable Au-Decorated NiO Nanowall Electrodes. ACS Appl. Mater. Interfaces, 2020, 12(44), 50143-50151.
[http://dx.doi.org/10.1021/acsami.0c14679] [PMID: 33078934]
[7]
Chen, S.; Zhao, P.; Zhou, S.; Zheng, J.; Luo, X.; Huo, D.; Hou, C. Cu2O-mediated assembly of electrodeposition of Au nanoparticles onto 2D metal-organic framework nanosheets for real-time monitoring of hydrogen peroxide released from living cells; Anal. Bioanal. Chem. Res, 2020.
[http://dx.doi.org/10.1007/s00216-020-03032-6]
[8]
Chiu, W.T.; Chang, T.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Roles of TiO2 in the highly robust Au nanoparticles-TiO2 modified polyaniline electrode towards non-enzymatic sensing of glucose. Talanta, 2020, 212, 120780.
[http://dx.doi.org/10.1016/j.talanta.2020.120780] [PMID: 32113543]
[9]
Wang, L.; Xu, M.; Xie, Y.; Song, Y.; Wang, L. A nonenzymatic electrochemical H2O2 sensor based on macroporous carbon/polymer foam/PtNPs electrode. J. Mater. Sci., 2018, 53(15), 10946-10954.
[http://dx.doi.org/10.1007/s10853-018-2386-1]
[10]
Manavalan, S.; Ganesamurthi, J.; Chen, S.M.; Veerakumar, P.; Murugan, K. A robust Mn@FeNi-S/graphene oxide nanocomposite as a high-efficiency catalyst for the non-enzymatic electrochemical detection of hydrogen peroxide. Nanoscale, 2020, 12(10), 5961-5972.
[http://dx.doi.org/10.1039/C9NR09148C] [PMID: 32108852]
[11]
Sangili, A.; Sakthivel, R.; Chen, S.M. Cost-effective single-step synthesis of flower-like cerium-ruthenium-sulfide for the determination of antipsychotic drug trifluoperazine in human urine samples. Anal. Chim. Acta, 2020, 1131, 35-44.
[http://dx.doi.org/10.1016/j.aca.2020.07.032] [PMID: 32928478]
[12]
Sun, Y.; Gao, H.; Xu, L.; Waterhouse, G.I.N.; Zhang, H.; Qiao, X.; Xu, Z. Ultrasensitive determination of sulfathiazole using a molecularly imprinted electrochemical sensor with CuS microflowers as an electron transfer probe and Au@COF for signal amplification. Food Chem., 2020, 332, 127376.
[http://dx.doi.org/10.1016/j.foodchem.2020.127376] [PMID: 32615382]
[13]
Li, J.; Hu, H.; Li, H.; Yao, C. Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2. J. Mater. Sci., 2017, 52(17), 10455-10469.
[http://dx.doi.org/10.1007/s10853-017-1221-4]
[14]
Liu, M.; Liu, R.; Chen, W. Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron., 2013, 45, 206-212.
[http://dx.doi.org/10.1016/j.bios.2013.02.010] [PMID: 23500365]
[15]
Rahman, M.M.; Ahammad, A.J.; Jin, J.H.; Ahn, S.J.; Lee, J.J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors (Basel), 2010, 10(5), 4855-4886.
[http://dx.doi.org/10.3390/s100504855] [PMID: 22399911]
[16]
Li, Y.; Gao, Y.; Cao, Y.; Li, H. Electrochemical sensor for bisphenol A determination based on MWCNT/melamine complex modified GCE. Sens. Actuators B Chem., 2012, 17, 726-733.
[http://dx.doi.org/10.1016/j.snb.2012.05.063]
[17]
Moraes, F.; Silva, T.; Cesarino, I.; Machado, S. Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A. Sens. Actuators B Chem., 2013, 177, 14-18.
[http://dx.doi.org/10.1016/j.snb.2012.10.128]
[18]
Yang, G.; Zhao, F. Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer. Biosens. Bioelectron., 2015, 64, 416-422.
[http://dx.doi.org/10.1016/j.bios.2014.09.041] [PMID: 25280341]
[19]
Wang, L.; Lu, X.; Wen, C.; Xie, Y.; Miao, L.; Chen, S.; Li, H.; Li, P.; Song, Y. One-step synthesis of Pt-NiO nanoplate array/reduced graphene oxide nanocomposites for nonenzymatic glucose sensing. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 608-616.
[http://dx.doi.org/10.1039/C4TA04724A]
[20]
Bharath, G.; Madhu, R.; Chen, S.M.; Veeramani, V.; Mangalaraj, D.; Ponpandian, N. Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4-reduced graphene oxide nanocomposites for sensitive detection of nitrite. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(30), 15529-15539.
[http://dx.doi.org/10.1039/C5TA03179F]
[21]
Cao, X.; Zeng, Z.; Shi, W.; Yep, P.; Yan, Q.; Zhang, H. Three-dimensional graphene network composites for detection of hydrogen peroxide. Small, 2013, 9(9-10), 1703-1707.
[http://dx.doi.org/10.1002/smll.201200683] [PMID: 22933478]
[22]
Wang, L.; Wang, N.; Wen, J.; Jia, Y.; Pan, S.; Xiong, H.; Tang, Y.; Wang, J.; Yang, X.; Sun, Y.; Chen, Y.; Wan, P. Ultrasensitive sensing of environmental nitroaromatic contaminants on nanocomposite of Prussian blue analogues cubes grown on glucose-derived porous carbon. Chem. Eng. J., 2020, 397, 125450.
[http://dx.doi.org/10.1016/j.cej.2020.125450]
[23]
Wang, S.; Guo, P.; Ma, G.; Wei, J.; Wang, Z.; Cui, L.; Sun, L.; Wang, A. Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor. Electrochim. Acta, 2020, 360, 137016.
[http://dx.doi.org/10.1016/j.electacta.2020.137016]
[24]
Zhang, J.; Liu, J.; Zhang, Y.; Yu, F.; Wang, F.; Peng, Z.; Li, Y. Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer. Mikrochim. Acta, 2017, 185(1), 78.
[http://dx.doi.org/10.1007/s00604-017-2551-2] [PMID: 29594562]
[25]
Shi, P.; Zhang, Y.; Yu, Z.; Zhang, S. Label-free electrochemical detection of ATP based on amino-functionalized metal-organic framework. Sci. Rep., 2017, 7(1), 6500.
[http://dx.doi.org/10.1038/s41598-017-06858-w] [PMID: 28747636]
[26]
Shu, Y.; Lu, Q.; Yuan, F.; Tao, Q.; Jin, D.; Yao, H.; Xu, Q.; Hu, X. Stretchable electrochemical biosensing platform based on Ni-MOF composite/Au nanoparticle-coated carbon nanotubes for real-time monitoring of dopamine released from living cells. ACS Appl. Mater. Interfaces, 2020, 12(44), 49480-49488.
[http://dx.doi.org/10.1021/acsami.0c16060] [PMID: 33100007]
[27]
Wang, J.; Zhao, J.; Yang, J.; Cheng, J.; Tan, Y.; Feng, H.; Li, Y. An electrochemical sensor based on MOF-derived NiO@ZnO hollow microspheres for isoniazid determination. Mikrochim. Acta, 2020, 187(7), 380.
[http://dx.doi.org/10.1007/s00604-020-04305-8] [PMID: 32518983]
[28]
Chen, X.; Liu, D.; Cao, G.; Tang, Y.; Wu, C. In situ Synthesis of a sandwich-like graphene@ZIF-67 heterostructure for highly sensitive nonenzymatic glucose gensing in human serums. ACS Appl. Mater. Interfaces, 2019, 11(9), 9374-9384.
[http://dx.doi.org/10.1021/acsami.8b22478] [PMID: 30727733]
[29]
Guo, Y.; Wang, L.; Xu, L.; Peng, C.; Song, Y. A ascorbic acid-imprinted poly(o-phenylenediamine)/zeolite imidazole frameworks-67/carbon cloth for electrochemical sensing ascorbic acid. J. Mater. Sci., 2020, 55(22), 9425-9435.
[http://dx.doi.org/10.1007/s10853-020-04687-3]
[30]
Sun, D.; Yang, D.; Wei, P.; Liu, B.; Chen, Z.; Zhang, L.; Lu, J. One-step electrodeposition of silver nanostructures on 2D/3D metal-organic framework ZIF-67: Comparison and application in electrochemical detection of hydrogen peroxide. ACS Appl. Mater. Interfaces, 2020, 12(37), 41960-41968.
[http://dx.doi.org/10.1021/acsami.0c11269] [PMID: 32805814]
[31]
Wang, L.; Xie, Y.; Yang, Y.; Liang, H.; Wang, L.; Song, Y. Electroactive covalent organic frameworks/carbon nanotubes composites for electrochemical sensing. ACS Appl. Nano. Mater., 2020, 3(2), 1412-1419.
[http://dx.doi.org/10.1021/acsanm.9b02257]
[32]
Wang, Q.; Li, R.; Zhao, Y.; Zhe, T.; Bu, T.; Liu, Y.; Sun, X.; Hu, H.; Zhang, M.; Zheng, X.; Wang, L. Surface morphology-controllable magnetic covalent organic frameworks: A novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol. Talanta, 2020, 219, 121255.
[http://dx.doi.org/10.1016/j.talanta.2020.121255] [PMID: 32887146]
[33]
Yar, M.; Ayub, K. Expanding the horizons of covalent organic frameworks to electrochemical sensors; A case study of CTF-FUM. Microporous Mesoporous Mater., 2020, 300, 110146.
[http://dx.doi.org/10.1016/j.micromeso.2020.110146]
[34]
Wang, L.; Gong, C.; Shen, Y.; Xu, M.; He, G.; Wang, L.; Song, Y. Conjugated schiff base polymer foam/macroporous carbon integrated electrode for electrochemical sensing. Sens. Actuators B Chem., 2018, 265, 227-233.
[http://dx.doi.org/10.1016/j.snb.2018.03.041]
[35]
Yang, Z.; Zhang, S.; Zheng, X.; Fu, Y.; Zheng, J. Controllable synthesis of copper sulfide for nonenzymatic hydrazine sensing. Sens. Actuators B Chem., 2018, 255, 2643-2651.
[http://dx.doi.org/10.1016/j.snb.2017.09.075]
[36]
Wu, Q.; He, L.; Jiang, Z.W.; Li, Y.; Cao, Z.M.; Huang, C.Z.; Li, Y.F. CuO nanoparticles derived from metal-organic gel with excellent electrocatalytic and peroxidase-mimicking activities for glucose and cholesterol detection. Biosens. Bioelectron., 2019, 145, 111704.
[http://dx.doi.org/10.1016/j.bios.2019.111704] [PMID: 31539649]
[37]
Duoc, P.N.D.; Binh, N.H.; Hau, T.V.; Thanh, C.T.; Trinh, P.V.; Tuyen, N.V.; Quynh, N.V.; Tu, N.V.; Duc Chinh, V.; Thi Thu, V.; Thang, P.D.; Minh, P.N.; Chuc, N.V. A novel electrochemical sensor based on double-walled carbon nanotubes and graphene hybrid thin film for arsenic(V) detection. J. Hazard. Mater., 2020, 400, 123185.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123185] [PMID: 32563905]
[38]
Song, Y.; Xu, M.; Gong, C.; Shen, Y.; Wang, L.; Xie, Y.; Wang, L. Ratiometric electrochemical glucose biosensor based on GOD/AuNPs/Cu-BTC MOFs/macroporous carbon integrated electrode. Sens. Actuators B Chem., 2018, 257, 792-799.
[http://dx.doi.org/10.1016/j.snb.2017.11.004]
[39]
Dong, Y.; Zheng, J. Tremella-like ZIF-67/rGO as electrode material for hydrogen peroxide and dopamine sensing applications. Sens. Actuators B Chem., 2020, 311, 127918.
[http://dx.doi.org/10.1016/j.snb.2020.127918]
[40]
Wang, L.; Liang, H.; Xu, M.; Wang, L.; Xie, Y.; Song, Y. Ratiometric electrochemical biosensing based on double-enzymes loaded on two-dimensional dual-pore COFETTA-TPAL. Sens. Actuators B Chem., 2019, 298, 126859.
[http://dx.doi.org/10.1016/j.snb.2019.126859]
[41]
Chen, X.; Geng, K.; Liu, R.; Tan, K.T.; Gong, Y.; Li, Z.; Tao, S.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Chemical approaches to designer structures and built-in functions. Angew. Chem. Int. Ed. Engl., 2020, 59(13), 5050-5091.
[http://dx.doi.org/10.1002/anie.201904291] [PMID: 31144373]
[42]
Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van der Bruggen, B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev., 2019, 48(10), 2665-2681.
[http://dx.doi.org/10.1039/C8CS00919H] [PMID: 31025660]
[43]
Hu, Y.; Dunlap, N.; Wan, S.; Lu, S.; Huang, S.; Sellinger, I.; Ortiz, M.; Jin, Y.; Lee, S.H.; Zhang, W. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc., 2019, 141(18), 7518-7525.
[http://dx.doi.org/10.1021/jacs.9b02448] [PMID: 30986353]
[44]
Wang, H.; Qian, C.; Liu, J.; Zeng, Y.; Wang, D.; Zhou, W.; Gu, L.; Wu, H.; Liu, G.; Zhao, Y. Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis. J. Am. Chem. Soc., 2020, 142(10), 4862-4871.
[http://dx.doi.org/10.1021/jacs.0c00054] [PMID: 32073853]
[45]
Wang, Z.; Zhang, S.; Chen, Y.; Zhang, Z.; Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev., 2020, 49(3), 708-735.
[http://dx.doi.org/10.1039/C9CS00827F] [PMID: 31993598]
[46]
Zhang, N.; Wang, T.; Wu, X.; Jiang, C.; Chen, F.; Bai, W.; Bai, R. Self-exfoliation of 2D covalent organic frameworks: morphology transformation induced by solvent polarity. RSC Advances, 2018, 8, 3803-3808.
[http://dx.doi.org/10.1039/C7RA09647J]
[47]
Bunck, D.N.; Dichtel, W.R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc., 2013, 135(40), 14952-14955.
[http://dx.doi.org/10.1021/ja408243n] [PMID: 24053107]
[48]
Biswal, B.P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc., 2013, 135(14), 5328-5331.
[http://dx.doi.org/10.1021/ja4017842] [PMID: 23521070]
[49]
Ahmed, S.A.; Liao, Q.B.; Shen, Q.; Ashraf Baig, M.M.F.; Zhou, J.; Shi, C.F.; Muhammad, P.; Hanif, S.; Xi, K.; Xia, X.H.; Wang, K. pH‐Dependent slipping and exfoliation of layered covalent organic framework. Chemistry, 2020, 26(57), 12996-13001.
[http://dx.doi.org/10.1002/chem.202000837] [PMID: 32333483]
[50]
Das, G.; Biswal, B.P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, M.; Heine, T.; Verma, S.; Banerjee, R. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem. Sci. (Camb.), 2015, 6(7), 3931-3939.
[http://dx.doi.org/10.1039/C5SC00512D] [PMID: 29218164]
[51]
Liu, X.H.; Guan, C.Z.; Wang, D.; Wan, L.J. Graphene-like single-layered covalent organic frameworks: synthesis strategies and application prospects. Adv. Mater., 2014, 26(40), 6912-6920.
[http://dx.doi.org/10.1002/adma.201305317] [PMID: 24585497]
[52]
Cai, S.; Zhang, Y.; Pun, A.; He, B.; Yang, J.; Toma, F.; Sharp, I.; Yaghi, O.; Fan, J.; Zheng, S.; Zhang, W.; Liu, Y. Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. Chem. Sci. (Camb.), 2014, 5(12), 4693-4700.
[http://dx.doi.org/10.1039/C4SC02593H]
[53]
Guo, J.; Lin, C.Y.; Xia, Z.; Xiang, Z. A pyrolysis-free covalent organic polymer for oxygen reduction. Angew. Chem. Int. Ed. Engl., 2018, 57(38), 12567-12572.
[http://dx.doi.org/10.1002/anie.201808226] [PMID: 30051963]
[54]
Zha, Z.; Xu, L.; Wang, Z.; Li, X.; Pan, Q.; Hu, P.; Lei, S. 3D graphene functionalized by covalent organic framework thin film as capacitive electrode in alkaline media. ACS Appl. Mater. Interfaces, 2015, 7(32), 17837-17843.
[http://dx.doi.org/10.1021/acsami.5b04185] [PMID: 26203782]
[55]
Lu, F.; Li, Y.; Shi, Q.; Zhao, C.; Li, S.; Pang, S. Novel covalent organic nanosheets for construction of ultrafine and well-dispersed metal nanoparticles. New J. Chem., 2020, 44(36), 15354-15361.
[http://dx.doi.org/10.1039/D0NJ02410D]
[56]
Tao, R.; Ma, X.; Wei, X.; Jin, Y.; Qiu, L.; Zhang, W. Porous organic polymer material supported palladium nanoparticles. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(34), 17360-17391.
[http://dx.doi.org/10.1039/D0TA05175F]
[57]
Zhang, C.; Cui, M.; Ren, J.; Xing, Y.; Li, N.; Zhao, H.; Liu, P.; Ji, X.; Li, M. Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection. Chem. Eng. J., 2020, 401, 126025.
[http://dx.doi.org/10.1016/j.cej.2020.126025]
[58]
Sun, J.; Klechikov, A.; Moise, C.; Prodana, M.; Enachescu, M.; Talyzin, A.V. A molecular pillar approach to grow vertical covalent organic framework nanosheets on graphene: hybrid materials for energy storage. Angew. Chem. Int. Ed. Engl., 2018, 57(4), 1034-1038.
[http://dx.doi.org/10.1002/anie.201710502] [PMID: 29210484]
[59]
Xiong, Y.; Liao, Q.; Huang, Z.; Huang, X.; Ke, C.; Zhu, H.; Dong, C.; Wang, H.; Xi, K.; Zhan, P.; Xu, F.; Lu, Y. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene. Adv. Mater., 2020, 32(9), e1907242.
[http://dx.doi.org/10.1002/adma.201907242] [PMID: 31990415]
[60]
Yao, Y.; Li, J.; Zhang, H.; Tang, H.; Fang, L.; Niu, G.; Sun, X.; Zhang, F. Facile synthesis of a covalently connected rGO-COF hybrid material by in situ reaction for enhanced visible-light induced photocatalytic H2 evolution. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(18), 8949-8956.
[http://dx.doi.org/10.1039/D0TA02202K]
[61]
Gomes, R.; Bhattacharyya, A. Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain. Chem.& Eng., 2020, 8(15), 5946-5953.
[http://dx.doi.org/10.1021/acssuschemeng.0c00239]
[62]
Sun, Y.; Waterhouse, G.; Xu, L.; Qiao, X.; Xu, Z. Three-dimensional electrochemical sensor with covalent organic framework decorated carbon nanotubes signal amplification for the detection of furazolidone. Sens. Actuators B Chem., 2020, 321, 128501.
[http://dx.doi.org/10.1016/j.snb.2020.128501]
[63]
Zhang, T.; Chen, Y.; Huang, W.; Wang, Y.; Hu, X. A novel AuNPs-doped COFs composite as electrochemical probe for chlorogenic acid detection with enhanced sensitivity and stability. Sens. Actuators B Chem., 2018, 276, 362-369.
[http://dx.doi.org/10.1016/j.snb.2018.08.132]
[64]
Wang, M.; Hu, M.; Liu, J.; Guo, C.; Peng, D.; Jia, Q.; He, L.; Zhang, Z.; Du, M. Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics. Biosens. Bioelectron., 2019, 132, 8-16.
[http://dx.doi.org/10.1016/j.bios.2019.02.040] [PMID: 30851495]
[65]
Gu, S.; Wu, S.; Cao, L.; Li, M.; Qin, N.; Zhu, J.; Wang, Z.; Li, Y.; Li, Z.; Chen, J.; Lu, Z. Tunable Redox Chemistry and Stability of Radical Intermediates in 2D Covalent Organic Frameworks for High Performance Sodium Ion Batteries. J. Am. Chem. Soc., 2019, 141(24), 9623-9628.
[http://dx.doi.org/10.1021/jacs.9b03467] [PMID: 31121094]
[66]
Li, Z.; Zhi, Y.; Shao, P.; Xia, H.; Li, G.; Feng, X.; Chen, X.; Shi, Z.; Liu, X. Covalent organic framework as an efficient, metal-free, heterogeneous photocatalyst for organic transformations under visible light. Appl. Catal. B, 2019, 245, 334-342.
[http://dx.doi.org/10.1016/j.apcatb.2018.12.065]
[67]
Mitra, S.; Sasmal, H.S.; Kundu, T.; Kandambeth, S.; Illath, K.; Díaz Díaz, D.; Banerjee, R. Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. J. Am. Chem. Soc., 2017, 139(12), 4513-4520.
[http://dx.doi.org/10.1021/jacs.7b00925] [PMID: 28256830]
[68]
Fan, H.; Peng, M.; Strauss, I.; Mundstock, A.; Meng, H.; Caro, J. High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation. J. Am. Chem. Soc., 2020, 142(15), 6872-6877.
[http://dx.doi.org/10.1021/jacs.0c00927] [PMID: 32223155]
[69]
Han, J.; Yu, J.; Guo, Y.; Wang, L.; Song, Y. COFBTLP-1/three-dimensional macroporous carbon electrode for simultaneous electrochemical detection of Cd2+, Pb2+, Cu2+ and Hg2+. Sens. Actuators B Chem., 2020, 321, 128498.
[http://dx.doi.org/10.1016/j.snb.2020.128498]
[70]
Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, crystalline, covalent organic frameworks. Science, 2005, 310(5751), 1166-1170.
[http://dx.doi.org/10.1126/science.1120411] [PMID: 16293756]
[71]
Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5439-5442.
[http://dx.doi.org/10.1002/anie.200900881] [PMID: 19434640]
[72]
Li, H.; Pan, Q.; Ma, Y.; Guan, X.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Three-dimensional covalent organic frameworks with dual linkages for bifunctional cascade catalysis. J. Am. Chem. Soc., 2016, 138(44), 14783-14788.
[http://dx.doi.org/10.1021/jacs.6b09563] [PMID: 27754652]
[73]
Tilford, R.; Gemmill, W.; zur Loye, H.; Lavigne, J. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater., 2006, 18(22), 5296-5301.
[http://dx.doi.org/10.1021/cm061177g]
[74]
Côté, A.P.; El-Kaderi, H.M.; Furukawa, H.; Hunt, J.R.; Yaghi, O.M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc., 2007, 129(43), 12914-12915.
[http://dx.doi.org/10.1021/ja0751781] [PMID: 17918943]
[75]
Han, S.S.; Furukawa, H.; Yaghi, O.M.; Goddard, W.A., III Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc., 2008, 130(35), 11580-11581.
[http://dx.doi.org/10.1021/ja803247y] [PMID: 18683924]
[76]
Ding, S.Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev., 2013, 42(2), 548-568.
[http://dx.doi.org/10.1039/C2CS35072F] [PMID: 23060270]
[77]
Feng, X.; Ding, X.; Jiang, D. Covalent organic frameworks. Chem. Soc. Rev., 2012, 41(18), 6010-6022.
[http://dx.doi.org/10.1039/c2cs35157a] [PMID: 22821129]
[78]
Burke, D.W.; Sun, C.; Castano, I.; Flanders, N.C.; Evans, A.M.; Vitaku, E.; McLeod, D.C.; Lambeth, R.H.; Chen, L.X.; Gianneschi, N.C.; Dichtel, W.R. Acid exfoliation of imine-linked covalent organic frameworks Enables solution processing into crystalline thin films. Angew. Chem. Int. Ed. Engl., 2020, 59(13), 5165-5171.
[http://dx.doi.org/10.1002/anie.201913975] [PMID: 31872540]
[79]
Stegbauer, L.; Schwinghammer, K.; Lotsch, B. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. (Camb.), 2014, 5(7), 2789-2793.
[http://dx.doi.org/10.1039/C4SC00016A]
[80]
Guan, P.; Qiu, J.; Zhao, Y.; Wang, H.; Li, Z.; Shi, Y.; Wang, J. A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion. Chem. Commun. (Camb.), 2019, 55(83), 12459-12462.
[http://dx.doi.org/10.1039/C9CC05710B] [PMID: 31544186]
[81]
Daugherty, M.C.; Vitaku, E.; Li, R.L.; Evans, A.M.; Chavez, A.D.; Dichtel, W.R. Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. Chem. Commun. (Camb.), 2019, 55(18), 2680-2683.
[http://dx.doi.org/10.1039/C8CC08957D] [PMID: 30747178]
[82]
Uribe-Romo, F.J.; Hunt, J.R.; Furukawa, H.; Klöck, C.; O’Keeffe, M.; Yaghi, O.M. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc., 2009, 131(13), 4570-4571.
[http://dx.doi.org/10.1021/ja8096256] [PMID: 19281246]
[83]
Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2011, 133(49), 19816-19822.
[http://dx.doi.org/10.1021/ja206846p] [PMID: 22026454]
[84]
Zhang, Y.B.; Su, J.; Furukawa, H.; Yun, Y.; Gándara, F.; Duong, A.; Zou, X.; Yaghi, O.M. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc., 2013, 135(44), 16336-16339.
[http://dx.doi.org/10.1021/ja409033p] [PMID: 24143961]
[85]
Zhou, T.Y.; Xu, S.Q.; Wen, Q.; Pang, Z.F.; Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc., 2014, 136(45), 15885-15888.
[http://dx.doi.org/10.1021/ja5092936] [PMID: 25360771]
[86]
Uribe-Romo, F.J.; Doonan, C.J.; Furukawa, H.; Oisaki, K.; Yaghi, O.M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc., 2011, 133(30), 11478-11481.
[http://dx.doi.org/10.1021/ja204728y] [PMID: 21721558]
[87]
Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An azine-linked covalent organic framework. J. Am. Chem. Soc., 2013, 135(46), 17310-17313.
[http://dx.doi.org/10.1021/ja4103293] [PMID: 24182194]
[88]
Li, Z.; Feng, X.; Zou, Y.; Zhang, Y.; Xia, H.; Liu, X.; Mu, Y. A 2D azine-linked covalent organic framework for gas storage applications. Chem. Commun. (Camb.), 2014, 50(89), 13825-13828.
[http://dx.doi.org/10.1039/C4CC05665E] [PMID: 25253410]
[89]
Li, Z.; Zhi, Y.; Feng, X.; Ding, X.; Zou, Y.; Liu, X.; Mu, Y. An azine-linked covalent organic framework: synthesis, characterization and efficient gas storage. Chemistry, 2015, 21(34), 12079-12084.
[http://dx.doi.org/10.1002/chem.201501206] [PMID: 26177594]
[90]
Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M.V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc., 2012, 134(48), 19524-19527.
[http://dx.doi.org/10.1021/ja308278w] [PMID: 23153356]
[91]
DeBlase, C.R.; Silberstein, K.E.; Truong, T.T.; Abruña, H.D.; Dichtel, W.R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc., 2013, 135(45), 16821-16824.
[http://dx.doi.org/10.1021/ja409421d] [PMID: 24147596]
[92]
Maschita, J.; Banerjee, T.; Savasci, G.; Haase, F.; Ochsenfeld, C.; Lotsch, B.V. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem. Int. Ed. Engl., 2020, 59(36), 15750-15758.
[http://dx.doi.org/10.1002/anie.202007372] [PMID: 32573890]
[93]
Wu, S.; Gu, S.; Zhang, A.; Yu, G.; Wang, Z.; Jian, J.; Pan, C. Rational construction of microporous imide-bridged covalent–organic polytriazines for high-enthalpy small gas absorption. J. Mater. Chem. A Mater. Energy Sustain., 2014, 3(2), 878-885.
[http://dx.doi.org/10.1039/C4TA04734F]
[94]
Yu, M.; Chandrasekhar, N.; Raghupathy, R.K.M.; Ly, K.H.; Zhang, H.; Dmitrieva, E.; Liang, C.; Lu, X.; Kühne, T.D.; Mirhosseini, H.; Weidinger, I.M.; Feng, X. A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J. Am. Chem. Soc., 2020, 142(46), 19570-19578.
[http://dx.doi.org/10.1021/jacs.0c07992] [PMID: 33164490]
[95]
Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R.B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun., 2014, 5, 4503.
[http://dx.doi.org/10.1038/ncomms5503] [PMID: 25054211]
[96]
Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc., 2015, 137(26), 8352-8355.
[http://dx.doi.org/10.1021/jacs.5b04147] [PMID: 26099722]
[97]
Kamiya, K. Selective single-atom electrocatalysts: a review with a focus on metal-doped covalent triazine frameworks. Chem. Sci. (Camb.), 2020, 11, 8339-8349.
[http://dx.doi.org/10.1039/D0SC03328F]
[98]
Mohamed, M. EL-Mahdy, A.; Takashi, Y.; Kuo, S. Ultrastable conductive microporous covalent triazine frameworks based on pyrene moieties provide high-performance CO2 uptake and supercapacitance. New J. Chem., 2020, 44(20), 8241-8253.
[http://dx.doi.org/10.1039/D0NJ01292K]
[99]
Kuhn, P.; Forget, A.; Su, D.; Thomas, A.; Antonietti, M. From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. J. Am. Chem. Soc., 2008, 130(40), 13333-13337.
[http://dx.doi.org/10.1021/ja803708s] [PMID: 18788810]
[100]
Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. Engl., 2008, 47(18), 3450-3453.
[http://dx.doi.org/10.1002/anie.200705710] [PMID: 18330878]
[101]
El-Kaderi, H.M.; Hunt, J.R.; Mendoza-Cortés, J.L.; Côté, A.P.; Taylor, R.E.; O’Keeffe, M.; Yaghi, O.M. Designed synthesis of 3D covalent organic frameworks. Science, 2007, 316(5822), 268-272.
[http://dx.doi.org/10.1126/science.1139915] [PMID: 17431178]
[102]
Chen, L.; Du, J.; Zhou, W.; Shen, H.; Tan, L.; Zhou, C.; Dong, L. Microwave-assisted solvothermal synthesis of covalent organic frameworks (COFs) with stable superhydrophobicity for oil/water separation. Chem. Asian J., 2020, 15(21), 3421-3427.
[http://dx.doi.org/10.1002/asia.202000872] [PMID: 32869504]
[103]
Xiao, Y.; Jin, Z.; He, L.; Ma, S.; Wang, C.; Mu, X.; Song, L. Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect. Compos., Part B Eng., 2020, 182, 107616.
[http://dx.doi.org/10.1016/j.compositesb.2019.107616]
[104]
Xiong, S.; Wang, Y.; Wang, X.; Chu, J.; Zhang, R.; Gong, M.; Wu, B.; Li, Z. Schiff base type conjugated organic framework nanofibers: solvothermal synthesis and electrochromic properties. Sol. Energy Mater. Sol. Cells, 2020, 209, 110438.
[http://dx.doi.org/10.1016/j.solmat.2020.110438]
[105]
Dong, B.; Wang, W.; Pan, W.; Kang, G. Ionic liquid as a green solvent for ionothermal synthesis of 2D keto-enaminelinked covalent organic frameworks. Mater. Chem. Phys., 2019, 226, 244-249.
[http://dx.doi.org/10.1016/j.matchemphys.2019.01.032]
[106]
Kuecken, S.; Schmidt, J.; Zhi, L.; Thomas, A. Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(48), 24422-24427.
[http://dx.doi.org/10.1039/C5TA07408H]
[107]
Guan, X.; Ma, Y.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q.; Yan, Y.; Valtchev, V.; Qiu, S. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J. Am. Chem. Soc., 2018, 140(13), 4494-4498.
[http://dx.doi.org/10.1021/jacs.8b01320] [PMID: 29553727]
[108]
Makhseed, S.; Samuel, J. Hydrogen adsorption in microporous organic framework polymer. Chem. Commun. (Camb.), 2008, (36), 4342-4344.
[http://dx.doi.org/10.1039/b805656k] [PMID: 18802564]
[109]
Wei, H.; Chai, S.; Hu, N.; Yang, Z.; Wei, L.; Wang, L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem. Commun. (Camb.), 2015, 51(61), 12178-12181.
[http://dx.doi.org/10.1039/C5CC04680G] [PMID: 26152822]
[110]
Dogru, M.; Sonnauer, A.; Zimdars, S.; Döblinger, M.; Knochel, P.; Bein, T. Facile synthesis of a mesoporous benzothiadiazole-COF based on a transesterification process. CrystEngComm, 2013, 15(8), 1500-1502.
[http://dx.doi.org/10.1039/c2ce26343b]
[111]
Ritchie, L.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous Mesoporous Mater., 2010, 132(1-2), 132-136.
[http://dx.doi.org/10.1016/j.micromeso.2010.02.010]
[112]
Zhang, W.; Qiu, L.G.; Yuan, Y.P.; Xie, A.J.; Shen, Y.H.; Zhu, J.F. Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J. Hazard. Mater., 2012, 221-222, 147-154.
[http://dx.doi.org/10.1016/j.jhazmat.2012.04.025] [PMID: 22560174]
[113]
Chandra, S.; Kandambeth, S.; Biswal, B.P.; Lukose, B.; Kunjir, S.M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc., 2013, 135(47), 17853-17861.
[http://dx.doi.org/10.1021/ja408121p] [PMID: 24168521]
[114]
Peng, Y.; Xu, G.; Hu, Z.; Cheng, Y.; Chi, C.; Yuan, D.; Cheng, H.; Zhao, D. Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity. ACS Appl. Mater. Interfaces, 2016, 8(28), 18505-18512.
[http://dx.doi.org/10.1021/acsami.6b06189] [PMID: 27385672]
[115]
Das, G.; Balaji Shinde, D.; Kandambeth, S.; Biswal, B.P.; Banerjee, R. Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bonded imine-linked covalent organic frameworks using liquid-assisted grinding. Chem. Commun. (Camb.), 2014, 50(84), 12615-12618.
[http://dx.doi.org/10.1039/C4CC03389B] [PMID: 25014205]
[116]
Li, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev., 2020, 49(10), 2852-2868.
[http://dx.doi.org/10.1039/D0CS00199F] [PMID: 32377651]
[117]
Dey, K.; Pal, M.; Rout, K.C.; Kunjattu, H.S.; Das, A.; Mukherjee, R.; Kharul, U.K.; Banerjee, R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc., 2017, 139(37), 13083-13091.
[http://dx.doi.org/10.1021/jacs.7b06640] [PMID: 28876060]
[118]
Dai, W.; Shao, F.; Szczerbiński, J.; McCaffrey, R.; Zenobi, R.; Jin, Y.; Schlüter, A.D.; Zhang, W. Synthesis of a two-dimensional covalent organic monolayer through dynamic imine chemistry at the air/water interface. Angew. Chem. Int. Ed. Engl., 2016, 55(1), 213-217.
[http://dx.doi.org/10.1002/anie.201508473] [PMID: 26768822]
[119]
Sahabudeen, H.; Qi, H.; Glatz, B.A.; Tranca, D.; Dong, R.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z.; Feng, X. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun., 2016, 7, 13461.
[http://dx.doi.org/10.1038/ncomms13461] [PMID: 27849053]
[120]
Medina, D.D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.; Schuster, J.; Linke, S.; Döblinger, M.; Feldmann, J.; Knochel, P.; Bein, T. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano, 2014, 8(4), 4042-4052.
[http://dx.doi.org/10.1021/nn5000223] [PMID: 24559375]
[121]
Medina, D.D.; Rotter, J.M.; Hu, Y.; Dogru, M.; Werner, V.; Auras, F.; Markiewicz, J.T.; Knochel, P.; Bein, T. Room temperature synthesis of covalent-organic framework films through vapor-assisted conversion. J. Am. Chem. Soc., 2015, 137(3), 1016-1019.
[http://dx.doi.org/10.1021/ja510895m] [PMID: 25539131]
[122]
Colson, J.W.; Woll, A.R.; Mukherjee, A.; Levendorf, M.P.; Spitler, E.L.; Shields, V.B.; Spencer, M.G.; Park, J.; Dichtel, W.R. Oriented 2D covalent organic framework thin films on single-layer graphene. Science, 2011, 332(6026), 228-231.
[http://dx.doi.org/10.1126/science.1202747] [PMID: 21474758]
[123]
Dong, R.; Zhang, T.; Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev., 2018, 118(13), 6189-6235.
[http://dx.doi.org/10.1021/acs.chemrev.8b00056] [PMID: 29912554]
[124]
Yan, X.; Song, Y.; Liu, J.; Zhou, N.; Zhang, C.; He, L.; Zhang, Z.; Liu, Z. Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection. Biosens. Bioelectron., 2019, 126, 734-742.
[http://dx.doi.org/10.1016/j.bios.2018.11.047] [PMID: 30553103]
[125]
Yang, Y.; Shen, Y.; Wang, L.; Song, Y.; Wang, L. Three-dimensional porous carbon/covalent-organic framework films integrated electrode for electrochemical sensors. J. Electroanal. Chem. (Lausanne Switz.), 2019, 855, 113590.
[http://dx.doi.org/10.1016/j.jelechem.2019.113590]
[126]
Liu, T.Z.; Hu, R.; Zhang, X.; Zhang, K.L.; Liu, Y.; Zhang, X.B.; Bai, R.Y.; Li, D.; Yang, Y.H. Metal-organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal. Chem., 2016, 88(24), 12516-12523.
[http://dx.doi.org/10.1021/acs.analchem.6b04191] [PMID: 28193012]
[127]
Liang, H.; Xu, M.; Zhu, Y.; Wang, L.; Xie, Y.; Song, Y.; Wang, L.H. 2O2 ratiometric electrochemical sensors based on nanospheres derived from ferrocence-modified covalent organic frameworks. ACS Appl. Nano. Mater., 2019, 3(1), 555-562.
[http://dx.doi.org/10.1021/acsanm.9b02117]
[128]
Xu, M.; Wang, L.; Xie, Y.; Song, Y.; Wang, L. Ratiometric electrochemical sensing and biosensing based on multiple redox-active state COFDHTA-TTA. Sens. Actuators B Chem., 2019, 281, 1009-1015.
[http://dx.doi.org/10.1016/j.snb.2018.11.032]
[129]
Xie, Y.; Xu, M.; Wang, L.; Liang, H.; Wang, L.; Song, Y. Iron-porphyrin-based covalent-organic frameworks for electrochemical sensing H2O2 and pH. Mater. Sci. Eng. C, 2020, 112, 110864.
[http://dx.doi.org/10.1016/j.msec.2020.110864] [PMID: 32409033]
[130]
Ding, S.Y.; Dong, M.; Wang, Y.W.; Chen, Y.T.; Wang, H.Z.; Su, C.Y.; Wang, W. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of Mercury(II). J. Am. Chem. Soc., 2016, 138(9), 3031-3037.
[http://dx.doi.org/10.1021/jacs.5b10754] [PMID: 26878337]
[131]
Huang, N.; Zhai, L.; Xu, H.; Jiang, D. Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. J. Am. Chem. Soc., 2017, 139(6), 2428-2434.
[http://dx.doi.org/10.1021/jacs.6b12328] [PMID: 28121142]
[132]
Sun, Q.; Aguila, B.; Perman, J.; Earl, L.D.; Abney, C.W.; Cheng, Y.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J. Am. Chem. Soc., 2017, 139(7), 2786-2793.
[http://dx.doi.org/10.1021/jacs.6b12885] [PMID: 28222608]
[133]
Jiang, Y.; Liu, C.; Huang, A. EDTA-functionalized covalent organic framework for the removal of heavy-metal ions. ACS Appl. Mater. Interfaces, 2019, 11(35), 32186-32191.
[http://dx.doi.org/10.1021/acsami.9b11850] [PMID: 31408309]
[134]
Wang, L.; Yang, Y.; Liang, H.; Wu, N.; Peng, X.; Wang, L.; Song, Y. A novel N,S-rich COF and its derived hollow N,S-doped carbon@Pd nanorods for electrochemical detection of Hg2+ and paracetamol. J. Hazard. Mater., 2021, 409, 124528.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124528] [PMID: 33234399]
[135]
Li, M.; Qiao, S.; Zheng, Y.; Andaloussi, Y.H.; Li, X.; Zhang, Z.; Li, A.; Cheng, P.; Ma, S.; Chen, Y. Fabricating covalent organic framework capsules with commodious microenvironment for enzymes. J. Am. Chem. Soc., 2020, 142(14), 6675-6681.
[http://dx.doi.org/10.1021/jacs.0c00285] [PMID: 32197569]
[136]
Sun, Q.; Aguila, B.; Lan, P.C.; Ma, S. Tuning pore heterogeneity in covalent organic frameworks for enhanced enzyme accessibility and resistance against denaturants. Adv. Mater., 2019, 31(19), e1900008.
[http://dx.doi.org/10.1002/adma.201900008] [PMID: 30859646]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy