Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Review Article

Integration of OMICS Technologies for Crop Improvement

Author(s): Amna Faryad, Faiza Aziz, Jannat Tahir, Maimoona Kousar, Muhammad Qasim* and Aysha Shamim

Volume 28, Issue 8, 2021

Published on: 10 March, 2021

Page: [896 - 908] Pages: 13

DOI: 10.2174/0929866528666210310161207

Price: $65

Abstract

Sustainable crop improvement can help to feed the exploding human population in an era of shrinking cultivable lands and dwindling water resources. In this scenario, crop improvement using OMICS technologies may help to ensure food security and alleviate the rural poverty in poor countries. Additionally, the improved crops may help to cope with the problem of malnutrition in the different parts of the world, especially Africa. OMICS technologies are based on the knowledge gained through genomics, transcriptomics, proteomics, metabolomics, interactomics and phenomics. This expert review article congregates recent knowledge of the emerging OMICS technologies and evaluates how their integrated application is improving important crops and the potential of these technologies in bringing a revolution in agriculture. Moreover, we have provided an analysis of various technical challenges and difficulties arising during application of OMICS technologies to crop plants which pose major restrictions to the implementation of these strategies.

Keywords: Genomics, transcriptomics, metabolomics, proteomics, metabolomics, interactomics, phenomics, crop improvement.

Graphical Abstract

[1]
Hazell, P.; Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1491), 495-515.
[http://dx.doi.org/10.1098/rstb.2007.2166] [PMID: 17656343]
[2]
Hakeem, K.R.; Ahmad, P.; Ozturk, M. Crop improvement: new approaches and modern techniques; Springer Science & Business Media, 2013.
[http://dx.doi.org/10.1007/978-1-4614-7028-1]
[3]
Rashid, B.; Tariq, M.; Khalid, A.; Shams, F.; Ali, Q.; Ashraf, F.; Ghaffar, I.; Khan, M.I.; Rehman, R.; Husnain, T. Crop improvement: new approaches and modern techniques. Plant Gene and Trait, 2017, 8, 3.
[4]
Council, N.R. Genetic engineering of plants: agricultural research opportunities and policy concerns; National Academies Press, 1984.
[5]
Bevan, M.W.; Uauy, C.; Wulff, B.B.; Zhou, J.; Krasileva, K.; Clark, M.D.J.N. Genomic innovation for crop improvement. Nature, 2017, 543(7645), 346-354.
[http://dx.doi.org/10.1038/nature22011] [PMID: 28300107]
[6]
Hamblin, M.T.; Buckler, E.S.; Jannink, J-L. Population genetics of genomics-based crop improvement methods. Trends Genet., 2011, 27(3), 98-106.
[http://dx.doi.org/10.1016/j.tig.2010.12.003] [PMID: 21227531]
[7]
Jain, S.M.; Brar, D.S.; Ahloowalia, B. Molecular techniques in crop improvement; Springer, 2010.
[8]
Wasaki, J.; Yonetani, R.; Kuroda, S.; Shinano, T.; Yazaki, J.; Fujii, F. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ., 2003, 26(9), 1515-1523.
[http://dx.doi.org/10.1046/j.1365-3040.2003.01074.x]
[9]
Berkman, P.J.; Lai, K.; Lorenc, M.T.; Edwards, D. Next-generation sequencing applications for wheat crop improvement. Am. J. Bot., 2012, 99(2), 365-371.
[http://dx.doi.org/10.3732/ajb.1100309] [PMID: 22268223]
[10]
Ricroch, A.E.; Bergé, J.B.; Kuntz, M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol., 2011, 155(4), 1752-1761.
[http://dx.doi.org/10.1104/pp.111.173609] [PMID: 21350035]
[11]
Kharkwal, M.; Pandey, R.; Pawar, S. Mutation breeding for crop improvement. Plant Breeding; Springer, 2004, pp. 601-645.
[12]
Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: technologies and their applications. J. Chromatogr. Sci., 2017, 55(2), 182-196.
[http://dx.doi.org/10.1093/chromsci/bmw167] [PMID: 28087761]
[13]
Graves, P.R.; Haystead, T.A. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev., 2002, 66(1), 39-63.
[http://dx.doi.org/10.1128/MMBR.66.1.39-63.2002] [PMID: 11875127]
[14]
Singh, J.; Pandey, P.; James, D.; Chandrasekhar, K.; Achary, V.M.M.; Kaul, T.; Tripathy, B.C.; Reddy, M.K. Enhancing C3 photosynthesis: an outlook on feasible interventions for crop improvement. Plant Biotechnol. J., 2014, 12(9), 1217-1230.
[http://dx.doi.org/10.1111/pbi.12246] [PMID: 25196090]
[15]
Hansen, J.; Palmfeldt, J.; Vang, S.; Corydon, T.J.; Gregersen, N.; Bross, P. Quantitative proteomics reveals cellular targets of celastrol. PLoS One, 2011, 6(10), e26634.
[http://dx.doi.org/10.1371/journal.pone.0026634] [PMID: 22046318]
[16]
Habicht, K.S.; Miller, M.; Cox, R.P.; Frigaard, N.U.; Tonolla, M.; Peduzzi, S.; Falkenby, L.G.; Andersen, J.S. Comparative proteomics and activity of a green sulfur bacterium through the water column of Lake Cadagno, Switzerland. Environ. Microbiol., 2011, 13(1), 203-215.
[http://dx.doi.org/10.1111/j.1462-2920.2010.02321.x] [PMID: 20731699]
[17]
Palmfeldt, J.; Bross, P. Proteomics of human mitochondria. Mitochondrion, 2017, 33, 2-14.
[http://dx.doi.org/10.1016/j.mito.2016.07.006] [PMID: 27444749]
[18]
Zörb, C.; Herbst, R.; Forreiter, C.; Schubert, S. Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics, 2009, 9(17), 4209-4220.
[http://dx.doi.org/10.1002/pmic.200800791] [PMID: 19688749]
[19]
Ahsan, N.; Nanjo, Y.; Sawada, H.; Kohno, Y.; Komatsu, S. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics, 2010, 10(14), 2605-2619.
[http://dx.doi.org/10.1002/pmic.201000180] [PMID: 20443193]
[20]
Zhu, J.; Alvarez, S.; Marsh, E.L.; Lenoble, M.E.; Cho, I-J.; Sivaguru, M.; Chen, S.; Nguyen, H.T.; Wu, Y.; Schachtman, D.P.; Sharp, R.E. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiol., 2007, 145(4), 1533-1548.
[http://dx.doi.org/10.1104/pp.107.107250] [PMID: 17951457]
[21]
Kamal, A.H.M.; Kim, K-H.; Shin, K-H.; Kim, D-E.; Oh, M-W.; Choi, J-S. Proteomics-based dissection of biotic stress responsive proteins in bread wheat (Triticum aestivum L.). Afr. J. Biotechnol., 2010, 9(43), 7239-7255.
[22]
Rabello, F.R.; Villeth, G.R.; Rabello, A.R.; Rangel, P.H.; Guimarães, C.M.; Huergo, L.F.; Souza, E.M.; Pedrosa, F.O.; Ferreira, M.E.; Mehta, A. Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit. Protein J., 2014, 33(3), 221-230.
[http://dx.doi.org/10.1007/s10930-014-9554-1] [PMID: 24652039]
[23]
Liu, J-X.; Bennett, J. Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and Moroberekan. Mol. Plant, 2011, 4(1), 59-69.
[http://dx.doi.org/10.1093/mp/ssq039] [PMID: 20643753]
[24]
Benešová, M.; Holá, D.; Fischer, L.; Jedelský, P.L.; Hnilička, F.; Wilhelmová, N.; Rothová, O.; Kočová, M.; Procházková, D.; Honnerová, J.; Fridrichová, L.; Hniličková, H. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS One, 2012, 7(6), e38017.
[http://dx.doi.org/10.1371/journal.pone.0038017] [PMID: 22719860]
[25]
Ghatak, A.; Chaturvedi, P.; Nagler, M.; Roustan, V.; Lyon, D.; Bachmann, G.; Postl, W.; Schröfl, A.; Desai, N.; Varshney, R.K.; Weckwerth, W. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J. Proteomics, 2016, 143, 122-135.
[http://dx.doi.org/10.1016/j.jprot.2016.02.032] [PMID: 26944736]
[26]
Printz, B.; Dos Santos Morais, R.; Wienkoop, S.; Sergeant, K.; Lutts, S.; Hausman, J-F.; Renaut, J. An improved protocol to study the plant cell wall proteome. Front. Plant Sci., 2015, 6, 237.
[http://dx.doi.org/10.3389/fpls.2015.00237] [PMID: 25914713]
[27]
Pitkänen, L.; Tuomainen, P.; Eskelin, K. Analysis of plant ribosomes with asymmetric flow field-flow fractionation. Anal. Bioanal. Chem., 2014, 406(6), 1629-1637.
[http://dx.doi.org/10.1007/s00216-013-7454-4] [PMID: 24281322]
[28]
Liu, Y.; Lu, S.; Liu, K.; Wang, S.; Huang, L.; Guo, L. Proteomics: a powerful tool to study plant responses to biotic stress. Plant Methods, 2019, 15(1), 135.
[http://dx.doi.org/10.1186/s13007-019-0515-8] [PMID: 31832077]
[29]
Tan, H.S.; Liddell, S.; Ong Abdullah, M.; Wong, W.C.; Chin, C.F. Differential proteomic analysis of embryogenic lines in oil palm (Elaeis guineensis Jacq). J. Proteomics, 2016, 143, 334-345.
[http://dx.doi.org/10.1016/j.jprot.2016.04.039] [PMID: 27130535]
[30]
Eldakak, M.; Milad, S.I.; Nawar, A.I.; Rohila, J.S. Proteomics: a biotechnology tool for crop improvement. Front. Plant Sci., 2013, 4, 35.
[http://dx.doi.org/10.3389/fpls.2013.00035] [PMID: 23450788]
[31]
Weckwerth, W. Metabolomics in systems biology. Annu. Rev. Plant Biol., 2003, 54(1), 669-689.
[http://dx.doi.org/10.1146/annurev.arplant.54.031902.135014] [PMID: 14503007]
[32]
Oliver, S.G.; Winson, M.K.; Kell, D.B.; Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol., 1998, 16(9), 373-378.
[http://dx.doi.org/10.1016/S0167-7799(98)01214-1] [PMID: 9744112]
[33]
Griffin, J.L.; Vidal-Puig, A. Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding? Physiol. Genomics, 2008, 34(1), 1-5.
[http://dx.doi.org/10.1152/physiolgenomics.00009.2008] [PMID: 18413782]
[34]
Horgan, R.P.; Kenny, L.C.J.T.O. Gynaecologist. ‘Omic’technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol., 2011, 13(3), 189-195.
[http://dx.doi.org/10.1576/toag.13.3.189.27672]
[35]
Sanchez, C.; Lachaize, C.; Janody, F.; Bellon, B.; Röder, L.; Euzenat, J.; Rechenmann, F.; Jacq, B. Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an Internet database. Nucleic Acids Res., 1999, 27(1), 89-94.
[http://dx.doi.org/10.1093/nar/27.1.89] [PMID: 9847149]
[36]
Feng, S.; Zhou, L.; Huang, C.; Xie, K.; Nice, E.C. Interactomics: toward protein function and regulation. Expert Rev. Proteomics, 2015, 12(1), 37-60.
[http://dx.doi.org/10.1586/14789450.2015.1000870] [PMID: 25578092]
[37]
Cook, J.P.; McMullen, M.D.; Holland, J.B.; Tian, F.; Bradbury, P.; Ross-Ibarra, J.; Buckler, E.S.; Flint-Garcia, S.A. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol., 2012, 158(2), 824-834.
[http://dx.doi.org/10.1104/pp.111.185033] [PMID: 22135431]
[38]
Bartel, P.L.; Fields, S. The yeast two-hybrid system; Oxford University Press: USA, 1997.
[39]
Tripathi, P.; Rabara, R.C.; Choudhary, M.K.; Miller, M.A.; Huang, Y-S.; Shen, Q.J.; Blachon, S.; Rushton, P.J. The interactome of soybean GmWRKY53 using yeast 2-hybrid library screening to saturation. Plant Signal. Behav., 2015, 10(7), e1028705.
[http://dx.doi.org/10.1080/15592324.2015.1028705] [PMID: 26102586]
[40]
Houle, D.; Govindaraju, D.R.; Omholt, S. Phenomics: the next challenge. Nat. Rev. Genet., 2010, 11(12), 855-866.
[http://dx.doi.org/10.1038/nrg2897] [PMID: 21085204]
[41]
Sabetta, W.; Alba, V.; Blanco, A.; Montemurro, C. sunTILL: a TILLING resource for gene function analysis in sunflower. Plant Methods, 2011, 7(1), 20.
[http://dx.doi.org/10.1186/1746-4811-7-20] [PMID: 21718494]
[42]
Jahnke, S.; Menzel, M.I.; van Dusschoten, D.; Roeb, G.W.; Bühler, J.; Minwuyelet, S.; Blümler, P.; Temperton, V.M.; Hombach, T.; Streun, M.; Beer, S.; Khodaverdi, M.; Ziemons, K.; Coenen, H.H.; Schurr, U. Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J., 2009, 59(4), 634-644.
[http://dx.doi.org/10.1111/j.1365-313X.2009.03888.x] [PMID: 19392708]
[43]
Edwards, D.; Batley, J. Plant genome sequencing: applications for crop improvement. Plant Biotechnol. J., 2010, 8(1), 2-9.
[http://dx.doi.org/10.1111/j.1467-7652.2009.00459.x] [PMID: 19906089]
[44]
Kole, C.; Muthamilarasan, M.; Henry, R.; Edwards, D.; Sharma, R.; Abberton, M.; Batley, J.; Bentley, A.; Blakeney, M.; Bryant, J.; Cai, H.; Cakir, M.; Cseke, L.J.; Cockram, J.; de Oliveira, A.C.; De Pace, C.; Dempewolf, H.; Ellison, S.; Gepts, P.; Greenland, A.; Hall, A.; Hori, K.; Hughes, S.; Humphreys, M.W.; Iorizzo, M.; Ismail, A.M.; Marshall, A.; Mayes, S.; Nguyen, H.T.; Ogbonnaya, F.C.; Ortiz, R.; Paterson, A.H.; Simon, P.W.; Tohme, J.; Tuberosa, R.; Valliyodan, B.; Varshney, R.K.; Wullschleger, S.D.; Yano, M.; Prasad, M. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front. Plant Sci., 2015, 6, 563.
[http://dx.doi.org/10.3389/fpls.2015.00563] [PMID: 26322050]
[45]
Iezzoni, A.; Weebadde, C.; Luby, J.; Yue, C.; van de Weg, E.; Fazio, G.; Main, D.; Peace, C.P.; Bassil, N.V.; McFerson, J. RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic., 2010, 859, pp. 389-394.
[46]
Jágr, M.; Eckhardt, A.; Pataridis, S.; Broukal, Z.; Dušková, J.; Mikšík, I. Proteomics of human teeth and saliva. Physiol. Res., 2014, 63(Suppl. 1), S141-S154.
[http://dx.doi.org/10.33549/physiolres.932702] [PMID: 24564654]
[47]
Suzuki, T.; Zhang, J.; Miyazawa, S.; Liu, Q.; Farzan, M.R.; Yao, W.D. Association of membrane rafts and postsynaptic density: proteomics, biochemical, and ultrastructural analyses. J. Neurochem., 2011, 119(1), 64-77.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07404.x] [PMID: 21797867]
[48]
Romero-Romero, J.L.; Inostroza-Blancheteau, C.; Reyes-Díaz, M.; Matte, J.P.; Aquea, F.; Espinoza, C. Increased drought and salinity tolerance in Citrus aurantifolia (Mexican Lemon) plants overexpressing arabidopsis CBF3 Gene. J. Soil Sci. Plant Nutr., 2020, 20(1), 244-252.
[http://dx.doi.org/10.1007/s42729-019-00130-y]
[49]
ZHANG, Y-b; Wei, T; WANG, L-h Kiwifruit (Actinidia chinensis) R1R2R3-MYB transcription factor AcMYB3R enhances drought and salinity tolerance in Arabidopsis thaliana. J. Integr. Agric., 2019, 18(2), 417-427.
[http://dx.doi.org/10.1016/S2095-3119(18)62127-6]
[50]
Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; Liu, W.; Wang, Q.; Jia, C.; Li, Z.; Liu, K. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front. Plant Sci., 2019, 10, 168.
[http://dx.doi.org/10.3389/fpls.2019.00168] [PMID: 30833955]
[51]
Liang, C.; Meng, Z.; Meng, Z.; Malik, W.; Yan, R.; Lwin, K.M.; Lin, F.; Wang, Y.; Sun, G.; Zhou, T.; Zhu, T.; Li, J.; Jin, S.; Guo, S.; Zhang, R. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Sci. Rep., 2016, 6(1), 35040.
[http://dx.doi.org/10.1038/srep35040] [PMID: 27713524]
[52]
Fuganti-Pagliarini, R.; Ferreira, L.C.; Rodrigues, F.A.; Molinari, H.B.C.; Marin, S.R.R.; Molinari, M.D.C.; Marcolino-Gomes, J.; Mertz-Henning, L.M.; Farias, J.R.B.; de Oliveira, M.C.N.; Neumaier, N.; Kanamori, N.; Fujita, Y.; Mizoi, J.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Nepomuceno, A.L. Characterization of soybean genetically modified for drought tolerance in field conditions. Front. Plant Sci., 2017, 8, 448.
[http://dx.doi.org/10.3389/fpls.2017.00448] [PMID: 28443101]
[53]
Jeong, J.S.; Kim, Y.S.; Baek, K.H.; Jung, H.; Ha, S-H.; Do Choi, Y.; Kim, M.; Reuzeau, C.; Kim, J.K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol., 2010, 153(1), 185-197.
[http://dx.doi.org/10.1104/pp.110.154773] [PMID: 20335401]
[54]
Wang, X.; Wang, H.; Liu, S.; Ferjani, A.; Li, J.; Yan, J.; Yang, X.; Qin, F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet., 2016, 48(10), 1233-1241.
[http://dx.doi.org/10.1038/ng.3636] [PMID: 27526320]
[55]
Garg, R.; Shankar, R.; Thakkar, B.; Kudapa, H.; Krishnamurthy, L.; Mantri, N.; Varshney, R.K.; Bhatia, S.; Jain, M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci. Rep., 2016, 6, 19228.
[http://dx.doi.org/10.1038/srep19228] [PMID: 26759178]
[56]
Tak, H.; Negi, S.; Ganapathi, T.R. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma, 2017, 254(2), 803-816.
[http://dx.doi.org/10.1007/s00709-016-0991-x] [PMID: 27352311]
[57]
Kishor, P.; Hong, Z.; Miao, G-H.; Hu, C.; Verma, D. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol., 1995, 108(4), 1387-1394.
[http://dx.doi.org/10.1104/pp.108.4.1387] [PMID: 12228549]
[58]
Thomas, J.; Sepahi, M.; Arendall, B.; Bohnert, H. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environ., 1995, 18(7), 801-806.
[http://dx.doi.org/10.1111/j.1365-3040.1995.tb00584.x]
[59]
Hmida-Sayari, A.; Gargouri-Bouzid, R.; Bidani, A.; Jaoua, L.; Savouré, A.; Jaoua, S. Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci., 2005, 169(4), 746-752.
[http://dx.doi.org/10.1016/j.plantsci.2005.05.025]
[60]
Bhattacharya, R.; Maheswari, M.; Dineshkumar, V.; Kirti, P.; Bhat, S.; Chopra, V. Transformation of Brassica oleracea var. capitata with bacterial betA gene enhances tolerance to salt stress. Sci. Hortic. (Amsterdam), 2004, 100(1-4), 215-227.
[http://dx.doi.org/10.1016/j.scienta.2003.08.009]
[61]
Cong, L.; Chai, T-Y.; Zhang, Y-X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L. Biochem. Biophys. Res. Commun., 2008, 371(4), 702-706.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.126] [PMID: 18457662]
[62]
Zhang, L.; Zhang, L.; Xia, C.; Zhao, G.; Liu, J.; Jia, J.; Kong, X. A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis. Physiol. Plant., 2015, 153(4), 538-554.
[http://dx.doi.org/10.1111/ppl.12261] [PMID: 25135325]
[63]
Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi-Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J., 2003, 33(4), 751-763.
[http://dx.doi.org/10.1046/j.1365-313X.2003.01661.x] [PMID: 12609047]
[64]
Oh, S-J.; Song, S.I.; Kim, Y.S.; Jang, H-J.; Kim, S.Y.; Kim, M.; Kim, Y.K.; Nahm, B.H.; Kim, J.K. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 2005, 138(1), 341-351.
[http://dx.doi.org/10.1104/pp.104.059147] [PMID: 15834008]
[65]
Augustine, S.M.; Ashwin Narayan, J.; Syamaladevi, D.P.; Appunu, C.; Chakravarthi, M.; Ravichandran, V.; Tuteja, N.; Subramonian, N. Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep., 2015, 34(2), 247-263.
[http://dx.doi.org/10.1007/s00299-014-1704-6] [PMID: 25477204]
[66]
Zhang, G.; Chen, M.; Li, L.; Xu, Z.; Chen, X.; Guo, J.; Ma, Y. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot., 2009, 60(13), 3781-3796.
[http://dx.doi.org/10.1093/jxb/erp214] [PMID: 19602544]
[67]
de Paiva Rolla, A.A.; de Fátima Corrêa Carvalho, J.; Fuganti-Pagliarini, R.; Engels, C.; do Rio, A.; Marin, S.R.; de Oliveira, M.C.; Beneventi, M.A.; Marcelino-Guimarães, F.C.; Farias, J.R.; Neumaier, N.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Nepomuceno, A.L. Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res., 2014, 23(1), 75-87.
[http://dx.doi.org/10.1007/s11248-013-9723-6] [PMID: 23807320]
[68]
Wang, Q.; Guan, Y.; Wu, Y.; Chen, H.; Chen, F.; Chu, C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol. Biol., 2008, 67(6), 589-602.
[http://dx.doi.org/10.1007/s11103-008-9340-6] [PMID: 18470484]
[69]
Shen, Y-G.; Zhang, W-K.; Yan, D-Q.; Du, B-X.; Zhang, J-S.; Liu, Q.; Chen, S.Y. Characterization of a DRE-binding transcription factor from a halophyte Atriplex hortensis. Theor. Appl. Genet., 2003, 107(1), 155-161.
[http://dx.doi.org/10.1007/s00122-003-1226-z] [PMID: 12677404]
[70]
Uchida, Y.; Ohtsuki, S.; Katsukura, Y.; Ikeda, C.; Suzuki, T.; Kamiie, J.; Terasaki, T. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J. Neurochem., 2011, 117(2), 333-345.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07208.x] [PMID: 21291474]
[71]
Pomeranz, Y.; Bechtel, D.; Sauer, D.; Seitz, L. Fusarium head blight (scab) in cereal grains. In: Advances in cereal science and technology (USA); Pomeranz, Y., Ed.; American Association of Cereal Chemists: St. Paul, MN, 1990; pp. 373-433.
[72]
Mamone, G.; Picariello, G.; Caira, S.; Addeo, F.; Ferranti, P. Analysis of food proteins and peptides by mass spectrometry-based techniques. J. Chromatogr. A, 2009, 1216(43), 7130-7142.
[http://dx.doi.org/10.1016/j.chroma.2009.07.052] [PMID: 19699482]
[73]
Dumur, J.; Jahier, J.; Bancel, E.; Laurière, M.; Bernard, M.; Branlard, G. Proteomic analysis of aneuploid lines in the homeologous group 1 of the hexaploid wheat cultivar Courtot. Proteomics, 2004, 4(9), 2685-2695.
[http://dx.doi.org/10.1002/pmic.200300800] [PMID: 15352243]
[74]
Tilley, K.A.; Benjamin, R.E.; Bagorogoza, K.E.; Okot-Kotber, B.M.; Prakash, O.; Kwen, H. Tyrosine cross-links: molecular basis of gluten structure and function. J. Agric. Food Chem., 2001, 49(5), 2627-2632.
[http://dx.doi.org/10.1021/jf010113h] [PMID: 11368646]
[75]
García-Ruiz, C.; García, M.C.; Cifuentes, A.; Marina, M.L. Characterization and differentiation of diverse transgenic and nontransgenic soybean varieties from CE protein profiles. Electrophoresis, 2007, 28(13), 2314-2323.
[http://dx.doi.org/10.1002/elps.200600799] [PMID: 17607812]
[76]
Burns, M.; Wiseman, G.; Knight, A.; Bramley, P.; Foster, L.; Rollinson, S.; Damant, A.; Primrose, S. Measurement issues associated with quantitative molecular biology analysis of complex food matrices for the detection of food fraud. Analyst (Lond.), 2016, 141(1), 45-61.
[http://dx.doi.org/10.1039/C5AN01392E] [PMID: 26631264]
[77]
Galimberti, A.; De Mattia, F.; Losa, A.; Bruni, I.; Federici, S.; Casiraghi, M. DNA barcoding as a new tool for food traceability. Food Res. Int., 2013, 50(1), 55-63.
[http://dx.doi.org/10.1016/j.foodres.2012.09.036]
[78]
García-Cañas, V.; Simó, C.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Present and future challenges in food analysis: foodomics. Anal. Chem., 2012, 84(23), 10150-10159.
[79]
Cowley, G.; Hepatitis, C. The insidious spread of a killer virus. Newsweek., 2002, 139(16), 46-53.
[80]
Richter, L.; Kipp, P. Transgenic Plants as Edible Vaccines. In: Plant Biotechnology. Current Topics in Microbiology and Immunology; Hammond, J.; McGarvey, P.; Yusibov, V., Eds.; Springer: Berlin, Heidelberg, 2002; 240, pp. 159-176.
[81]
Korzun, V. In: Molecular markers and their application in cereals breeding, Proceedings of the workshop “Marker assisted selection: A fast track to increase genetic gain in plant and animal breeding?", University of Turin, Italy, October 17-18, 2003.
[82]
de Leon, F.G.; Canonne, M.; Quillet, E.; Bonhomme, F.; Chatain, B. The application of microsatellite markers to breeding programmes in the sea bass, Dicentrarchus labrax. Aquaculture, 1998, 159(3-4), 303-316.
[http://dx.doi.org/10.1016/S0044-8486(97)00188-9]
[83]
Gant, T.W.; Zhang, S-D.; Taylor, E.L. Novel genomic methods for drug discovery and mechanism-based toxicological assessment. Curr. Opin. Drug Discov. Devel., 2009, 12(1), 72-80.
[PMID: 19152215]
[84]
Rouquié, D.; Heneweer, M.; Botham, J.; Ketelslegers, H.; Markell, L.; Pfister, T.; Steiling, W.; Strauss, V.; Hennes, C. Contribution of new technologies to characterization and prediction of adverse effects. Crit. Rev. Toxicol., 2015, 45(2), 172-183.
[http://dx.doi.org/10.3109/10408444.2014.986054] [PMID: 25615431]
[85]
Xu, J.; Thakkar, S.; Gong, B.; Tong, W. The FDA’s experience with emerging genomics technologies-past, present, and future. AAPS J., 2016, 18(4), 814-818.
[http://dx.doi.org/10.1208/s12248-016-9917-y] [PMID: 27116022]
[86]
Raja, K.; Patrick, M.; Gao, Y.; Madu, D.; Yang, Y.; Tsoi, L.C. A review of recent advancement in integrating omics data with literature mining towards biomedical discoveries. Int. J. Genomics, 2017, 2017, 6213474.
[http://dx.doi.org/10.1155/2017/6213474]
[87]
Tilman, D; Fargione, J; Wolff, B; D'antonio, C; Dobson, A; Howarth, R Forecasting agriculturally driven global environmental change. science., 2001, 292(5515), 281-284..
[88]
Raskin, P; Gleick, P; Kirshen, P; Pontius, G; Strzepek, K. Water futures: assessment of long-range patterns and problems. Comprehensive assessment of the freshwater resources of the world report, 1997.
[89]
Gleick, P.H. A look at twenty-first century water resources development. Water Int., 2000, 25(1), 127-138.
[http://dx.doi.org/10.1080/02508060008686804]
[90]
Ruttan, V.W. Scientific and technical constraints on agriculture production: Prospects for the future. Proc. Am. Philos. Soc., 2005, 149(4), 453-468.
[91]
Zhang, J; Yang, J Crop yield and water use efficiency: a case study in rice. Water use efficiency in plant biology., 2004, 189-227.
[92]
Setia, R.C.; Setia, N. The ‘omics’ technologies and crop improvement. In: Crop improvement: strategies and applications New Delhi; International Publishing House Pvt Ltd., 2008; pp. 1-17.
[93]
Borevitz, J.O.; Chory, J. Genomics tools for QTL analysis and gene discovery. Curr. Opin. Plant Biol., 2004, 7(2), 132-136.
[http://dx.doi.org/10.1016/j.pbi.2004.01.011] [PMID: 15003212]
[94]
Vassilev, D; Leunissen, J; Atanassov, A; Nenov, A; Dimov, G Application of bioinformatics in plant breeding. Biotechnol. Biotechnol. Equip., 2005, 19(sup3), 139-152.
[http://dx.doi.org/10.1080/13102818.2005.10817293]
[95]
Struik, P.; Cassman, K.G.; Koornneef, M. A dialogue on interdisciplinary collaboration to bridge the gap between plant genomics and crop sciences. In: Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations; Spiertz, J.H.J.; Struik, P.C.; Laar, H.H. Eds.; Springer: Netherlands, 2007; pp. 319-328.
[http://dx.doi.org/10.1007/1-4020-5906-X_24]
[96]
Raikhel, N. Looking to the future of plant biology research. Plant Physiol., 2005, 138(2), 539.
[http://dx.doi.org/10.1104/pp.104.900159]
[97]
Campbell, A.M.; Heyer, L.J. Discovering Genomics, Proteomics, and Bioinformatics Instructor's Manual, 2nd Ed.; Pearson Benjamin Cummings, 2006.
[98]
Klee, H.J.; Giovannoni, J.J. Genetics and control of tomato fruit ripening and quality attributes. Annu. Rev. Genet., 2011, 45, 41-59.
[http://dx.doi.org/10.1146/annurev-genet-110410-132507] [PMID: 22060040]
[99]
Seymour, G.B.; Østergaard, L.; Chapman, N.H.; Knapp, S.; Martin, C. Fruit development and ripening. Annu. Rev. Plant Biol., 2013, 64, 219-241.
[http://dx.doi.org/10.1146/annurev-arplant-050312-120057] [PMID: 23394500]
[100]
Gapper, N.E.; McQuinn, R.P.; Giovannoni, J.J. Molecular and genetic regulation of fruit ripening. Plant Mol. Biol., 2013, 82(6), 575-591.
[http://dx.doi.org/10.1007/s11103-013-0050-3] [PMID: 23585213]
[101]
Gapper, N.E.; Giovannoni, J.J.; Watkins, C.B. Understanding development and ripening of fruit crops in an ‘omics’ era. Hortic. Res., 2014, 1, 14034.
[http://dx.doi.org/10.1038/hortres.2014.34] [PMID: 26504543]
[102]
Lenka, S. Challenges in Plant Genomics. J. Biotechnol. Biomaterial, 2012, S11, e001.
[103]
Jain, S.M.; Brar, D.S.; Ahloowalia, B.S. Molecular techniques in crop improvement; Springer: New York, NY, USA, 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy