Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Recent Advances in Diagnostic and Therapeutic Approaches for Breast Cancer: A Comprehensive Review

Author(s): Fatima Noor, Ayesha Noor, Ali Raza Ishaq, Iqra Farzeen, Muhammad Hamzah Saleem, Kanwal Ghaffar, Muhammad Farhan Aslam, Sidra Aslam* and Jen-Tsung Chen*

Volume 27, Issue 20, 2021

Published on: 03 March, 2021

Page: [2344 - 2365] Pages: 22

DOI: 10.2174/1381612827666210303141416

Price: $65

Abstract

A silent monster, breast cancer, is a challenging medical task for researchers. Breast cancer is a leading cause of death in women with respect to other cancers. A case of breast cancer is diagnosed among women every 19 seconds, and every 74 seconds, a woman dies of breast cancer somewhere in the world. Several risk factors, such as genetic and environmental factors, favor breast cancer development. This review tends to provide deep insights regarding the genetics of breast cancer along with multiple diagnostic and therapeutic approaches as problem-solving negotiators to prevent the progression of breast cancer. This assembled data mainly aims to discuss omics-based approaches to provide enthralling diagnostic biomarkers and emerging novel therapies to combat breast cancer. This review article intends to pave a new path for the discovery of effective treatment options.

Keywords: Breast cancer, omics, genes, diagnosis, biomarkers, therapy.

[1]
Anastasiadi Z, Lianos GD, Ignatiadou E, Harissis HV, Mitsis M. Breast cancer in young women: an overview. Updates Surg 2017; 69(3): 313-7.
[http://dx.doi.org/10.1007/s13304-017-0424-1] [PMID: 28260181]
[2]
Watkins EJ. Overview of breast cancer. JAAPA 2019; 32(10): 13-7.
[http://dx.doi.org/10.1097/01.JAA.0000580524.95733.3d] [PMID: 31513033]
[3]
Sheng Z, Wang J, Li M, Luo X, Cai R, Zhang M. Cancer Biomarker Assessment Working Group. An overview protocol of biomarkers for breast cancer detection. Medicine (Baltimore) 2019; 98(24): e16024.
[http://dx.doi.org/10.1097/MD.0000000000016024] [PMID: 31192953]
[4]
Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[5]
Tamimi RM, Spiegelman D, Smith-Warner SA, et al. Population attributable risk of modifiable and nonmodifiable breast cancer risk factors in postmenopausal breast cancer. Am J Epidemiol 2016; 184(12): 884-93.
[http://dx.doi.org/10.1093/aje/kww145] [PMID: 27923781]
[6]
Golubnitschaja O, Debald M, Yeghiazaryan K, et al. Breast cancer epidemic in the early twenty-first century: evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumour Biol 2016; 37(10): 12941-57.
[http://dx.doi.org/10.1007/s13277-016-5168-x] [PMID: 27448308]
[7]
Yalaza M, İnan A, Bozer M. Male breast cancer. J Breast Health 2016; 12(1): 1-8.
[http://dx.doi.org/10.5152/tjbh.2015.2711] [PMID: 28331724]
[8]
Nazari SS, Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer 2018; 25(3): 259-67.
[http://dx.doi.org/10.1007/s12282-018-0857-5] [PMID: 29651637]
[9]
Cobain EF, Milliron KJ, Merajver SD. Updates on breast cancer genetics: clinical implications of detecting syndromes of inherited increased susceptibility to breast cancer. Semin Oncol 2016.
[10]
Kanwal S, Jamil F, Ali A, Sehgal SA. Comparative modeling, molecular docking, and revealing of potential binding pockets of RASSF2; a candidate cancer gene. Interdiscip Sci 2017; 9(2): 214-23.
[http://dx.doi.org/10.1007/s12539-016-0145-z] [PMID: 26782783]
[11]
Nik-Zainal S, Davies H, Staaf J, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016; 534(7605): 47-54.
[http://dx.doi.org/10.1038/nature17676] [PMID: 27135926]
[12]
Jeggo PA, Pearl LH, Carr AM. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 2016; 16(1): 35-42.
[http://dx.doi.org/10.1038/nrc.2015.4] [PMID: 26667849]
[13]
Zhao Y, Liu Y. A mechanistic overview of herbal medicine and botanical compounds to target transcriptional factors in Breast cancer. Pharmacol Res 2018; 130: 292-302.
[http://dx.doi.org/10.1016/j.phrs.2017.12.027] [PMID: 29292214]
[14]
Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. AACR 2017.
[15]
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine 2017; 12: 5879-92.
[http://dx.doi.org/10.2147/IJN.S123437] [PMID: 28860754]
[16]
Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266(5182): 66-71.
[http://dx.doi.org/10.1126/science.7545954] [PMID: 7545954]
[17]
Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990; 250(4988): 1684-9.
[http://dx.doi.org/10.1126/science.2270482] [PMID: 2270482]
[18]
Petrucelli N, Daly MB, Feldman GL. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med 2010; 12(5): 245-59.
[http://dx.doi.org/10.1097/GIM.0b013e3181d38f2f] [PMID: 20216074]
[19]
Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994; 265(5181): 2088-90.
[http://dx.doi.org/10.1126/science.8091231] [PMID: 8091231]
[20]
Huszno J, Grzybowska E. TP53 mutations and SNPs as prognostic and predictive factors in patients with breast cancer. Oncol Lett 2018; 16(1): 34-40.
[http://dx.doi.org/10.3892/ol.2018.8627] [PMID: 29928384]
[21]
Clarke AR, Purdie CA, Harrison DJ, et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362(6423): 849-52.
[http://dx.doi.org/10.1038/362849a0] [PMID: 8479523]
[22]
McBride OW, Merry D, Givol D. The gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc Natl Acad Sci USA 1986; 83(1): 130-4.
[http://dx.doi.org/10.1073/pnas.83.1.130] [PMID: 3001719]
[23]
Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 1991; 352(6333): 345-7.
[http://dx.doi.org/10.1038/352345a0] [PMID: 1852210]
[24]
Lavin MF, Concannon P, Gatti RA. Eighth international workshop on ataxia-telangiectasia (ATW8). Cancer Res 1999; 59(15): 3845-9.
[PMID: 10447004]
[25]
Gilad S, Khosravi R, Shkedy D, et al. Predominance of null mutations in ataxia-telangiectasia. Hum Mol Genet 1996; 5(4): 433-9.
[http://dx.doi.org/10.1093/hmg/5.4.433] [PMID: 8845835]
[26]
Zhao Q, Guan J, Zhang Z, et al. Inhibition of Rad51 sensitizes breast cancer cells with wild-type PTEN to olaparib. Biomed Pharmacother 2017; 94: 165-8.
[http://dx.doi.org/10.1016/j.biopha.2017.07.090] [PMID: 28759753]
[27]
Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275(5308): 1943-7.
[http://dx.doi.org/10.1126/science.275.5308.1943] [PMID: 9072974]
[28]
Dupuy F, Griss T, Blagih J, et al. LKB1 is a central regulator of tumor initiation and pro-growth metabolism in ErbB2-mediated breast cancer. Cancer Metab 2013; 1(1): 18.
[http://dx.doi.org/10.1186/2049-3002-1-18] [PMID: 24280377]
[29]
Kottakis F, Nicolay BN, Roumane A, et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature 2016; 539(7629): 390-5.
[http://dx.doi.org/10.1038/nature20132] [PMID: 27799657]
[30]
Tamimi RM, Hankinson SE, Ding S, et al. The HRAS1 variable number of tandem repeats and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(12): 1528-30.
[PMID: 14693748]
[31]
Aoki Y, Niihori T, Kawame H, et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat Genet 2005; 37(10): 1038-40.
[http://dx.doi.org/10.1038/ng1641] [PMID: 16170316]
[32]
Sim E, Abuhammad A, Ryan A. Arylamine N-acetyltransferases: from drug metabolism and pharmacogenetics to drug discovery. Br J Pharmacol 2014; 171(11): 2705-25.
[http://dx.doi.org/10.1111/bph.12598] [PMID: 24467436]
[33]
Lear JT, Heagerty AH, Smith A, et al. Multiple cutaneous basal cell carcinomas: glutathione S-transferase (GSTM1, GSTT1) and cytochrome P450 (CYP2D6, CYP1A1) polymorphisms influence tumour numbers and accrual. Carcinogenesis 1996; 17(9): 1891-6.
[http://dx.doi.org/10.1093/carcin/17.9.1891] [PMID: 8824510]
[34]
Allocati N, Masulli M, Di Ilio C, Federici L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 2018; 7(1): 8.
[http://dx.doi.org/10.1038/s41389-017-0025-3] [PMID: 29362397]
[35]
Akhtar S, Mahjabeen I, Akram Z, Kayani MA. CYP1A1 and GSTP1 gene variations in breast cancer: a systematic review and case- control study. Fam Cancer 2016; 15(2): 201-14.
[http://dx.doi.org/10.1007/s10689-015-9849-1] [PMID: 26545608]
[36]
Larsen MC, Angus WG, Brake PB, Eltom SE, Sukow KA, Jefcoate CR. Characterization of CYP1B1 and CYP1A1 expression in human mammary epithelial cells: role of the aryl hydrocarbon receptor in polycyclic aromatic hydrocarbon metabolism. Cancer Res 1998; 58(11): 2366-74.
[PMID: 9622076]
[37]
Lourenço GJ, Schenka AA, Cardoso-Filho C, et al. The GSTT1 polymorphism of the glutathione S-transferase system in the intratumoral microvessel density of breast cancer patients. Tumour Biol 2010; 31(5): 489-93.
[http://dx.doi.org/10.1007/s13277-010-0061-5] [PMID: 20563767]
[38]
Pemble S, Schroeder KR, Spencer SR, et al. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 1994; 300(Pt 1): 271-6.
[http://dx.doi.org/10.1042/bj3000271] [PMID: 8198545]
[39]
Carey AH, Waterworth D, Patel K, et al. Polycystic ovaries and premature male pattern baldness are associated with one allele of the steroid metabolism gene CYP17. Hum Mol Genet 1994; 3(10): 1873-6.
[http://dx.doi.org/10.1093/hmg/3.10.1873] [PMID: 7849715]
[40]
Zuppan P, Hall JM, Lee MK, Ponglikitmongkol M, King MC. Possible linkage of the estrogen receptor gene to breast cancer in a family with late-onset disease. Am J Hum Genet 1991; 48(6): 1065-8.
[PMID: 2035527]
[41]
Kasid A, Lippman ME. Estrogen and oncogene mediated growth regulation of human breast cancer cells. J Steroid Biochem 1987; 27(1-3): 465-70.
[http://dx.doi.org/10.1016/0022-4731(87)90341-4] [PMID: 3501040]
[42]
Rousseau-Merck MF, Misrahi M, Loosfelt H, Milgrom E, Berger R. Localization of the human progesterone receptor gene to chromosome 11q22-q23. Hum Genet 1987; 77(3): 280-2.
[http://dx.doi.org/10.1007/BF00284486] [PMID: 3679212]
[43]
Grossman MH, Emanuel BS, Budarf ML. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1 --> q11.2. Genomics 1992; 12(4): 822-5.
[http://dx.doi.org/10.1016/0888-7543(92)90316-K] [PMID: 1572656]
[44]
Huerre C, Uzan G, Grzeschik K, Weil D, Levin M, Hors-Cayla M, Eds. The structural gene for transferrin (TF) maps to 3q21 --> 3qter. Ann Genet. 1984.
[45]
de Jong MM, Nolte IM, te Meerman GJ, et al. Genes other than BRCA1 and BRCA2 involved in breast cancer susceptibility. J Med Genet 2002; 39(4): 225-42.
[http://dx.doi.org/10.1136/jmg.39.4.225] [PMID: 11950848]
[46]
Qian Z, Chen L, Fernald AA, Williams BO, Le Beau MM. A critical role for Apc in hematopoietic stem and progenitor cell survival. J Exp Med 2008; 205(9): 2163-75.
[http://dx.doi.org/10.1084/jem.20080578] [PMID: 18725524]
[47]
Saadat M. Apolipoprotein (E. APOE) polymorphisms and susceptibility to breast cancer: a meta-analysis. Cancer Res Treat 2012; 44(2): 121-6.
[http://dx.doi.org/10.4143/crt.2012.44.2.121] [PMID: 22802750]
[48]
Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov 2013; 12(5): 358-69.
[http://dx.doi.org/10.1038/nrd3979] [PMID: 23629504]
[49]
Quezada H, Guzmán-Ortiz AL, Díaz-Sánchez H, Valle-Rios R, Aguirre-Hernández J. Omics-based biomarkers: current status and potential use in the clinic. Bol Méd Hosp Infant México 2017; 74(3): 219-26.
[http://dx.doi.org/10.1016/j.bmhimx.2017.03.003] [PMID: 29382490]
[50]
Adams MD, Dubnick M, Kerlavage AR, et al. Sequence identification of 2,375 human brain genes. Nature 1992; 355(6361): 632-4.
[http://dx.doi.org/10.1038/355632a0] [PMID: 1538749]
[51]
Hrdlickova R, Toloue M, Tian B. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip Rev RNA 2017; 8(1): e1364.
[http://dx.doi.org/10.1002/wrna.1364] [PMID: 27198714]
[52]
Kiss T. Biogenesis of small nuclear RNPs. J Cell Sci 2004; 117(Pt 25): 5949-51.
[http://dx.doi.org/10.1242/jcs.01487] [PMID: 15564372]
[53]
Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer biology. Cancer Discov 2011; 1(5): 391-407.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0209] [PMID: 22096659]
[54]
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol 2014; 51(4): 759-74.
[http://dx.doi.org/10.1177/0300985813502820] [PMID: 24045890]
[55]
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci 2016; 17(10): 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[56]
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15(1): 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[57]
Singh R, Mo Y-Y. Role of microRNAs in breast cancer. Cancer Biol Ther 2013; 14(3): 201-12.
[http://dx.doi.org/10.4161/cbt.23296] [PMID: 23291983]
[58]
Loh H-Y, Norman BP, Lai K-S, Rahman NMANA, Alitheen NBM, Osman MA. The regulatory role of MicroRNAs in breast cancer. Int J Mol Sci 2019; 20(19): 4940.
[http://dx.doi.org/10.3390/ijms20194940] [PMID: 31590453]
[59]
McGuire A, Brown JA, Kerin MJ. Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 2015; 34(1): 145-55.
[http://dx.doi.org/10.1007/s10555-015-9551-7] [PMID: 25721950]
[60]
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2011; 585(13): 2087-99.
[http://dx.doi.org/10.1016/j.febslet.2010.08.009] [PMID: 20708002]
[61]
Fouad YA, Aanei C. Revisiting the hallmarks of cancer. Am J Cancer Res 2017; 7(5): 1016-36.
[PMID: 28560055]
[62]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[63]
Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 2015; 15(6): 467-74.
[http://dx.doi.org/10.2174/1389557515666150324123208] [PMID: 25807941]
[64]
Heneghan H, Miller N, Lowery A, Sweeney K, Kerin M. MicroRNAs as novel biomarkers for breast cancer. J Oncol 2009.
[65]
Gasparri ML, Besharat ZM, Besharat AR. Current knowledge of mirnas as biomarkers in breast cancer Recent Trends in Cancer Biology: Spotlight on Signaling Cascades and microRNAs. Springer 2018; pp. 221-31.
[66]
Zhang ZJ, Ma SL. miRNAs in breast cancer tumorigenesis (Review). Oncol Rep 2012; 27(4): 903-10.
[http://dx.doi.org/10.3892/or.2011.1611] [PMID: 22200848]
[67]
Shimono Y, Zabala M, Cho RW, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138(3): 592-603.
[http://dx.doi.org/10.1016/j.cell.2009.07.011] [PMID: 19665978]
[68]
Liu H. MicroRNAs in breast cancer initiation and progression. Cell Mol Life Sci 2012; 69(21): 3587-99.
[http://dx.doi.org/10.1007/s00018-012-1128-9] [PMID: 22926415]
[69]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2010; 120(5): 1786.
[http://dx.doi.org/10.1172/JCI39104C1] [PMID: 19487818]
[70]
Horsman MR, Vaupel P. Pathophysiological basis for the formation of the tumor microenvironment. Front Oncol 2016; 6: 66.
[http://dx.doi.org/10.3389/fonc.2016.00066] [PMID: 27148472]
[71]
Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 2007; 26(3-4): 489-502.
[http://dx.doi.org/10.1007/s10555-007-9094-7] [PMID: 17717633]
[72]
Zhou SY, Chen W, Yang SJ, et al. The emerging role of circular RNAs in breast cancer. Biosci Rep 2019; 39(6): BSR20190621.
[http://dx.doi.org/10.1042/BSR20190621] [PMID: 31160488]
[73]
Begum S, Yiu A, Stebbing J, Castellano L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene 2018; 37(30): 4055-7.
[http://dx.doi.org/10.1038/s41388-018-0230-3] [PMID: 29706655]
[74]
Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer 2018; 25(1): 1-7.
[http://dx.doi.org/10.1007/s12282-017-0793-9] [PMID: 28721656]
[75]
Jahani S, Nazeri E, Majidzadeh-A K, Jahani M, Esmaeili R. Circular RNA; a new biomarker for breast cancer: A systematic review. J Cell Physiol 2020; 235(7-8): 5501-10.
[http://dx.doi.org/10.1002/jcp.29558] [PMID: 31985056]
[76]
Coscujuela-Tarrero L, Ferrero G, Miano V, et al. Luminal breast cancer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget 2018; 9(18): 14580-96.
[http://dx.doi.org/10.18632/oncotarget.24522] [PMID: 29581865]
[77]
Wang H, Xiao Y, Wu L, Ma D. Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. Int J Oncol 2018; 52(3): 743-54.
[http://dx.doi.org/10.3892/ijo.2018.4265] [PMID: 29431182]
[78]
He R, Liu P, Xie X, et al. circGFRA1 and GFRA1 act as ceRNAs in triple negative breast cancer by regulating miR-34a. J Exp Clin Cancer Res 2017; 36(1): 145.
[http://dx.doi.org/10.1186/s13046-017-0614-1] [PMID: 29037220]
[79]
Wu J, Jiang Z, Chen C, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett 2018; 430: 179-92.
[http://dx.doi.org/10.1016/j.canlet.2018.05.033] [PMID: 29803789]
[80]
Liu Y, Sharma S, Watabe K. Roles of lncRNA in breast cancer. Front Biosci 2015; 7: 94-108.
[http://dx.doi.org/10.2741/s427] [PMID: 25961689]
[81]
Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 2011; 25(18): 1915-27.
[http://dx.doi.org/10.1101/gad.17446611] [PMID: 21890647]
[82]
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009; 458(7235): 223-7.
[http://dx.doi.org/10.1038/nature07672] [PMID: 19182780]
[83]
Ma H, Hao Y, Dong X, et al. Molecular mechanisms and function prediction of long noncoding RNA. The Scientific World Journal 2012.
[http://dx.doi.org/10.1100/2012/541786]
[84]
Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013; 152(6): 1298-307.
[http://dx.doi.org/10.1016/j.cell.2013.02.012] [PMID: 23498938]
[85]
Lottin S, Adriaenssens E, Dupressoir T, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 2002; 23(11): 1885-95.
[http://dx.doi.org/10.1093/carcin/23.11.1885] [PMID: 12419837]
[86]
van Roozendaal CE, Gillis AJ, Klijn JG, et al. Loss of imprinting of IGF2 and not H19 in breast cancer, adjacent normal tissue and derived fibroblast cultures. FEBS Lett 1998; 437(1-2): 107-11.
[http://dx.doi.org/10.1016/S0014-5793(98)01211-3] [PMID: 9804181]
[87]
Novikova IV, Hennelly SP, Sanbonmatsu KY. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res 2012; 40(11): 5034-51.
[http://dx.doi.org/10.1093/nar/gks071] [PMID: 22362738]
[88]
Colley SM, Leedman PJ. Steroid Receptor RNA Activator - A nuclear receptor coregulator with multiple partners: Insights and challenges. Biochimie 2011; 93(11): 1966-72.
[http://dx.doi.org/10.1016/j.biochi.2011.07.004] [PMID: 21807064]
[89]
Zhao W, Luo J, Jiao S. Comprehensive characterization of cancer subtype associated long non-coding RNAs and their clinical implications. Sci Rep 2014; 4(1): 6591.
[http://dx.doi.org/10.1038/srep06591] [PMID: 25307233]
[90]
Jiang M, Huang O, Xie Z, et al. A novel long non-coding RNA-ARA: adriamycin resistance-associated. Biochem Pharmacol 2014; 87(2): 254-83.
[http://dx.doi.org/10.1016/j.bcp.2013.10.020] [PMID: 24184505]
[91]
Beckedorff FC, Ayupe AC, Crocci-Souza R, et al. The intronic long noncoding RNA ANRASSF1 recruits PRC2 to the RASSF1A promoter, reducing the expression of RASSF1A and increasing cell proliferation. PLoS Genet 2013; 9(8): e1003705.
[http://dx.doi.org/10.1371/journal.pgen.1003705] [PMID: 23990798]
[92]
Kaneko S, Li G, Son J, et al. Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev 2010; 24(23): 2615-20.
[http://dx.doi.org/10.1101/gad.1983810] [PMID: 21123648]
[93]
Alpizar-Reyes B, Barrera-Tamariz M, Contreras-Gómora I, Munguia-Arriaga M, Ávila-Avilés R. Relationship of lncRNA to Breast Cancer. J Cancer Immunol 2020; 2(1)
[94]
Rinn JL, Kertesz M, Wang JK, et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311-23.
[http://dx.doi.org/10.1016/j.cell.2007.05.022] [PMID: 17604720]
[95]
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
[96]
Soudyab M, Iranpour M, Ghafouri-Fard S. The role of long non- coding RNAs in breast cancer. Arch Iran Med 2016; 19(7): 508-17.
[97]
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318(5858): 1917-20.
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[98]
Silva JM, Boczek NJ, Berres MW, Ma X, Smith DI. LSINCT5 is over expressed in breast and ovarian cancer and affects cellular proliferation. RNA Biol 2011; 8(3): 496-505.
[http://dx.doi.org/10.4161/rna.8.3.14800] [PMID: 21532345]
[99]
Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA polymerase III transcriptome. Trends Genet 2007; 23(12): 614-22.
[http://dx.doi.org/10.1016/j.tig.2007.09.001] [PMID: 17977614]
[100]
Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP. Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 2013; 14(11): R131.
[http://dx.doi.org/10.1186/gb-2013-14-11-r131] [PMID: 24289259]
[101]
Congrains A, Kamide K, Ohishi M, Rakugi H. ANRIL: molecular mechanisms and implications in human health. Int J Mol Sci 2013; 14(1): 1278-92.
[http://dx.doi.org/10.3390/ijms14011278] [PMID: 23306151]
[102]
Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 2010; 3(107): ra8. [-ra.
[http://dx.doi.org/10.1126/scisignal.2000568] [PMID: 20124551]
[103]
Zhang Z, Zhu Z, Watabe K, et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ 2013; 20(11): 1558-68.
[http://dx.doi.org/10.1038/cdd.2013.110] [PMID: 23933812]
[104]
Binabaj MM, Bahrami A, Bahreyni A, et al. The prognostic value of long noncoding RNA MEG3 expression in the survival of patients with cancer: A meta-analysis. J Cell Biochem 2018; 119(11): 9583-90.
[http://dx.doi.org/10.1002/jcb.27276] [PMID: 30129051]
[105]
Zhang Y, Wu J, Jing H, Huang G, Sun Z, Xu S. Long noncoding RNA MEG3 inhibits breast cancer growth via upregulating endoplasmic reticulum stress and activating NF-κB and p53. J Cell Biochem 2019; 120(4): 6789-97.
[http://dx.doi.org/10.1002/jcb.27982] [PMID: 30556250]
[106]
Zhu M, Wang X, Gu Y, Wang F, Li L, Qiu X. MEG3 overexpression inhibits the tumorigenesis of breast cancer by downregulating miR-21 through the PI3K/Akt pathway. Arch Biochem Biophys 2019; 661: 22-30.
[http://dx.doi.org/10.1016/j.abb.2018.10.021] [PMID: 30389444]
[107]
Ai B, Kong X, Wang X, et al. LINC01355 suppresses breast cancer growth through FOXO3-mediated transcriptional repression of CCND1. Cell Death Dis 2019; 10(7): 502.
[http://dx.doi.org/10.1038/s41419-019-1741-8] [PMID: 31243265]
[108]
Hu P, Chu J, Wu Y, et al. NBAT1 suppresses breast cancer metastasis by regulating DKK1 via PRC2. Oncotarget 2015; 6(32): 32410-25.
[http://dx.doi.org/10.18632/oncotarget.5609] [PMID: 26378045]
[109]
Askarian-Amiri ME, Crawford J, French JD, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA 2011; 17(5): 878-91.
[http://dx.doi.org/10.1261/rna.2528811] [PMID: 21460236]
[110]
Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 2009; 22(4): 191-7.
[http://dx.doi.org/10.1055/s-0029-1242458] [PMID: 21037809]
[111]
Barabadi H, Mahjoub MA, Tajani B, Ahmadi A, Junejo Y, Saravanan M. Emerging theranostic biogenic silver nanomaterials for breast cancer: a systematic review. J Cluster Sci 2019; 30(2): 259-79.
[http://dx.doi.org/10.1007/s10876-018-01491-7]
[112]
Allahverdiyev AM, Parlar E, Dinparvar S, Bagirova M, Abamor EŞ. Current aspects in treatment of breast cancer based of nanodrug delivery systems and future prospects. Artif Cells Nanomed Biotechno 2018; 46(sup3): S755-62.
[http://dx.doi.org/10.1080/21691401.2018.1511573]
[113]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[114]
Barabadi H, Vahidi H, Kamali KD, et al. Emerging theranostic silver nanomaterials to combat colorectal cancer: a systematic review. J Cluster Sci 2020; 31(2): 311-21.
[http://dx.doi.org/10.1007/s10876-019-01668-8]
[115]
Barabadi H, Vahidi H, Damavandi Kamali K, Rashedi M, Hosseini O, Saravanan M. Emerging Theranostic Gold Nanomaterials to Combat Colorectal Cancer: A Systematic Review. J Cluster Sci 2020; 31(4): 651-8.
[http://dx.doi.org/10.1007/s10876-019-01681-x]
[116]
Barabadi H, Vahidi H, Mahjoub MA, et al. Emerging antineoplastic gold nanomaterials for cervical Cancer therapeutics: a systematic review. J Cluster Sci 2019; 1-12.
[117]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2015; 200: 138-57.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[118]
Wust P, Hildebrandt B, Sreenivasa G, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3(8): 487-97.
[http://dx.doi.org/10.1016/S1470-2045(02)00818-5] [PMID: 12147435]
[119]
Alexander H. Isolation perfusion. Cancer: principles and practice of oncology 2001; 1: 2.
[120]
Yagawa Y, Tanigawa K, Kobayashi Y, Yamamoto M. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J Cancer Metastasis Treat 2017; 3(10): 218.
[http://dx.doi.org/10.20517/2394-4722.2017.35]
[121]
Rubio M, Hernández AV, Salas LL. High temperature hyperthermia in breast cancer treatment.Hyperthermia 2013; 83-100.
[122]
Uysal B. Hyperthermia and Breast cancer: A short review 2017.
[123]
Jha S, Sharma PK, Malviya R. Hyperthermia: role and risk factor for cancer treatment. Achiev Life Sci 2016; 10(2): 161-7.
[http://dx.doi.org/10.1016/j.als.2016.11.004]
[124]
Płonka J, Latocha M. Photodynamic therapy in the treatment of breast cancer. Pol Merkuriusz Lek 2012; 33(195): 173-5.
[PMID: 23157138]
[125]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61(4): 250-81.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[126]
Banerjee SM, El-Sheikh S, Malhotra A, et al. Photodynamic therapy in primary breast cancer. J Clin Med 2020; 9(2): 483.
[http://dx.doi.org/10.3390/jcm9020483] [PMID: 32050675]
[127]
Lamberti MJ, Vittar NBR, Rivarola VA. Breast cancer as photodynamic therapy target: Enhanced therapeutic efficiency by overview of tumor complexity. World J Clin Oncol 2014; 5(5): 901-7.
[http://dx.doi.org/10.5306/wjco.v5.i5.901] [PMID: 25493228]
[128]
Oude-Munnink TH, Nagengast WB, Brouwers AH, et al. Molecular imaging of breast cancer. Breast 2009; 18(Suppl. 3): S66-73.
[http://dx.doi.org/10.1016/S0960-9776(09)70276-0] [PMID: 19914546]
[129]
Lapeš M, Petera J, Jirsa M. Photodynamic therapy of cutaneous metastases of breast cancer after local application of meso-tetra-(para-sulphophenyl)-porphin (TPPS4). J Photochem Photobiol B 1996; 36(2): 205-7.
[http://dx.doi.org/10.1016/S1011-1344(96)07373-3] [PMID: 9002262]
[130]
D’Hallewin MA, Kochetkov D, Viry-Babel Y, et al. Photodynamic therapy with intratumoral administration of Lipid-Based mTHPC in a model of breast cancer recurrence. Lasers Surg Med 2008; 40(8): 543-9.
[http://dx.doi.org/10.1002/lsm.20662] [PMID: 18798287]
[131]
Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther 2012; 12(12): 1597-611.
[http://dx.doi.org/10.1586/era.12.147] [PMID: 23253225]
[132]
Liu M, Guo F. Recent updates on cancer immunotherapy. Precis Clin Med 2018; 1(2): 65-74.
[http://dx.doi.org/10.1093/pcmedi/pby011] [PMID: 30687562]
[133]
Song J, Teng Z, Cao W. Characteristics of Immunobiology in the Tumor Microenvironment-Development of Immunotherapies. Hindawi 2019.
[http://dx.doi.org/10.1155/2019/1513964]
[134]
Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019.
[135]
Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4(3): 218-27.
[http://dx.doi.org/10.3121/cmr.4.3.218] [PMID: 16988102]
[136]
Dachs GU, Dougherty GJ, Stratford IJ, Chaplin DJ. Targeting gene therapy to cancer: a review. Oncol Res 1997; 9(6-7): 313-25.
[PMID: 9406237]
[137]
Takahashi S, Ito Y, Hatake K, Sugimoto Y. Gene therapy for breast cancer. -Review of clinical gene therapy trials for breast cancer and MDR1 gene therapy trial in Cancer Institute Hospital. Breast Cancer 2006; 13(1): 8-15.
[http://dx.doi.org/10.2325/jbcs.13.8] [PMID: 16518057]
[138]
Kouraklis G. Progress in cancer gene therapy. Acta Oncol 1999; 38(6): 675-83.
[http://dx.doi.org/10.1080/028418699432815] [PMID: 10522756]
[139]
McCrudden CM, McCarthy HO. Current status of gene therapy for breast cancer: progress and challenges. Appl Clin Genet 2014; 7: 209-20.
[PMID: 25419154]
[140]
Certo M, Del Gaizo Moore V, Nishino M, et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006; 9(5): 351-65.
[http://dx.doi.org/10.1016/j.ccr.2006.03.027] [PMID: 16697956]
[141]
Montero J, Letai A. Dynamic BH3 profiling-poking cancer cells with a stick. Mol Cell Oncol 2016; 3(3): e1040144.
[http://dx.doi.org/10.1080/23723556.2015.1040144] [PMID: 27314085]
[142]
Faber AC, Li D, Song Y, et al. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA 2009; 106(46): 19503-8.
[http://dx.doi.org/10.1073/pnas.0905056106] [PMID: 19850869]
[143]
Lee JJ, Saiful-Yazan L, Che-Abdullah CA. A review on current nanomaterials and their drug conjugate for targeted breast cancer treatment. Int J Nanomedicine 2017; 12: 2373-84.
[http://dx.doi.org/10.2147/IJN.S127329] [PMID: 28392694]
[144]
Jeibouei S, Akbari ME, Kalbasi A, et al. Personalized medicine in breast cancer: pharmacogenomics approaches. Pharm Genomics Pers Med 2019; 12: 59-73.
[http://dx.doi.org/10.2147/PGPM.S167886] [PMID: 31213877]
[145]
Barabadi H, Kamali KD, Shoushtari FJ. Emerging theranostic silver and gold nanomaterials to combat prostate cancer: a systematic review. J Cluster Sci 2019; 1-8.
[http://dx.doi.org/10.1007/s10876-019-01588-7]
[146]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[http://dx.doi.org/10.1016/j.stem.2015.02.015] [PMID: 25748930]
[147]
Shibuya K, Okada M, Suzuki S, et al. Targeting the facilitative glucose transporter GLUT1 inhibits the self-renewal and tumor-initiating capacity of cancer stem cells. Oncotarget 2015; 6(2): 651-61.
[http://dx.doi.org/10.18632/oncotarget.2892] [PMID: 25528771]
[148]
Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12(8): 445-64.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[149]
Abravanel DL, Belka GK, Pan TC, et al. Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J Clin Invest 2015; 125(6): 2484-96.
[http://dx.doi.org/10.1172/JCI74883] [PMID: 25961456]
[150]
Mamaeva V, Niemi R, Beck M, et al. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol Ther 2016; 24(5): 926-36.
[http://dx.doi.org/10.1038/mt.2016.42] [PMID: 26916284]
[151]
Hussain Z, Khan JA, Murtaza S. Nanotechnology: An Emerging Therapeutic Option for Breast Cancer. Crit Rev Eukaryot Gene Expr 2018; 28(2): 163-75.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2018022771] [PMID: 30055543]
[152]
Varadharaj V, Ramaswamy A, Sakthivel R, et al. Antidiabetic and antioxidant activity of green synthesized starch nanoparticles: an in vitro study. J Cluster Sci 2019; 1-10.
[153]
Khatua A, Priyadarshini E, Rajamani P, et al. Phytosynthesis, characterization and fungicidal potential of emerging gold nanoparticles using Pongamia pinnata leave extract: a novel approach in nanoparticle synthesis. J Cluster Sci 2020; 31(1): 125-31.
[http://dx.doi.org/10.1007/s10876-019-01624-6]
[154]
Balachandar R, Gurumoorthy P, Karmegam N, et al. Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: a recent advance in phytonanotechnology. J Cluster Sci 2019; 30(6): 1481-8.
[http://dx.doi.org/10.1007/s10876-019-01591-y]
[155]
Ajitha B, Reddy YAK, Jeon H-J, Ahn CW. Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv Powder Technol 2018; 29(1): 86-93.
[http://dx.doi.org/10.1016/j.apt.2017.10.015]
[156]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[157]
Satpathy S, Patra A, Ahirwar B, Delwar Hussain M. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S71-85.
[http://dx.doi.org/10.1080/21691401.2018.1489265]
[158]
Rao PV, Nallappan D, Madhavi K, Rahman S, Jun Wei L, Gan SH. Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxid Med Cell Longev 2016.
[http://dx.doi.org/10.1155/2016/3685671]
[159]
Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostructure Chem 2018; 8(3): 217-54.
[http://dx.doi.org/10.1007/s40097-018-0267-4]
[160]
Kanagamani K, Muthukrishnan P, Shankar K, Kathiresan A, Barabadi H, Saravanan M. Antimicrobial, cytotoxicity and photocatalytic degradation of norfloxacin using Kleinia grandiflora mediated silver nanoparticles. J Cluster Sci 2019; 30(6): 1415-24.
[http://dx.doi.org/10.1007/s10876-019-01583-y]
[161]
Carmona ER, Benito N, Plaza T, Recio-Sánchez G. Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chem Lett Rev 2017; 10(4): 250-6.
[http://dx.doi.org/10.1080/17518253.2017.1360400]
[162]
Cao J, Wang R, Gao N, et al. A7RC peptide modified paclitaxel liposomes dually target breast cancer. Biomater Sci 2015; 3(12): 1545-54.
[http://dx.doi.org/10.1039/C5BM00161G] [PMID: 26291480]
[163]
Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev 2016; 104: 61-77.
[http://dx.doi.org/10.1016/j.addr.2016.06.011] [PMID: 27352638]
[164]
Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm 2017; 530(1-2): 387-400.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.079] [PMID: 28774852]
[165]
Ma Y, Huang J, Song S, Chen H, Zhang Z. Cancer-targeted nanotheranostics: recent advances and perspectives. Small 2016; 12(36): 4936-54.
[http://dx.doi.org/10.1002/smll.201600635] [PMID: 27150247]
[166]
Pais-Silva C, de Melo-Diogo D, Correia IJ. IR780-loaded TPGS- TOS micelles for breast cancer photodynamic therapy. Eur J Pharm Biopharm 2017; 113: 108-17.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.002] [PMID: 28087376]
[167]
Garg NK, Singh B, Kushwah V, et al. The ligand (s) anchored lipobrid nanoconstruct mediated delivery of methotrexate: an effective approach in breast cancer therapeutics. Nanomedicine (Lond) 2016; 12(7): 2043-60.
[http://dx.doi.org/10.1016/j.nano.2016.05.008] [PMID: 27234306]
[168]
Garg NK, Singh B, Jain A, et al. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf B Biointerfaces 2016; 146: 114-26.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.051] [PMID: 27268228]
[169]
Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Lunardi CN. In vitro cytotoxicity and phototoxicity of surface-modified gold nanoparticles associated with neutral red as a potential drug delivery system in phototherapy. Mater Sci Eng C 2016; 65: 199-204.
[http://dx.doi.org/10.1016/j.msec.2016.04.030] [PMID: 27157744]
[170]
Balakrishnan S, Bhat FA, Raja Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2-mediated pathway in breast cancer. Cell Prolif 2016; 49(6): 678-97.
[http://dx.doi.org/10.1111/cpr.12296] [PMID: 27641938]
[171]
Jafarizad A, Aghanejad A, Sevim M, et al. Gold nanoparticles and reduced graphene oxide‐gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. ChemistrySelect 2017; 2(23): 6663-72.
[http://dx.doi.org/10.1002/slct.201701178]
[172]
Ong ZY, Chen S, Nabavi E, et al. Multibranched gold nanoparticles with intrinsic LAT-1 targeting capabilities for selective photothermal therapy of breast cancer. ACS Appl Mater Interfaces 2017; 9(45): 39259-70.
[http://dx.doi.org/10.1021/acsami.7b14851] [PMID: 29058874]
[173]
Yang R-M, Fu C-P, Fang J-Z, et al. Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy. Int J Nanomedicine 2016; 12: 197-206.
[http://dx.doi.org/10.2147/IJN.S121249] [PMID: 28096667]
[174]
Kavithaa K, Paulpandi M, Padma PR, Sumathi S. Induction of intrinsic apoptotic pathway and cell cycle arrest via baicalein loaded iron oxide nanoparticles as a competent nano-mediated system for triple negative breast cancer therapy. RSC Advances 2016; 6(69): 64531-43.
[http://dx.doi.org/10.1039/C6RA11658B]
[175]
Lugert S, Unterweger H, Mühlberger M, et al. Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models. Int J Nanomedicine 2018; 14: 161-80.
[http://dx.doi.org/10.2147/IJN.S187886] [PMID: 30613144]
[176]
Jang SJ, Yang IJ, Tettey CO, Kim KM, Shin HM. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. Mater Sci Eng C 2016; 68: 430-5.
[http://dx.doi.org/10.1016/j.msec.2016.03.101] [PMID: 27524038]
[177]
Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[178]
Elbaz NM, Ziko L, Siam R, Mamdouh W. Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci Rep 2016; 6: 30729.
[http://dx.doi.org/10.1038/srep30729] [PMID: 27491622]
[179]
Radenkovic D, Kobayashi H, Remsey-Semmelweis E, Seifalian AM. Quantum dot nanoparticle for optimization of breast cancer diagnostics and therapy in a clinical setting. Nanomedicine (Lond) 2016; 12(6): 1581-92.
[http://dx.doi.org/10.1016/j.nano.2016.02.014] [PMID: 27013132]
[180]
Bilan R, Nabiev I, Sukhanova A. Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. ChemBioChem 2016; 17(22): 2103-14.
[http://dx.doi.org/10.1002/cbic.201600357] [PMID: 27535363]
[181]
Michalska M, Florczak A, Dams-Kozlowska H, Gapinski J, Jurga S, Schneider R. Peptide-functionalized ZCIS QDs as fluorescent nanoprobe for targeted HER2-positive breast cancer cells imaging. Acta Biomater 2016; 35: 293-304.
[http://dx.doi.org/10.1016/j.actbio.2016.02.002] [PMID: 26850146]
[182]
Zhou X, Chen L, Nie W, et al. Dual-responsive mesoporous silica nanoparticles mediated codelivery of doxorubicin and Bcl-2 SiRNA for targeted treatment of breast cancer. J Phys Chem C 2016; 120(39): 22375-87.
[http://dx.doi.org/10.1021/acs.jpcc.6b06759]
[183]
Hoseini-Ghahfarokhi M, Fayazi R. 15 Special Issue, 12th Iranian Congress of Medical Physics. 264
[184]
Zeng Q, Shao D, He X, et al. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B Mater Biol Med 2016; 4(30): 5119-26.
[http://dx.doi.org/10.1039/C6TB01259K] [PMID: 32263509]
[185]
Kong T, Hao L, Wei Y, Cai X, Zhu B. Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell Prolif 2018; 51(5): e12488.
[http://dx.doi.org/10.1111/cpr.12488] [PMID: 30039515]
[186]
Thakur V, Kutty RV. Recent advances in nanotheranostics for triple negative breast cancer treatment. J Exp Clin Cancer Res 2019; 38(1): 430.
[http://dx.doi.org/10.1186/s13046-019-1443-1] [PMID: 31661003]
[187]
Wang Y, Zhao H, Peng J, et al. Targeting therapy of neuropilin-1 receptors overexpressed breast cancer by paclitaxel-loaded CK3-conjugated polymeric micelles. J Biomed Nanotechnol 2016; 12(12): 2097-11.
[http://dx.doi.org/10.1166/jbn.2016.2319] [PMID: 29368881]
[188]
Mu Q, Wang H, Zhang M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin Drug Deliv 2017; 14(1): 123-36.
[http://dx.doi.org/10.1080/17425247.2016.1208650] [PMID: 27401941]
[189]
Esfandiari N, Arzanani MK, Soleimani M, Kohi-Habibi M, Svendsen WE. A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumour Biol 2016; 37(1): 1229-36.
[http://dx.doi.org/10.1007/s13277-015-3867-3] [PMID: 26286831]
[190]
Le DH, Lee KL, Shukla S, Commandeur U, Steinmetz NF. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 2017; 9(6): 2348-57.
[http://dx.doi.org/10.1039/C6NR09099K] [PMID: 28144662]
[191]
Anselmo AC, Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J 2015; 17(5): 1041-54.
[http://dx.doi.org/10.1208/s12248-015-9780-2] [PMID: 25956384]
[192]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1(1): 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[193]
Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[194]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7-30.
[http://dx.doi.org/10.3322/caac.21332] [PMID: 26742998]
[195]
Maeda H, Tsukigawa K, Fang J. A Retrospective 30 Years After Discovery of the Enhanced Permeability and Retention Effect of Solid Tumors: Next-Generation Chemotherapeutics and Photodynamic Therapy-Problems, Solutions, and Prospects. Microcirculation 2016; 23(3): 173-82.
[http://dx.doi.org/10.1111/micc.12228] [PMID: 26237291]
[196]
Li J, Wang X, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015; 10(2): 81-98.
[http://dx.doi.org/10.1016/j.ajps.2014.09.004]
[197]
de Sousa-Marcial SP, Carneiro G, Leite EA. Lipid-based nanoparticles as drug delivery system for paclitaxel in breast cancer treatment. J Nanopart Res 2017; 19(10): 340.
[http://dx.doi.org/10.1007/s11051-017-4042-0]
[198]
Chen J, Sun X, Shao R, Xu Y, Gao J, Liang W. VEGF siRNA delivered by polycation liposome-encapsulated calcium phosphate nanoparticles for tumor angiogenesis inhibition in breast cancer. Int J Nanomedicine 2017; 12: 6075-88.
[http://dx.doi.org/10.2147/IJN.S142739] [PMID: 28860767]
[199]
Dai Q, Wilhelm S, Ding D, et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 2018; 12(8): 8423-35.
[http://dx.doi.org/10.1021/acsnano.8b03900] [PMID: 30016073]
[200]
Munster P, Krop IE, LoRusso P, et al. Safety and pharmacokinetics of MM-302, a HER2-targeted antibody-liposomal doxorubicin conjugate, in patients with advanced HER2-positive breast cancer: a phase 1 dose-escalation study. Br J Cancer 2018; 119(9): 1086-93.
[http://dx.doi.org/10.1038/s41416-018-0235-2] [PMID: 30361524]
[201]
Mehrabi M, Esmaeilpour P, Akbarzadeh A, et al. Efficacy of pegylated liposomal etoposide nanoparticles on breast cancer cell lines. Turk J Med Sci 2016; 46(2): 567-71.
[http://dx.doi.org/10.3906/sag-1412-67] [PMID: 27511525]
[202]
Stefanick JF, Kiziltepe T, Bilgicer B. Improved peptide-targeted liposome design through optimized peptide hydrophilicity, ethylene glycol linker length, and peptide density. J Biomed Nanotechnol 2015; 11(8): 1418-30.
[http://dx.doi.org/10.1166/jbn.2015.2087] [PMID: 26295142]
[203]
Mishra P, Nayak B, Dey R. PEGylation in anti-cancer therapy: An overview. Asian J Pharm Sci 2016; 11(3): 337-48.
[http://dx.doi.org/10.1016/j.ajps.2015.08.011]
[204]
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. Mater Sci Eng C 2017; 71: 1327-41.
[http://dx.doi.org/10.1016/j.msec.2016.11.073] [PMID: 27987688]
[205]
Garg NK, Tyagi RK, Sharma G, et al. Functionalized lipid–polymer hybrid nanoparticles mediated codelivery of methotrexate and aceclofenac: a synergistic effect in breast cancer with improved pharmacokinetics attributes. Mol Pharm 2017; 14(6): 1883-97.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01148] [PMID: 28402673]
[206]
Khalil I, Julkapli NM, Yehye WA, Basirun WJ, Bhargava SK. Graphene-gold nanoparticles hybrid-synthesis, functionalization, and application in a electrochemical and surface-enhanced raman scattering biosensor. Materials (Basel) 2016; 9(6): 406.
[http://dx.doi.org/10.3390/ma9060406] [PMID: 28773528]
[207]
Wang C, Zhang H, Zeng D, San L, Mi X. DNA nanotechnology mediated gold nanoparticle conjugates and their applications in biomedicine. Chin J Chem 2016; 34(3): 299-307.
[http://dx.doi.org/10.1002/cjoc.201500839]
[208]
Razzaque S, Hussain SZ, Hussain I, Tan B. Design and utility of metal/metal oxide nanoparticles mediated by thioether end-functionalized polymeric ligands. Polymers (Basel) 2016; 8(4): 156.
[http://dx.doi.org/10.3390/polym8040156] [PMID: 30979251]
[209]
Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 2016; 103: 76-89.
[http://dx.doi.org/10.1016/j.addr.2016.02.010] [PMID: 26952542]
[210]
Chattopadhyay N, Cai Z, Pignol J-P, et al. Design and characterization of HER-2-targeted gold nanoparticles for enhanced X-radiation treatment of locally advanced breast cancer. Mol Pharm 2010; 7(6): 2194-206.
[http://dx.doi.org/10.1021/mp100207t] [PMID: 20973534]
[211]
Rejinold NS, Thomas RG, Muthiah M, et al. Breast tumor targetable Fe3O4 embedded thermo-responsive nanoparticles for radiofrequency assisted drug delivery. J Biomed Nanotechnol 2016; 12(1): 43-55.
[http://dx.doi.org/10.1166/jbn.2016.2135] [PMID: 27301171]
[212]
Thoidingjam S, Tiku AB. New developments in breast cancer therapy: role of iron oxide nanoparticles. Adv Nat Sci Nanosci Nanotechnol 2017; 8(2): 023002.
[http://dx.doi.org/10.1088/2043-6254/aa5e33]
[213]
Alibolandi M, Abnous K, Sadeghi F, Hosseinkhani H, Ramezani M, Hadizadeh F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int J Pharm 2016; 500(1-2): 162-78.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.040] [PMID: 26802496]
[214]
Pardo J, Peng Z, Leblanc RM. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes. Molecules 2018; 23(2): 378.
[http://dx.doi.org/10.3390/molecules23020378] [PMID: 29439409]
[215]
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5(5): 901-52.
[http://dx.doi.org/10.1039/C7BM00008A] [PMID: 28401206]
[216]
Yan Q-L, Gozin M, Zhao F-Q, Cohen A, Pang S-P. Highly energetic compositions based on functionalized carbon nanomaterials. Nanoscale 2016; 8(9): 4799-851.
[http://dx.doi.org/10.1039/C5NR07855E] [PMID: 26880518]
[217]
Vahidi H, Barabadi H, Saravanan M. Emerging selenium nanoparticles to combat cancer: a systematic review. J Cluster Sci 2020; 31(2): 301-9.
[http://dx.doi.org/10.1007/s10876-019-01671-z]
[218]
Kavosi A, Hosseini-Ghale NS, Madani S, et al. The toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 2018; 8(1): 8375.
[http://dx.doi.org/10.1038/s41598-018-26790-x] [PMID: 29849103]
[219]
Caracciolo G. Liposome-protein corona in a physiological environment: challenges and opportunities for targeted delivery of nanomedicines. Nanomedicine 2015; 11(3): 543-57.
[http://dx.doi.org/10.1016/j.nano.2014.11.003] [PMID: 25555353]
[220]
Xu Y, Lin S, Zhao H, et al. Quantifying Risk Pathway Crosstalk Mediated by miRNA to Screen Precision drugs for Breast Cancer Patients. Genes (Basel) 2019; 10(9): E657.
[http://dx.doi.org/10.3390/genes10090657] [PMID: 31466383]
[221]
Lu J, Shang K, Bi Y. Identifying Candidates for Breast Cancer Using Interactions of Chemicals and Proteins. Comb Chem High Throughput Screen 2017.
[PMID: 29165068]
[222]
Nardin S, Mora E, Varughese FM, et al. Breast Cancer Survivorship, Quality of Life, and Late Toxicities. Front Oncol 2020; 10: 864.
[http://dx.doi.org/10.3389/fonc.2020.00864] [PMID: 32612947]
[223]
Sehgal SA, Mannan S, Kanwal S, Naveed I, Mir A. Adaptive evolution and elucidating the potential inhibitor against schizophrenia to target DAOA (G72) isoforms. Drug Des Devel Ther 2015; 9: 3471-80.
[PMID: 26170631]
[224]
Sehgal SA. Pharmacoinformatics and molecular docking studies reveal potential novel Proline Dehydrogenase (PRODH) compounds for Schizophrenia inhibition. Med Chem Res 2017; 26(2): 314-26.
[http://dx.doi.org/10.1007/s00044-016-1752-2]
[225]
Sehgal SA, Khattak NA, Mir A. Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA), a candidate schizophrenia gene. Theor Biol Med Model 2013; 10(1): 3.
[http://dx.doi.org/10.1186/1742-4682-10-3] [PMID: 23286827]
[226]
Sehgal SA, Hassan M, Rashid S. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18. Drug Des Devel Ther 2014; 8: 571-81.
[http://dx.doi.org/10.2147/DDDT.S63096] [PMID: 24899801]
[227]
Tahir RA, Sehgal SA. Pharmacoinformatics and molecular docking studies reveal potential novel compounds against schizophrenia by target SYN II. Comb Chem High Throughput Screen 2018; 21(3): 175-81.
[http://dx.doi.org/10.2174/1386207321666180213092018] [PMID: 29436999]
[228]
Tahir RA, Wu H, Rizwan MA, Jafar TH, Saleem S, Sehgal SA. Immunoinformatics and molecular docking studies reveal potential epitope-based peptide vaccine against DENV-NS3 protein. J Theor Biol 2018; 459: 162-70.
[http://dx.doi.org/10.1016/j.jtbi.2018.10.005] [PMID: 30291844]
[229]
Noor F, Khalid M, Saeed A. Computational drug designing: A new paradigm for the treatment of Parkinson’s disease. Biom Lett 2020; 6(1): 17-22.
[230]
Sehgal S, Tahir R, Shafique S, Hassan M, Rashid S. Molecular modeling and docking analysis of CYP1A1 associated with head and neck cancer to explore its binding regions. J Theor Comput Sci 2014; 1(112): 2.
[http://dx.doi.org/10.4172/2376-130X.1000112]
[231]
Sehgal SA, Mannan S, Ali S. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8. Drug Des Devel Ther 2016; 10: 1605-18.
[http://dx.doi.org/10.2147/DDDT.S101929] [PMID: 27226709]
[232]
Sehgal SA, Hammad MA, Tahir RA, Akram HN, Ahmad F. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design. Curr Neuropharmacol 2018; 16(6): 649-63.
[http://dx.doi.org/10.2174/1570159X16666180315142137] [PMID: 29542412]
[233]
Sehgal SA, Mirza AH, Tahir RA, Mir A. Quick Guideline for Computational Drug Design. Bentham Science Publishers 2018.
[http://dx.doi.org/10.2174/97816810860331180101]
[234]
Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Breast Cancer Linkage Consortium. Risks of cancer in BRCA1-mutation carriers. Lancet 1994; 343(8899): 692-5.
[http://dx.doi.org/10.1016/S0140-6736(94)91578-4] [PMID: 7907678]
[235]
Li G, Guo X, Chen M, et al. Prevalence and spectrum of AKT1, PIK3CA, PTEN and TP53 somatic mutations in Chinese breast cancer patients. PLoS One 2018; 13(9): e0203495.
[http://dx.doi.org/10.1371/journal.pone.0203495] [PMID: 30212483]
[236]
Győrffy B, Bottai G, Lehmann-Che J, et al. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers. Mol Oncol 2014; 8(3): 508-19.
[http://dx.doi.org/10.1016/j.molonc.2013.12.018] [PMID: 24462521]
[237]
Batey MA, Zhao Y, Kyle S, et al. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther 2013; 12(6): 959-67.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0707] [PMID: 23512991]
[238]
Naqvi RZ, Zaidi SS, Akhtar KP, et al. Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum. Sci Rep 2017; 7(1): 15880.
[http://dx.doi.org/10.1038/s41598-017-15963-9] [PMID: 29162860]
[239]
Tang YC, Ho SC, Tan E, et al. Functional genomics identifies specific vulnerabilities in PTEN-deficient breast cancer. Breast Cancer Res 2018; 20(1): 22.
[http://dx.doi.org/10.1186/s13058-018-0949-3] [PMID: 29566768]
[240]
Presneau N, Duhamel LA, Ye H, Tirabosco R, Flanagan AM, Eskandarpour M. Post-translational regulation contributes to the loss of LKB1 expression through SIRT1 deacetylase in osteosarcomas. Br J Cancer 2017; 117(3): 398-408.
[http://dx.doi.org/10.1038/bjc.2017.174] [PMID: 28632727]
[241]
Sengupta S, Nagalingam A, Muniraj N, et al. Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene 2017; 36(41): 5709-21.
[http://dx.doi.org/10.1038/onc.2017.164] [PMID: 28581518]
[242]
Tahir RA, Hassan F, Kareem A, Iftikhar U, Sehgal SA. Ligand-Based Pharmacophore Modeling and Virtual Screening to Discover Novel CYP1A1 Inhibitors. Curr Top Med Chem 2019; 19(30): 2782-94.
[http://dx.doi.org/10.2174/1568026619666191112104217] [PMID: 31721711]
[243]
Sehgal SA. Pharmacoinformatics, adaptive evolution, and elucidation of six novel compounds for schizophrenia treatment by targeting DAOA (G72) isoforms. BioMed Res Int 2017.
[244]
Tahir RA, Wu H, Javed N, et al. Pharmacoinformatics and molecular docking reveal potential drug candidates against Schizophrenia to target TAAR6. J Cell Physiol 2019; 234(8): 13263-76.
[http://dx.doi.org/10.1002/jcp.27999] [PMID: 30569503]
[245]
Baig MH, Ahmad K, Roy S, et al. Computer aided drug design: success and limitations. Curr Pharm Des 2016; 22(5): 572-81.
[http://dx.doi.org/10.2174/1381612822666151125000550] [PMID: 26601966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy