Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Mini-Review Article

Radiomics - Quantitative Biomarker Analysis for Breast Cancer Diagnosis and Prediction: A Review

Author(s): Priscilla Dinkar Moyya and Mythili Asaithambi*

Volume 18, Issue 1, 2022

Published on: 03 March, 2021

Article ID: e040122191991 Pages: 15

DOI: 10.2174/1573405617666210303102526

Price: $65

Abstract

Background: Breast cancer has become a global problem. Though concerns regarding early detection and accurate diagnosis have been raised, continued efforts are required for the development of precision medicine. In the past years, the area of medicinal imaging has seen an unprecedented growth that has led to an advancement of radiomics, which provides countless quantitative biomarkers extracted from modern diagnostic images, including a detailed tumor characterization of breast malignancy.

Discussion: In this review, we have presented the methodology and implementation of radiomics together with its future trends and challenges on the basis of published papers. Radiomics could distinguish malignant from benign tumors, predict prognostic factors, molecular subtypes of breast carcinoma, treatment response to neoadjuvant chemotherapy (NAC), and recurrence survival. The incorporation of quantitative knowledge with clinical, histopathological, and genomic information will enable physicians to afford customized care of treatment for patients with breast cancer.

Conclusion: This review was intended to help physicians and radiologists gain fundamental knowledge regarding radiomics, and also to work collaboratively with researchers to explore evidence for its further usage in clinical practice.

Keywords: Breast malignancy, medicinal imaging, NAC, personalized treatment, quantitative biomarkers, radiomics.

Graphical Abstract

[1]
Houts PS, Lenhard RE, Varricchio C. ACS cancer facts and figures. Cancer Pract 2000; 8(3): 105-8.
[http://dx.doi.org/10.1046/j.1523-5394.2000.83001.x]
[2]
Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat 2018; 169(2): 217-29.
[http://dx.doi.org/10.1007/s10549-018-4675-4] [PMID: 29396665]
[3]
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn Reson Imaging 2012; 30(9): 1234-48.
[http://dx.doi.org/10.1016/j.mri.2012.06.010] [PMID: 22898692]
[4]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology 2016; 278(2): 563-77.
[http://dx.doi.org/10.1148/radiol.2015151169] [PMID: 26579733]
[5]
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012; 48(4): 441-6.
[http://dx.doi.org/10.1016/j.ejca.2011.11.036] [PMID: 22257792]
[6]
Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics 2019; 9(5): 1303-22.
[http://dx.doi.org/10.7150/thno.30309] [PMID: 30867832]
[7]
Li H, Zhu Y, Burnside ES, et al. Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast Cancer 2016; 2(1): 16012.
[http://dx.doi.org/10.1038/npjbcancer.2016.12] [PMID: 27853751]
[8]
Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 2014; 9(7): e102107.
[http://dx.doi.org/10.1371/journal.pone.0102107] [PMID: 25025374]
[9]
Slafer GA, Satorre EH, Andrade FH. Slicer PDF. Genet Improv F Crop 1994; 30(9): 1-68. http://www.cabdirect.org/abstracts/19941607462.html;jsessionid=3B9A6CF71444FF0AA753CB8CBBCA3B59
[10]
Wilson R, Devaraj A. Radiomics of pulmonary nodules and lung cancer. Transl Lung Cancer Res 2017; 6(1): 86-91.
[http://dx.doi.org/10.21037/tlcr.2017.01.04] [PMID: 28331828]
[11]
Huang Y, Liu Z, He L, et al. Radiomics signature: A potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung cancer. Radiology 2016; 281(3): 947-57.
[http://dx.doi.org/10.1148/radiol.2016152234] [PMID: 27347764]
[12]
Rahbar H, McDonald ES, Lee JM, Partridge SC, Lee CI. How Can Advanced Imaging Be Used to Mitigate Potential Breast Cancer Overdiagnosis? Acad Radiol 2016; 23(6): 768-73.
[http://dx.doi.org/10.1016/j.acra.2016.02.008] [PMID: 27017136]
[13]
Warren RML, Pointon L, Thompson D, et al. Reading protocol for dynamic contrast-enhanced MR images of the breast: sensitivity and specificity analysis. Radiology 2005; 236(3): 779-88.
[http://dx.doi.org/10.1148/radiol.2363040735] [PMID: 16118160]
[14]
Clark K, Vendt B, Smith K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6): 1045-57.
[http://dx.doi.org/10.1007/s10278-013-9622-7] [PMID: 23884657]
[15]
Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for subject-specific image analysis, visualization, and clinical support. Intraoperative Imag Image-Guided Ther 2014; 277-89. https://link.springer.com/chapter/10.1007/978-1-4614-7657-3_ 19#citeas
[16]
Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9(7): 671-5.
[http://dx.doi.org/10.1038/nmeth.2089] [PMID: 22930834]
[17]
Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 2006; 31(3): 1116-28.http://www.sciencedirect.com/science/article/pii/S1053811906000632
[http://dx.doi.org/10.1016/j.neuroimage.2006.01.015] [PMID: 16545965]
[18]
Szczypiński PM, Strzelecki M, Materka A, Klepaczko A. MaZda – the software package for textural analysis of biomedical images. Adv Intell Soft Comput 2009; 65: 73-84.
[http://dx.doi.org/10.1007/978-3-642-04462-5_8]
[19]
He L, Huang Y, Ma Z, Liang C, Liang C, Liu Z. Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule. Sci Rep 2016; 6(March): 34921.
[http://dx.doi.org/10.1038/srep34921] [PMID: 27721474]
[20]
Mao L, Chen H, Liang M, et al. Quantitative radiomic model for predicting malignancy of small solid pulmonary nodules detected by low-dose CT screening. Quant Imaging Med Surg 2019; 9(2): 263-72.
[http://dx.doi.org/10.21037/qims.2019.02.02] [PMID: 30976550]
[21]
Chen B, Zhang R, Gan Y, Yang L, Li W. Development and clinical application of radiomics in lung cancer. Radiat Oncol 2017; 12(1): 154.
[http://dx.doi.org/10.1186/s13014-017-0885-x] [PMID: 28915902]
[22]
Limkin EJ, Sun R, Dercle L, et al. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann Oncol 2017; 28(6): 1191-206.
[http://dx.doi.org/10.1093/annonc/mdx034] [PMID: 28168275]
[23]
Lee G, Lee HY, Park H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: State of the art Eur J Radiol 2017; 86: 297-307.
[http://dx.doi.org/10.1016/j.ejrad.2016.09.005] [PMID: 27638103]
[24]
Holli-Helenius K, Salminen A, Rinta-Kiikka I, et al. MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study. BMC Med Imaging 2017; 17(1): 69.
[http://dx.doi.org/10.1186/s12880-017-0239-z] [PMID: 29284425]
[25]
Ahmed A, Gibbs P, Pickles M, Turnbull L. Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J Magn Reson Imaging 2013; 38(1): 89-101.
[http://dx.doi.org/10.1002/jmri.23971] [PMID: 23238914]
[26]
Haralick RM, Dinstein I, Shanmugam K. Textural Features for Image Classification. IEEE Trans Syst Man Cybern 1973; SMC-3(6): 610-21.
[http://dx.doi.org/10.1109/TSMC.1973.4309314]
[27]
Fekri-Ershad S. A Review on Image Texture Analysis Methods. Int Online J Image Process Pattern Recognit 2018; 1(1): 1-63.
[28]
Thibault G, Angulo J, Meyer F. Advanced statistical matrices for texture characterization: application to cell classification. IEEE Trans Biomed Eng 2014; 61(3): 630-7.
[http://dx.doi.org/10.1109/TBME.2013.2284600] [PMID: 24108747]
[29]
Sun C, Wee WG. Neighboring gray level dependence matrix for texture classification. Comput Vis Graph Image Process 1983; 23(3): 341-52.
[http://dx.doi.org/10.1016/0734-189X(83)90032-4]
[30]
Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci Rep 2015; 5: 13087.
[http://dx.doi.org/10.1038/srep13087] [PMID: 26278466]
[31]
Prasanna P, Tiwari P, Madabhushi A. Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor. Sci Rep 2016; 6(November): 37241.
[http://dx.doi.org/10.1038/srep37241] [PMID: 27872484]
[32]
Bickelhaupt S, Laun FB, Tesdorff J, et al. Fast and Noninvasive Characterization of Suspicious Lesions Detected at Breast Cancer X-Ray Screening: Capability of Diffusion-weighted MR Imaging with MIPs. Radiology 2016; 278(3): 689-97.
[http://dx.doi.org/10.1148/radiol.2015150425] [PMID: 26418516]
[33]
Pinker K, Helbich TH, Morris EA. The potential of multiparametric MRI of the breast. Br J Radiol 2017; 90(1069): 20160715.
[http://dx.doi.org/10.1259/bjr.20160715] [PMID: 27805423]
[34]
Le Bihan D. What can we see with IVIM MRI? Neuroimage 2019; 187(187): 56-67.
[http://dx.doi.org/10.1016/j.neuroimage.2017.12.062] [PMID: 29277647]
[35]
Partridge SC, Ziadloo A, Murthy R, et al. Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J Magn Reson Imaging 2010; 31(2): 339-47.
[http://dx.doi.org/10.1002/jmri.22045] [PMID: 20099346]
[36]
Le Bihan D, Mangin JF, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 2001; 13(4): 534-46.
[http://dx.doi.org/10.1002/jmri.1076] [PMID: 11276097]
[37]
Fischer U, Kopka L, Grabbe E. Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 1999; 213(3): 881-8.
[http://dx.doi.org/10.1148/radiology.213.3.r99dc01881] [PMID: 10580970]
[38]
González-Huebra I, Elizalde A, García-Baizán A, et al. Is it worth to perform preoperative MRI for breast cancer after mammography, tomosynthesis and ultrasound? Magn Reson Imaging 2019; 57(57): 317-22.
[http://dx.doi.org/10.1016/j.mri.2018.12.005] [PMID: 30580077]
[39]
Bahreini L, Fatemizadeh E, Guity M. Diagnostic Efficacy of All Series of Dynamic Contrast Enhanced Breast Flow (GVF) Segmentation and Novel Border Feature Extraction. J Radiol 2010; 7(4): 225-34.
[40]
Bickelhaupt S, Jaeger PF, Laun FB, et al. Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology 2018; 287(3): 761-70.
[http://dx.doi.org/10.1148/radiol.2017170273] [PMID: 29461172]
[41]
Gibbs P, Turnbull LW. Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 2003; 50(1): 92-8.
[http://dx.doi.org/10.1002/mrm.10496] [PMID: 12815683]
[42]
Holli K, Lääperi AL, Harrison L, et al. Characterization of breast cancer types by texture analysis of magnetic resonance images. Acad Radiol 2010; 17(2): 135-41.
[http://dx.doi.org/10.1016/j.acra.2009.08.012] [PMID: 19945302]
[43]
Hu B, Xu K, Zhang Z, Chai R, Li S, Zhang L. A radiomic nomogram based on an apparent diffusion coefficient map for differential diagnosis of suspicious breast findings. Chin J Cancer Res 2018; 30(4): 432-8.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2018.04.06] [PMID: 30210223]
[44]
Jiang X, Xie F, Liu L, Peng Y, Cai H, Li L. Discrimination of malignant and benign breast masses using automatic segmentation and features extracted from dynamic contrast-enhanced and diffusion-weighted MRI. Oncol Lett 2018; 16(2): 1521-8.
[http://dx.doi.org/10.3892/ol.2018.8805] [PMID: 30008832]
[45]
Juntti M. Desertifi cation. Routledge Handb Glob Environ Polit 2015; 15(12): 506-19.
[46]
Karahaliou A, Vassiou K, Arikidis NS, Skiadopoulos S, Kanavou T, Costaridou L. Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis. Br J Radiol 2010; 83(988): 296-309.
[http://dx.doi.org/10.1259/bjr/50743919] [PMID: 20335440]
[47]
Parekh VS, Jacobs MA. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI. NPJ Breast Cancer 2017; 3(1): 43.
[http://dx.doi.org/10.1038/s41523-017-0045-3] [PMID: 29152563]
[48]
DeMartini WB, Liu F, Peacock S, Eby PR, Gutierrez RL, Lehman CD. Background parenchymal enhancement on breast MRI: impact on diagnostic performance. AJR Am J Roentgenol 2012; 198(4): W373-80.
[http://dx.doi.org/10.2214/AJR.10.6272] [PMID: 22451576]
[49]
Hambly NM, Liberman L, Dershaw DD, Brennan S, Morris EA. Background parenchymal enhancement on baseline screening breast MRI: impact on biopsy rate and short-interval follow-up. AJR Am J Roentgenol 2011; 196(1): 218-24.
[http://dx.doi.org/10.2214/AJR.10.4550] [PMID: 21178070]
[50]
Losurdo L, Basile TMA, Fanizzi A, et al. A Gradient-Based Approach for Breast DCE-MRI Analysis. BioMed Res Int 2018; 2018: 9032408.
[http://dx.doi.org/10.1155/2018/9032408] [PMID: 30140703]
[51]
Giuliano AE, Ballman KV, McCall L, et al. Effect of axillary dissection vs no axillary dissection on 10-year overall survival among women with invasive breast cancer and sentinel node metastasis: The ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA -. JAMA 2017; 318(10): 918-26.
[http://dx.doi.org/10.1001/jama.2017.11470] [PMID: 28898379]
[52]
Lyman GH, Somerfield MR, Bosserman LD, Perkins CL, Weaver DL, Giuliano AE. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2017; 35(5): 561-4.
[http://dx.doi.org/10.1200/JCO.2016.71.0947] [PMID: 27937089]
[53]
Giuliano AE, Hunt KK, Ballman KV, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 2011; 305(6): 569-75.
[http://dx.doi.org/10.1001/jama.2011.90] [PMID: 21304082]
[54]
Demircioglu A, Grueneisen J, Ingenwerth M, et al. A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and phenotyping of breast cancer. PLoS One 2020; 15(6): e0234871.
[http://dx.doi.org/10.1371/journal.pone.0234871] [PMID: 32589681]
[55]
Liu C, Ding J, Spuhler K, et al. HHS Public Access 2020; 49(1): 131-40.
[56]
Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nat Commun 2020; 11(1): 1236.
[http://dx.doi.org/10.1038/s41467-020-15027-z] [PMID: 32144248]
[57]
Cui X, Wang N, Zhao Y, et al. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI. Sci Rep 2019; 9(1): 2240.
[http://dx.doi.org/10.1038/s41598-019-38502-0] [PMID: 30783148]
[58]
Dong Y, Feng Q, Yang W, et al. Preoperative prediction of sentinel lymph node metastasis in breast cancer based on radiomics of T2-weighted fat-suppression and diffusion-weighted MRI. Eur Radiol 2018; 28(2): 582-91.
[http://dx.doi.org/10.1007/s00330-017-5005-7] [PMID: 28828635]
[59]
Ma W, Ji Y, Qi L, Guo X, Jian X, Liu P. Breast cancer Ki67 expression prediction by DCE-MRI radiomics features. Clin Radiol 2018; 73(10): 909.e1-5.
[http://dx.doi.org/10.1016/j.crad.2018.05.027] [PMID: 29970244]
[60]
Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature 2000; 406(6797): 747-52.
[http://dx.doi.org/10.1038/35021093] [PMID: 10963602]
[61]
Perou CM, Børresen-Dale AL. Systems biology and genomics of breast cancer. Cold Spring Harb Perspect Biol 2011; 3(2): 1-17.
[http://dx.doi.org/10.1101/cshperspect.a003293] [PMID: 21047916]
[62]
Blows FM, Driver KE, Schmidt MK, et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010; 7(5): e1000279.
[http://dx.doi.org/10.1371/journal.pmed.1000279] [PMID: 20520800]
[63]
Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007; 13(8): 2329-34.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1109] [PMID: 17438091]
[64]
Dilorenzo G, Telegrafo M, La Forgia D, Stabile Ianora AA, Moschetta M. Breast MRI background parenchymal enhancement as an imaging bridge to molecular cancer sub-type. Eur J Radiol 2019; 113: 148-52.
[http://dx.doi.org/10.1016/j.ejrad.2019.02.018] [PMID: 17438091]
[65]
Montemezzi S, Camera L, Giri MG, et al. Is there a correlation between 3T multiparametric MRI and molecular subtypes of breast cancer? Eur J Radiol 2018; 108: 120-7.
[http://dx.doi.org/10.1016/j.ejrad.2018.09.024] [PMID: 30396643]
[66]
Esteva FJ, Hortobagyi GN. Prognostic molecular markers in early breast cancer. Breast Cancer Res 2004; 6(3): 109-18.
[http://dx.doi.org/10.1186/bcr777] [PMID: 15084231]
[67]
Braman N, Prasanna P, Whitney J, et al. Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer. JAMA Netw Open 2019; 2(4): e192561.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.2561] [PMID: 31002322]
[68]
Fan M, Li H, Wang S, Zheng B, Zhang J, Li L. Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. PLoS One 2017; 12(2): e0171683.
[http://dx.doi.org/10.1371/journal.pone.0171683] [PMID: 28166261]
[69]
Juan MW, Yu J, Peng GX, Jun LJ, Feng SP, Fang LP. Correlation between DCE-MRI radiomics features and Ki-67 expression in invasive breast cancer. Oncol Lett 2018; 16(4): 5084-90.
[http://dx.doi.org/10.3892/ol.2018.9271] [PMID: 30250576]
[70]
Ko ES, Kim JH, Lim Y, Han BK, Cho EY, Nam SJ. Assessment of invasive breast cancer heterogeneity using whole-tumor magnetic resonance imaging texture analysis correlations with detailed pathological findings. Medicine (Baltimore) 2016; 95(3): e2453.
[http://dx.doi.org/10.1097/MD.0000000000002453] [PMID: 26817878]
[71]
Lu H, Yin J. Texture Analysis of Breast DCE-MRI Based on Intratumoral Subregions for Predicting HER2 2+ Status. Front Oncol 2020; 10(April): . : 543.
[http://dx.doi.org/10.3389/fonc.2020.00543] [PMID: 32373531]
[72]
Saha A, Harowicz MR, Grimm LJ, et al. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer 2018; 119(4): 508-16.
[http://dx.doi.org/10.1038/s41416-018-0185-8] [PMID: 30033447]
[73]
Wang J, Kato F, Oyama-Manabe N, et al. Identifying triple-negative breast cancer using background parenchymal enhancement heterogeneity on dynamic contrast-enhanced MRI: A pilot radiomics study. PLoS One 2015; 10(11): e0143308.
[http://dx.doi.org/10.1371/journal.pone.0143308] [PMID: 26600392]
[74]
Monti S, Aiello M, Incoronato M, et al. DCE-MRI pharmacokinetic-based phenotyping of invasive ductal carcinoma: A radiomic study for prediction of histological outcomes. Contrast Media Mol Imaging 2018; 2018: 5076269.
[http://dx.doi.org/10.1155/2018/5076269] [PMID: 29581709]
[75]
King AD, Chow KK, Yu KH, et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2013; 266(2): 531-8.
[http://dx.doi.org/10.1148/radiol.12120167] [PMID: 23151830]
[76]
Foroutan P, Kreahling JM, Morse DL, et al. Diffusion MRI and novel texture analysis in osteosarcoma xenotransplants predicts response to anti-checkpoint therapy. PLoS One 2013; 8(12): e82875.
[http://dx.doi.org/10.1371/journal.pone.0082875] [PMID: 24358232]
[77]
Ambikapathi A, Chan TH, Lin CH, Yang FS, Chi CY, Wang Y. Convex-Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI. IEEE Trans Biomed Eng 2016; 63(4): 707-20.
[PMID: 26292336]
[78]
Chen L, Choyke PL, Wang N, et al. Unsupervised deconvolution of dynamic imaging reveals intratumor vascular heterogeneity and repopulation dynamics. PLoS One 2014; 9(11): e112143.
[http://dx.doi.org/10.1371/journal.pone.0112143] [PMID: 25379705]
[79]
Lee J, Kim SH, Kang BJ. Pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: Perfusion metrics of dynamic contrast enhanced MRI. Sci Rep 2018; 8(1): 9490.
[http://dx.doi.org/10.1038/s41598-018-27764-9] [PMID: 29934524]
[80]
Khokher S, Mahmood S, Qureshi MU, Khan SA, Chaudhry NA. “Initial clinical response” to neoadjuvant chemotherapy: an in-vivo chemosensitivity test for efficacy in patients with advanced breast cancer. Asian Pac J Cancer Prev 2011; 12(4): 939-46.
[PMID: 21790230]
[81]
Rastogi P, Anderson SJ, Bear HD, et al. Preoperative chemotherapy: Updates of national surgical adjuvant breast and bowel project protocols B-18 and B-27. J Clin Oncol 2008; 26(5): 778-85.
[http://dx.doi.org/10.1200/JCO.2007.15.0235] [PMID: 18258986]
[82]
Ahmed MI, Lennard TWJ. Breast cancer: role of neoadjuvant therapy. Int J Surg 2009; 7(5): 416-20.
[http://dx.doi.org/10.1016/j.ijsu.2009.06.001] [PMID: 19524705]
[83]
Rouzier R, Perou CM, Symmans WF, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 2005; 11(16): 5678-85.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2421] [PMID: 16115903]
[84]
Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet 2014; 384(9938): 164-72.
[http://dx.doi.org/10.1016/S0140-6736(13)62422-8] [PMID: 24529560]
[85]
Fusco R, Granata V, Maio F, Sansone M, Petrillo A. Textural radiomic features and time-intensity curve data analysis by dynamic contrast-enhanced MRI for early prediction of breast cancer therapy response: preliminary data. Eur Radiol Exp 2020; 4(1): 8.
[http://dx.doi.org/10.1186/s41747-019-0141-2] [PMID: 32026095]
[86]
Cao K, Zhao B, Li XT, Li YL, Sun YS. Texture analysis of dynamic contrast-enhanced MRI in evaluating pathologic complete response (pCR) of mass-like breast cancer after neoadjuvant therapy. J Oncol 2019; 2019: 4731532.
[http://dx.doi.org/10.1155/2019/4731532] [PMID: 31949430]
[87]
Machireddy A, Thibault G, Tudorica A, et al. Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps. Tomography 2019; 5(1): 90-8.
[http://dx.doi.org/10.18383/j.tom.2018.00046] [PMID: 30854446]
[88]
Liu Z, Li Z, Qu J, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: A multicenter study. Clin Cancer Res 2019; 25(12): 3538-47.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3190] [PMID: 30842125]
[89]
Banerjee I, Malladi S, Lee D, et al. Assessing treatment response in triple-negative breast cancer from quantitative image analysis in perfusion magnetic resonance imaging. J Med Imaging (Bellingham) 2018; 5(1): 011008.
[PMID: 29134191]
[90]
Sharma A, Sharma S, Sood S, Seam RK, Sharma M, Fotedar V. DCE-MRI and parametric imaging in monitoring response to neoadjuvant chemotherapy in breast carcinoma: a preliminary report. Pol J Radiol 2018; 83: e220-8.
[http://dx.doi.org/10.5114/pjr.2018.76271] [PMID: 30627239]
[91]
Chamming’s F, Ueno Y, Ferré R, et al. Features from computerized texture analysis of breast cancers at pretreatment MR imaging are associated with response to neoadjuvant chemotherapy. Radiology 2018; 286(2): 412-20.
[http://dx.doi.org/10.1148/radiol.2017170143] [PMID: 28980886]
[92]
Panzeri MM, Losio C, Della Corte A, et al. Prediction of Chemoresistance in Women Undergoing Neo-Adjuvant Chemotherapy for Locally Advanced Breast Cancer: Volumetric Analysis of First-Order Textural Features Extracted from Multiparametric MRI. Contrast Media Mol Imaging 2018; 2018: 8329041.
[http://dx.doi.org/10.1155/2018/8329041] [PMID: 29853811]
[93]
Braman NM, Etesami M, Prasanna P, et al. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Breast Cancer Res 2017; 19(1)
[http://dx.doi.org/10.1186/s13058-017-0846-1]
[94]
Henderson S, Purdie C, Michie C, et al. Interim heterogeneity changes measured using entropy texture features on T2-weighted MRI at 3.0 T are associated with pathological response to neoadjuvant chemotherapy in primary breast cancer. Eur Radiol 2017; 27(11): 4602-11.
[http://dx.doi.org/10.1007/s00330-017-4850-8] [PMID: 28523352]
[95]
Giannini V, Mazzetti S, Marmo A, Montemurro F, Regge D, Martincich L. A computer-aided diagnosis (CAD) scheme for pretreatment prediction of pathological response to neoadjuvant therapy using dynamic contrast-enhanced MRI texture features. Br J Radiol 2017; 90(1077): 20170269.
[http://dx.doi.org/10.1259/bjr.20170269] [PMID: 28707546]
[96]
Thibault G, Tudorica A, Afzal A, et al. DCE-MRI Texture Features for Early Prediction of Breast Cancer Therapy Response. Tomography 2017; 3(1): 23-32.
[http://dx.doi.org/10.18383/j.tom.2016.00241] [PMID: 28691102]
[97]
Wu J, Gong G, Cui Y, Li R. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reson Imaging 2016; 44(5): 1107-15.
[http://dx.doi.org/10.1002/jmri.25279] [PMID: 27080586]
[98]
Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Vom Nutzen des Edierens. Vom Nutzen des Edierens 2005; 232: 223-32.
[99]
Moyya PD, Asaithambi M, Ramaniharan AK. Extraction of radiomic features from breast dce-mri responds to pathological changes in patients during neoadjuvant chemotherapy treatment. IST 2019 - IEEE Int Conf Imaging Syst Tech Proc 2019; 1-5.
[http://dx.doi.org/10.1109/IST48021.2019.9010068]
[100]
Dietzel M, Schulz-Wendtland R, Ellmann S, et al. Automated volumetric radiomic analysis of breast cancer vascularization improves survival prediction in primary breast cancer. Sci Rep 2020; 10(1): 3664.
[http://dx.doi.org/10.1038/s41598-020-60393-9] [PMID: 32111898]
[101]
Mazurowski MA, Saha A, Harowicz MR, Cain EH, Marks JR, Marcom PK. Association of distant recurrence-free survival with algorithmically extracted MRI characteristics in breast cancer. J Magn Reson Imaging 2019; 49(7): e231-40.
[http://dx.doi.org/10.1002/jmri.26648] [PMID: 30672045]
[102]
Drukker K, Li H, Antropova N, Edwards A, Papaioannou J, Giger ML. Most-enhancing tumor volume by MRI radiomics predicts recurrence-free survival “early on” in neoadjuvant treatment of breast cancer. Cancer Imaging 2018; 18(1): 12.
[http://dx.doi.org/10.1186/s40644-018-0145-9] [PMID: 29653585]
[103]
Park H, Lim Y, Ko ES, et al. Radiomics signature on magnetic resonance imaging: Association with disease-free survival in patients with invasive breast cancer. Clin Cancer Res 2018; 24(19): 4705-14.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3783] [PMID: 29914892]
[104]
Kim J-H, Ko ES, Lim Y, et al. Breast Cancer Heterogeneity: MR Imaging Texture Analysis and Survival Outcomes. Radiology 2017; 282(3): 665-75.
[http://dx.doi.org/10.1148/radiol.2016160261] [PMID: 27700229]
[105]
Chan HM, van der Velden BHM, Loo CE, Gilhuijs KGA. Eigentumors for prediction of treatment failure in patients with early-stage breast cancer using dynamic contrast-enhanced MRI: a feasibility study. Phys Med Biol 2017; 62(16): 6467-85.
[http://dx.doi.org/10.1088/1361-6560/aa7dc5] [PMID: 28678022]
[106]
Aerts HJWL, Velazquez ER, Leijenaar RTH, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006.
[http://dx.doi.org/10.1038/ncomms5006] [PMID: 24892406]
[107]
Chin J, Melsaether AN, Morris EA, Moy L. Radiology 2018; 287(3)
[http://dx.doi.org/10.1148/radiol.2018172171]
[108]
Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: radiogenomics. Insights Imaging 2020; 11(1): 1-17.
[http://dx.doi.org/10.1186/s13244-019-0795-6] [PMID: 31901171]
[109]
Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol 2017; 72(1): 3-10.
[http://dx.doi.org/10.1016/j.crad.2016.09.013] [PMID: 27742105]
[110]
Saha A, Harowicz MR, Mazurowski MA. Breast cancer MRI radiomics: An overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med Phys 2018; 45(7): 3076-85.
[http://dx.doi.org/10.1002/mp.12925] [PMID: 29663411]
[111]
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69(2): 127-57.
[http://dx.doi.org/10.3322/caac.21552] [PMID: 30720861]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy