Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Various Techniques for One-Pot Synthesis of 1,3,5-Triazine (s-Triazine) Derivatives: A Review

Author(s): Sukhbeer Kumari* and Anupama Singh

Volume 19, Issue 1, 2022

Published on: 25 February, 2021

Page: [52 - 65] Pages: 14

DOI: 10.2174/1570193X18666210225115511

Price: $65

Abstract

Recent studies have shown that one-pot synthesis is a boon for triazines synthesis. One-pot processes had significant success in carrying out complex reactions under mild and eco-friendly conditions. One-pot synthesis is environmentally benign and more economical than other processes of triazine synthesis. The triazine scaffold has provided the starting key point for the design and development of pharmaceutical molecules with a wide range of biomedical applications. This review highlights the various methodologies involved for one-pot synthesis of 1,3,5-triazine scaffolds

Keywords: One-pot synthesis, multicomponent reaction, ammeline, aceto-guanide, acetoguanamine, cyanuric acid, melamine

Graphical Abstract

[1]
Nicolaou, K.C. Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc. Math. Phys. Eng. Sci., 2014, 470(2163)20130690
[http://dx.doi.org/10.1098/rspa.2013.0690] [PMID: 24611027.]
[2]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998.
[3]
Tundo, P.; Anastas, P.; Black, D.S.; Breen, J.; Collins, T. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem., 2000, 72(7), 1207-1228.
[http://dx.doi.org/10.1351/pac200072071207]
[4]
Sheldon, R.A. Atom efficiency and catalysis in organic synthesis. Pure Appl. Chem., 2000, 72(7), 1233-1246.
[http://dx.doi.org/10.1351/pac200072071233]
[5]
Lancaster, M. Green Chemistry: An Introductory Text; Royal Society of Chemistry; RSC: Cambridge, 2002.
[6]
Ghashghaei, O.; Seghetti, F.; Lavilla, R. Selectivity in multiple multicomponent reactions: types and synthetic applications. Beilstein J. Org. Chem., 2019, 15, 521-534.
[http://dx.doi.org/10.3762/bjoc.15.46] [PMID: 30873236]
[7]
de Graaff, C.; Ruijter, E.; Orru, R.V. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[8]
Liu, J-K. N-containing compounds of macromycetes. Chem. Rev., 2005, 105(7), 2723-2744.
[http://dx.doi.org/10.1021/cr0400818] [PMID: 16011322]
[9]
Subramanian, P.; Rudolf, G.C.; Kaliappan, K.P. Recent trends in copper-catalyzed C-H amination routes to biologically important nitrogen scaffolds. Chem. Asian J., 2016, 11(2), 168-192.
[http://dx.doi.org/10.1002/asia.201500361] [PMID: 26353917]
[10]
Joule, J.A. Natural products containing nitrogen heterocycles - Some highlights 1990-2015. Adv. Heterocycl. Chem., 2016, 119, 81-106.
[http://dx.doi.org/10.1016/bs.aihch.2015.10.005]
[11]
Wei, L.; Shen, C.; Hu, Y-Z.; Tao, H-Y.; Wang, C-J. Enantioselective synthesis of multi-nitrogen-containing hetero-cycles using azoalkenes as key intermediates. Chem. Commun. (Camb.), 2019, 55(47), 6672-6684.
[http://dx.doi.org/10.1039/C9CC02371B] [PMID: 31134230]
[12]
Jackowski, A.; Zones, S.I.; Hwang, S-J.; Burton, A.W. Diquater-nary ammonium compounds in zeolite synthesis: cyclic and polycyclic N-heterocycles connected by methylene chains. J. Am. Chem. Soc., 2009, 131(3), 1092-1100.
[http://dx.doi.org/10.1021/ja806978f] [PMID: 19128003]
[13]
Dalinger, I.L.; Kormanov, A.V.; Suponitsky, K.Y.; Muravyev, N.V.; Sheremetev, A.B. Pyrazole-tetrazole hybrid bearing the tri-nitromethyl, fluorodinitromethyl or (difluoroamino) dinitromethyl groups: High performance energetic materials. Chem. Asian J., 2018, 13(9), 1165-1172.
[http://dx.doi.org/10.1002/asia.201800214] [PMID: 29457973]
[14]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[15]
Banerjee, R.; Pace, N.J.; Brown, D.R.; Weerapana, E. 1,3,5-Triazine as a modular scaffold for covalent inhibitors with streamlined target identification. J. Am. Chem. Soc., 2013, 135(7), 2497-2500.
[http://dx.doi.org/10.1021/ja400427e] [PMID: 23379904]
[16]
Lim, F.P.L.; Dolzhenko, A.V. 1,3,5-Triazine-based analogues of purine: from isosteres to privileged scaffolds in medicinal chemistry. Eur. J. Med. Chem., 2014, 85, 371-390.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.112] [PMID: 25105925]
[17]
Saczewski, F.; Bułakowska, A.; Bednarski, P.; Grunert, R. Synthesis, structure and anticancer activity of novel 2,4-diamino-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(2), 219-225.
[http://dx.doi.org/10.1016/j.ejmech.2005.10.013] [PMID: 16377034]
[18]
Agarwal, A.; Srivastava, K.; Puri, S.K.; Chauhan, P.M.S. Syntheses of 2,4,6-trisubstituted triazines as antimalarial agents. Bioorg. Med. Chem. Lett., 2005, 15(3), 531-533.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.052] [PMID: 15664807]
[19]
Solankee, A.; Kapadia, K.; Ana, C.; Soković, M.; Doytchinova, I.; Geronikaki, A. Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. Eur. J. Med. Chem., 2010, 45(2), 510-518.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.037] [PMID: 19926364]
[20]
Patel, R.V.; Kumari, P.; Rajani, D.P.; Pannecouque, C.; De Clercq, E.; Chikhalia, K.H. Antimicrobial, anti-TB, anticancer and anti-HIV evaluation of new s-triazine-based heterocycles. Future Med. Chem., 2012, 4(9), 1053-1065.
[http://dx.doi.org/10.4155/fmc.12.57] [PMID: 22709250]
[21]
Zacharie, B.; Abbott, S.D.; Bienvenu, J.F.; Cameron, A.D.; Cloutier, J.; Duceppe, J.S.; Ezzitouni, A.; Fortin, D.; Houde, K.; Lauzon, C.; Moreau, N.; Perron, V.; Wilb, N.; Asselin, M.; Doucet, A.; Fafard, M.E.; Gaudreau, D.; Grouix, B.; Sarra-Bournet, F.; St-Amant, N.; Gagnon, L.; Penney, C.L. 2,4,6-trisubstituted triazines as protein a mimetics for the treatment of autoimmune diseases. J. Med. Chem., 2010, 53(3), 1138-1145.
[http://dx.doi.org/10.1021/jm901403r] [PMID: 20047277]
[22]
Beijer, F.H.; Kooijiman, H.; Spek, A.L.; Sijbesma, R.P.; Meijer, E.W. Self-complementarity achieved through quadruple hydrogen bonding. Angew. Chem. Int. Ed., 1998, 37(1-2), 75-78.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<75:AID-ANIE75>3.0.CO;2-R]
[23]
Kang, G-F.; Zhang, G. One-pot synthesis of 1,3,5-triazine-2,4-dithione derivatives via three-component reactions. Beilstein J. Org. Chem., 2020, 16, 1447-1455.
[http://dx.doi.org/10.3762/bjoc.16.120] [PMID: 32647546]
[24]
Moustafa, M.; Mekheimer, R.; Al-Mousawi, S.; Abd-Elmonem, M.; El-Zorba, H.; Hameed, A.A.; Mohamed, T.; Sadek, K.U. Microwave-assisted efficient one-pot synthesis of N2-(tetrazol-5-yl)-6-aryl/heteroaryl-2,3-dihydro-1,3,5-triazine-2,4-diamines. Beilstein J. Org. Chem., 2020, 16, 1706-1712.
[http://dx.doi.org/10.3762/bxiv.2020.51.v1.]
[25]
Junaid, A.; Tan, Y.S.; Tiekink, E.R.T.; Dolzhenko, A.V. A one-pot synthesis of N2,6-diaryl-5,6-dihydro-1,3,5-triazine-2,4-diamines and systematic evaluation of their ability to host ethanol in crystals. RSC Advances, 2019, 9, 37660-37667.
[http://dx.doi.org/10.1039/C9RA08795H]
[26]
Havránková, E.; Csöllei, J.; Pazdera, P. New approach for the one-pot synthesis of 1,3,5-triazine derivatives: application of Cu(I) supported on a weekly acidic cation-exchanger resin in a comparative study. Molecules, 2019, 24(19), 3586-3595.
[http://dx.doi.org/10.3390/molecules24193586] [PMID: 31590377]
[27]
Linder, T.; Schnu¨rch, M.; Mihovilovic, M.D. One-pot synthesis of triazines as potential agents affecting cell differentiation. Monatsh. Chem., 2018, 149, 1257-1284.
[28]
Meng, X.; Bi, X.; Wang, Y.; Chen, G.; Chen, B.; Jing, Z.; Zhao, P. Heterogeneous selective synthesis of 1,2-dihydro-1,3,5-triazines from alcohols and amidines via Cu/OMS-2-catalyzed multistep oxidation. Catal. Commun., 2017, 89, 34-39.
[http://dx.doi.org/10.1016/j.catcom.2016.10.014]
[29]
Srivastava, J.K.; Pillai, G.G.; Bhat, H.R.; Verma, A.; Singh, U.P. Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating epidermal growth factor receptor tyrosine kinase. Sci. Rep., 2017, 7(1), 5851.
[http://dx.doi.org/10.1038/s41598-017-05934-5.]
[30]
Shekouhy, M.; Moaddeli, A.; Khalafi-Nezhad, A. A novel one-pot three component approach to 6-substituted 2,4-diamino-1,3,5-triazines using nano-sized copper/zinc-modified MCM-41 (Cu/Zn-MCM-41) as a new heterogeneous mesoporous catalyst. J. Ind. Eng. Chem., 2017, 50, 41-49.
[31]
Ubeid, M.T.; Thabet, H.K.; El-Feky, S.A. An efficient, one-pot three-component synthesis of 4H-thiazolo[3,2-a][1,3,5]triazin-6-one derivatives. Heterocycl. Commun., 2016, 22(1), 43-47.
[http://dx.doi.org/10.1515/hc-2015-0135]
[32]
Krishnamurthy, M. Basavaprabhu, Sharanabai, K.M.; Sureshbabu, V.V. A facile route for the synthesis of novel S-linked 1,3,5-triazine tethered peptidomimetics. Tetrahedron Lett., 2014, 55, 5609-5612.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.075]
[33]
Debnath, P.; Majumdar, K.C. A novel straightforward synthesis of 2,4,6-triaryl-1,3,5-triazines via copper-catalyzed cyclization of N-benzylbenzamidines. Tetrahedron Lett., 2014, 55(51), 6976-6978.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.091]
[34]
Herrera, A.; Riaño, A.; Moreno, R.; Caso, B.; Pardo, Z.D.; Fernández, I.; Sáez, E.; Molero, D.; Sánchez-Vázquez, A.; Martínez-Alvarez, R. One-pot synthesis of 1,3,5-triazine deriva-tives via controlled cross-cyclotrimerization of nitriles: a mecha-nism approach. J. Org. Chem., 2014, 79(15), 7012-7024.
[http://dx.doi.org/10.1021/jo501144v] [PMID: 25010006]
[35]
Kalinina, S.A.; Kalinin, D.V.; Dolzhenko, A.V. A one-pot, three-component, microwavepromoted synthesis of 2-amino substituted 7-amino-1,2,4-triazolo[1,5-a][1,3,5]triazines. Tetrahedron Lett., 2013, 54(40), 5537-5540.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.158]
[36]
Li, N.; Tu, M-S.; Jiang, B.; Wang, X. Tu, Domino S.J. [3+2+1] heterocyclization of isothiocyanates with aryl amidines leading to polysubstituted 1,3,5-triazine derivatives. Tetrahedron Lett., 2013, 54, 1743-1746.
[http://dx.doi.org/10.1016/j.tetlet.2013.01.086]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy