Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Chemical Diversity and Bioactivity of Marine Sponges of the Genus Oceanapia: A Review

Author(s): Keisham S. Singh* and Supriya Tilvi

Volume 19, Issue 1, 2022

Published on: 25 February, 2021

Page: [66 - 73] Pages: 8

DOI: 10.2174/1570193X18666210225120944

Price: $65

Abstract

The marine sponges of the genus Oceanapia sp. is comprised of more than 50 species and are distributed in the seas around the tropical and subtropical regions. They are mainly found in the northern Indian oceans, Japan, and the south pacific coast. They are highly colored and known to be a rich source of various secondary metabolites, particularly alkaloids. Several other secondary metabolites are also reported from this genus which include terpenes, sphingolipids, ceramides, cerebrosides, acetylenic acids, and thiocyanatins, etc. Many of these compounds isolated from this genus exhibited various biological properties, including anticancer, antimicrobial, anti-HIV, ichthyotoxicity, and nematocidal activities. Although several secondary metabolites have been reported from this genus, a dedicated review of the chemicals and biological activities of this genus is so far lacking. Keeping this in mind, this review describes the various chemical entities isolated from the sponges of the genus Oceanapia, providing details of their chemical structures along with their reported biological properties

Keywords: Marine sponges, alkaloids, Oceanapia sp., biological activity, ceramides, sphingolipids, acetylenic acids

Graphical Abstract

[1]
Ancheeva, E.; El-Neketi, M.; Song, W.; Lin, W.; Daletos, G.; Ebrahim, W.; Proksch, P. Structurally unprecedented metabolites from marine sponges. Curr. Org. Chem., 2017, 21(5), 426-449.
[http://dx.doi.org/10.2174/1385272820666161017164957]
[2]
Singh, K.S.; Majik, M.S. Bioactive alkaloids from marine sponges in marine sponges: chemicobiologcal and biomedical applications; Springer: New York, 2016, pp. 257-286.
[3]
Eder, C.; Schupp, P.; Proksch, P.; Wray, V.; Steube, K.; Müller, C.E.; Frobenius, W.; Herderich, M.; van Soest, R.W.M. Bioactive pyridoacridine alkaloids from the micronesian sponge Oceanapia sp. J. Nat. Prod., 1998, 61(2), 301-305.
[http://dx.doi.org/10.1021/np9702704] [PMID: 9514015]
[4]
Santalova, E.A.; Makarieva, T.N.; Ponomarenko, L.P.; Denisenko, V.A.; Krasokhin, V.B.; Mollo, E.; Cimino, G.; Stonik, V.A. Sterols and related metabolites from five species of sponges. Biochem. Syst. Ecol., 2007, 35(7), 439-446.
[5]
Mancini, I.; Guella, G.; Debitush, C.; Pietra, F. Oceanapins A–F, unique branched ceramides isolated from the haplosclerid sponge Oceanapia cf. tenuis of the Coral Sea. Helv. Chim. Acta, 1994, 77(1), 51-58.
[http://dx.doi.org/10.1002/hlca.19940770108]
[6]
Guzii, A.G.; Makarieva, T.N.; Svetashev, V.I.; Denisenko, V.A.; Dmitrenok, P.S.; Pokanevich, E.V.; Santalova, E.A.; Krasokhin, V.B.; Stonik, V.A. New cerebrosides from the marine sponge Oceanapia sp. Russ. Chem. Bull., 2006, 55(5), 928-933.
[http://dx.doi.org/10.1007/s11172-006-0354-4]
[7]
Nicholas, G.M.; Newton, G.L.; Fahey, R.C.; Bewley, C.A. Novel bromotyrosine alkaloids: inhibitors of mycothiol S-conjugate amidase. Org. Lett., 2001, 3(10), 1543-1545.
[http://dx.doi.org/10.1021/ol015845+] [PMID: 11388862]
[8]
Matsunaga, S.; Okada, Y.; Fusetani, N.; van Soest, R.W.M. An antimicrobial C(14) acetylenic acid from a marine sponge Oceanapia species. J. Nat. Prod., 2000, 63(5), 690-691.
[http://dx.doi.org/10.1021/np990577y] [PMID: 10843591]
[9]
Kijjoa, A.; Wattanadilok, R.; Campos, N.; Nascimento, M.S.J.; Pinto, M.; Herz, W. Anticancer activity evaluation of kuanoni-amines A and C isolated from the marine sponge Oceanapia sagittaria, collected from the Gulf of Thailand. Mar. Drugs, 2007, 5(2), 6-22.
[http://dx.doi.org/10.3390/md502006] [PMID: 18463725]
[10]
Capon, R.J.; Skene, C.; Liu, E.H.; Lacey, E.; Gill, J.H.; Heiland, K.; Friedel, T. Nematocidal thiocyanatins from a southern Australian marine sponge Oceanapia sp. J. Nat. Prod., 2004, 67(8), 1277-1282.
[http://dx.doi.org/10.1021/np049977y] [PMID: 15332841]
[11]
Ibrahim, S.R.M.; Mohamed, G.A.; Elkhayat, E.S.; Fouad, M.A.; Proksch, P. Sagitol C, a new cytotoxic pyridoacridine alkaloid from the sponge Oceanapia sp. Bull. Fac. Pharm. Cairo, 2013, 51(2), 229-232.
[http://dx.doi.org/10.1016/j.bfopcu.2013.05.004]
[12]
Calcabrini, C.; Catanzaro, E.; Bishayee, A.; Turrini, E.; Fimognari, C. Marine sponge natural products with anticancer potential: An updated review. Mar. Drugs, 2017, 15(10), 310.
[http://dx.doi.org/10.3390/md15100310] [PMID: 29027954]
[13]
Mioso, R.; Marante, F.J.T.; Bezerra, R.S.; Borges, F.V.P.; Santos, B.V.O.; Laguna, I.H.B. Cytotoxic compounds derived from marine sponges. A review (2010-2012). Molecules, 2017, 22(2), 208.
[http://dx.doi.org/10.3390/molecules22020208] [PMID: 28134844]
[14]
Vitali, A. Antimicrobial peptides derived from marine sponges. Am. J. Clin. Microbiol. Antimicrob., 2018, 1(1), 1006.
[15]
Sagar, S.; Kaur, M.; Minneman, K.P. Antiviral lead compounds from marine sponges. Mar. Drugs, 2010, 8(10), 2619-2638.
[http://dx.doi.org/10.3390/md8102619] [PMID: 21116410]
[16]
Mancini, I.; Guella, G.; Sauvain, M.; Debitus, C.; Duigou, A.G.; Ausseil, F.; Menou, J.L.; Pietra, F. New 1,2,3,4-tetrahydro-pyrrolo[1,2-a]pyrimidinium alkaloids (phloeodictynes) from the New Caledonian shallow-water haplosclerid sponge Oceanapia fistulosa. Structural elucidation from mainly LC-tandem-MS-soft-ionization techniques and discovery of antiplasmodial activity. Org. Biomol. Chem., 2004, 2(5), 783-787.
[http://dx.doi.org/10.1039/b313348f] [PMID: 14985819]
[17]
El-Demerdash, A.; Atanasov, A.G.; Horbanczuk, O.K.; Tammam, M.A.; Abdel-Mogib, M.; Hooper, J.N.A.; Sekeroglu, N.; Al-Mourabit, A.; Kijjoa, A. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review. Mar. Drugs, 2019, 17(2), 115.
[http://dx.doi.org/10.3390/md17020115] [PMID: 30759850]
[18]
Wu, Q.; Nay, B.; Yang, M.; Ni, Y.; Wang, H.; Yao, L.; Li, X. Marine sponges of the genus Stelletta as promising drug sources: chemical and biological aspects. Acta Pharm. Sin. B, 2019, 9(2), 237-257.
[http://dx.doi.org/10.1016/j.apsb.2018.10.003] [PMID: 30972275]
[19]
El-Demerdash, A.; Tammam, M.A.; Atanasov, A.G.; Hooper, J.N.A.; Al-Mourabit, A.; Kijjoa, A. Chemistry and biological activities of the marine sponges of the genera Mycale (Arenochalina). Mar. Drugs, 2018, 16(6), 214.
[http://dx.doi.org/10.3390/md16060214] [PMID: 29912171]
[20]
Patterson, A.M.; Capell, L.T.; Walker, D.F. The ring index, 2nd ed; American Chemical Society: Washington, DC, 1960.
[21]
Marshall, K.M.; Barrows, L.R. Biological activities of pyridoacridines. Nat. Prod. Rep., 2004, 21(6), 731-751.
[http://dx.doi.org/10.1039/b401662a] [PMID: 15565252]
[22]
Salmond, C.E.; Faulkner, D.J. Sagitol, a pyridoacridine alkaloid from the sponge Oceanapia sagittaria. Tetrahedron Lett., 1996, 37(51), 9147-9148.
[http://dx.doi.org/10.1016/S0040-4039(96)02163-6]
[23]
Carroll, A.R.; Ngo, A.; Quinn, R.J.; Redburn, J.; Hooper, J.N.A. Petrosamine B, an inhibitor of the Helicobacter pylori enzyme aspartyl semialdehyde dehydrogenase from the Australian sponge Oceanapia sp. J. Nat. Prod., 2005, 68(5), 804-806.
[http://dx.doi.org/10.1021/np049595s] [PMID: 15921437]
[24]
Braekman, J.C.; Daloze, D.; de Abreu, P.M.; Piccinni-Leopardi, C.; Germain, G.; Van, M.M. A novel type of bis-quinolizidine alkaloid from the sponge: Petrosia seriata. Tetrahedron Lett., 1982, 23(41), 4277-4280.
[http://dx.doi.org/10.1016/S0040-4039(00)88724-9]
[25]
Venkateshwar Goud, T.; Srinivasa Reddy, N.; Raghavendra Swamy, N.; Siva Ram, T.; Venkateswarlu, Y. Anti-HIV active petrosins from the marine sponge Petrosia similis. Biol. Pharm. Bull., 2003, 26(10), 1498-1501.
[http://dx.doi.org/10.1248/bpb.26.1498] [PMID: 14519963]
[26]
Orabi, K.Y.; El Sayed, K.A.; Hamann, M.T.; Dunbar, D.C.; Al-Said, M.S.; Higa, T.; Kelly, M. Araguspongines K and L, new bioactive bis-1-oxaquinolizidine N-oxide alkaloids from Red Sea specimens of Xestospongia exigua. J. Nat. Prod., 2002, 65(12), 1782-1785.
[http://dx.doi.org/10.1021/np0202226] [PMID: 12502314]
[27]
Kobayashi, M.; Kawazoe, K.; Kitagawa, I.; Araguspongines, B.; Araguspongines, B. C, D, E, F, G, H, and J, new vasodilative bis-1-oxaquinolizidine alkaloids from an Okinawan marine sponge, Xestospongia sp. Chem. Pharm. Bull. (Tokyo), 1989, 37(6), 1676-1678.
[http://dx.doi.org/10.1248/cpb.37.1676] [PMID: 2776247]
[28]
Venkateswarlu, Y.; Reddy, V.R. Bis-1-oxaquinolizidines from the sponge Haliclona exigua. J. Nat. Prod., 1994, 57(9), 1283-1285.
[http://dx.doi.org/10.1021/np50111a017]
[29]
Pettit, G.R.; Orr, B.; Herrald, D.L.; Doubek, D.L.; Tackett, L.; Schmidt, J.M.; Boyd, M.R.; Pettit, R.K.; Hooper, J.N.A. Isolation and X-ray crystal structure of racemic Xestospongin D from the Singapore marine sponge Niphates sp. Bioorg. Med. Chem. Lett., 1996, 6(12), 1313-1318.
[http://dx.doi.org/10.1016/0960-894X(96)00225-9]
[30]
Singh, K.S.; Das, B.; Naik, C.G. Quinolizidines alkaloids: Petrosin and xestospongins from the sponge Oceanapia sp. J. Chem. Sci., 2011, 123(5), 601-607.
[http://dx.doi.org/10.1007/s12039-011-0124-1]
[31]
Kourany-Lefoll, E.; País, M.; Sevenet, T.; Guittet, E.; Montagnac, A.; Fontaine, C.; Guenard, D.; Adeline, M.T.; Debitus, C. Phloeodictines A and B: new antibacterial and cytotoxic bicyclic amidinium salts from the new caledonian sponge, Phloeodictyon sp. J. Org. Chem., 1992, 57(14), 3832-3835.
[http://dx.doi.org/10.1021/jo00040a022]
[32]
Hooper, J.N.A.; van Soest, R.W.M. Systema porifera: A guide to the classification of sponges; Kluwer Academic, Plenum Publishers: New York, 2002, pp. 893-905.
[33]
Kourany-Lefoll, E.; Laprévote, O.; Sevenet, T.; Montagnac, A.; País, M.; Debitus, C. Phloeodictines A1-A7 and C1-C2, antibiotic and cytotoxic guanidine alkaloids from the new caledonian sponge, Phloeodictyon sp. Tetrahedron, 1994, 50(11), 3415-3426.
[http://dx.doi.org/10.1016/S0040-4020(01)87021-6]
[34]
Killday, K.B.; Longley, R.; McCarthy, P.J.; Pomponi, S.A.; Wright, A.E.; Neale, R.F.; Sills, M.A. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi. J. Nat. Prod., 1993, 56(4), 500-507.
[http://dx.doi.org/10.1021/np50094a008] [PMID: 8496702]
[35]
Boyd, K.G.; Harper, M.K.; Faulkner, D.J. Oceanapamine, a sesquiterpene alkaloid from the Philippine sponge Oceanapia sp. J. Nat. Prod., 1995, 58(2), 302-305.
[http://dx.doi.org/10.1021/np50116a027] [PMID: 7769396]
[36]
Garg, H.S.; Sharma, M.; Bhakuni, D.S.; Pramanik, B.N.; Bose, A.K. An antiviral sphingosine derivative from the green alga Ulva fasciata. Tetrahedron Lett., 1992, 33(12), 1641-1644.
[http://dx.doi.org/10.1016/S0040-4039(00)91695-2]
[37]
Nielsen, P.G.; Carlé, J.S.; Christophersen, C. Final structure of caulerpicin, a toxin mixture from the green alga Caulerpa racemosa. Phytochemistry, 1982, 21(7), 1643-1645.
[http://dx.doi.org/10.1016/S0031-9422(82)85032-2]
[38]
Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Hirata, Y.; Yamasu, T.; Sasaki, T.; Ohizumi, Y. Symbioramide, a novel Ca2+-ATPase activator from the cultured dinoflagellate Symbiodinium sp. Experientia, 1988, 44(9), 800-802.
[http://dx.doi.org/10.1007/BF01959173] [PMID: 2970978]
[39]
Chebaane, K.; Guyot, M. Occurrence of erythro-docosasphinga-4, 8-dienine, as an ester, in Anemonia sulcata. Tetrahedron Lett., 1986, 27(13), 1495-1496.
[40]
Mancini, L.; Guella, G.; Debitush, C.; Pietra, F. Oceanapins A-F, unique branched ceramides isolated from the Haploscerid sponge, Oceanapia cf. tenuis of the Coral Sea. Helv. Chim. Acta, 1994, 77(1), 52-58.
[http://dx.doi.org/10.1002/hlca.19940770108]
[41]
Guzii, A.G.; Makarieva, T.N.; Svetashev, V.I.; Denisenko, V.A.; Dmitrenok, P.S.; Pokanevich, E.V.; Santalova, E.A.; Krasokhin, V.B.; Stonik, V.A. New ceramides from sea sponge Oceanapia sp. Russ. J. Bioorganic Chem., 2006, 32(3), 288-294.
[http://dx.doi.org/10.1134/S1068162006030113]
[42]
Makarieva, T.N.; Denisenko, V.A.; Stonik, V.A.; Milgrom, Y.M.; Rashkes, Y.W. Rhizochalin, a novel secondary metabolite of mixed biosynthesis from the sponge Rhizochalin aincrustata. Tetrahedron Lett., 1989, 30(47), 6581-6584.
[http://dx.doi.org/10.1016/S0040-4039(01)89027-4]
[43]
Khanal, P.; Kang, B.S.; Yun, H.J.; Cho, H.G.; Makarieva, T.N.; Choi, H.S. Aglycon of rhizochalin from the Rhizochalina incrustata induces apoptosis via activation of AMP-activated protein kinase in HT-29 colon cancer cells. Biol. Pharm. Bull., 2011, 34(10), 1553-1558.
[http://dx.doi.org/10.1248/bpb.34.1553] [PMID: 21963494]
[44]
Muralidhar, P.; Radhika, P.; Krishna, N.; Rao, D.V.; Rao, C.B. Sphingolipids from marine organisms: A review. Nat. Prod. Sci., 2003, 9(3), 117-142.
[45]
Kalinin, V.I.; Ivanchina, N.V.; Krasokhin, V.B.; Makarieva, T.N.; Stonik, V.A. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar. Drugs, 2012, 10(8), 1671-1710.
[http://dx.doi.org/10.3390/md10081671] [PMID: 23015769]
[46]
Makarieva, T.N.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Stonik, V.A. New two-headed sphingolipids-like compounds from the marine sponge Oceanapia sp. Russ. Chem. Bull. Int. Ed, 2008, 57(3), 669-673.
[http://dx.doi.org/10.1007/s11172-008-0106-8]
[47]
Bensemhoun, J.; Bombarda, I.; Aknin, M.; Faure, R.; Vacelet, J.; Gaydou, E.M. Marine bifunctional sphingolipids from the sponge Oceanapia ramsayi. Molecules, 2008, 13(4), 772-778.
[http://dx.doi.org/10.3390/molecules13040772] [PMID: 18463578]
[48]
Nicholas, G.M.; Hong, T.W.; Molinski, T.F.; Lerch, M.L.; Cancilla, M.T.; Lebrilla, C.B. Oceanapiside, an antifungal bis-α,ω-amino alcohol glycoside from the marine sponge Oceanapia phillipensis. J. Nat. Prod., 1999, 62(12), 1678-1681.
[http://dx.doi.org/10.1021/np990190v] [PMID: 10654417]
[49]
Nicholas, G.M.; Molinski, T.F. Enantiodivergent biosynthesis of the dimeric sphingolipid Oceanapiside from the marine sponge Oceanapia phillipensis. Determination of remote stereochemistry. J. Am. Chem. Soc., 2000, 122(17), 4011-4019.
[http://dx.doi.org/10.1021/ja994215o]
[50]
Makarieva, T.N.; Denisenko, V.A.; Dmitrenok, P.S.; Guzii, A.G.; Santalova, E.A.; Stonik, V.A.; Macmillan, J.B.; Molinski, T.F. Oceanalin A, a hybrid α,ω-bifunctionalized sphingoid tetrahydro-isoquinoline β-glycoside from the marine sponge Oceanapia sp. Org. Lett., 2005, 7(14), 2897-2900.
[http://dx.doi.org/10.1021/ol050796c] [PMID: 15987164]
[51]
Ichiba, T.; Scheuer, P.J. Michelle, K. B. Spong-derived polyunsaturated C16 di‐ and tribromocarboxylic acids. Helv. Chim. Acta, 1993, 76(8), 2814-2816.
[http://dx.doi.org/10.1002/hlca.19930760807]
[52]
Capon, R.J.; Skene, C.; Liu, E.H.; Lacey, E.; Gill, J.H.; Heiland, K.; Friedel, T. The isolation and synthesis of novel nematocidal dithiocyanates from an Australian marine sponge, Oceanapia sp. J. Org. Chem., 2001, 66(23), 7765-7769.
[http://dx.doi.org/10.1021/jo0106750] [PMID: 11701034]
[53]
Fu, X.; Ferreira, M.L.G.; Schmitz, F.J.; Kelly, M. Tamosterone sulfates: A C-14 epimeric pair of polyhydroxylated sterols from a new Oceanapiid sponge genus. J. Org. Chem., 1999, 64(18), 6706-6709.
[http://dx.doi.org/10.1021/jo990493u] [PMID: 11674675]
[54]
Cafieri, F.; Fattorusso, E.; Mahajnah, Y.; Mangoni, A. 6-Bromo-5-hydroxy-3-indolecarbaldehyde from the Caribbean sponge Oceanapia bartshi. Z. Naturforsch., 1993, 48(10), 1408-1410.
[http://dx.doi.org/10.1515/znb-1993-1017]
[55]
Walker, R.P.; Faulkner, D.J. Diterpenes from the sponge Dysidea amblia. J. Org. Chem., 1981, 46(6), 1098-1102.
[http://dx.doi.org/10.1021/jo00319a012]
[56]
Venkateswarlu, Y.; Reddy, N.S.; Ramesh, P.; Rao, J.V. Coixol: a bioactive principle from a marine sponge Oceanapia sp. Biochem. Syst. Ecol., 1999, 27(5), 519-520.
[http://dx.doi.org/10.1016/S0305-1978(98)00117-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy