Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Graph Indices for Cartesian Product of F-sum of Connected Graphs

Author(s): Jia-Bao Liu, Muhammad Imran*, Shakila Baby, Hafiz Muhammad Afzal Siddiqui and Muhammad Kashif Shafiq

Volume 25, Issue 3, 2022

Published on: 17 February, 2021

Page: [528 - 535] Pages: 8

DOI: 10.2174/1386207324666210217143114

Price: $65

Abstract

Background: A topological index is a real number associated with a graph that provides information about its physical and chemical properties and their correlations. Topological indices are being used successfully in Chemistry, Computer Science, and many other fields.

Methods: In this article, we apply the well-known Cartesian product on F-sums of connected and finite graphs. We formulate sharp limits for some famous degree-dependent indices.

Results: Zagreb indices for the graph operations T(G), Q(G), S(G), R(G), and their F-sums have been computed. By using orders and sizes of component graphs, we derive bounds for Zagreb indices, F-index, and Narumi-Katayana index.

Conclusion: The formulation of expressions for the complicated products on F-sums, in terms of simple parameters like maximum and minimum degrees of basic graphs, reduces the computational complexities.

Keywords: F-sum of graphs, Cartesian product, Narumi-Katayana index, Zagreb index, Augmented Zagreb index, F-index.

Graphical Abstract

[1]
Gutman, I.; Polansky, O. Mathematical Concepts in Organic Chemistry, 1986.
[http://dx.doi.org/10.1007/978-3-642-70982-1]
[2]
Trinajstic, N. Chemical Graph Theory; CRC Press: Boca Raton, FL, 1992.
[3]
Gutman, I.; Trinajsti, N. Graph theory and molecular orbitals. Total π-electron energy of alternate hydrocarbons Chem. Phy. Lett., 1972, 17, 535-538.
[http://dx.doi.org/10.1016/0009-2614(72)85099-1]
[4]
Gutman, I.; Rušcic, B.; Trinajstic, N. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys., 1975, 62, 1692-1704.
[5]
Balaban, A.T.; Motoc, I.; Bonchev, D.; Makenyan, O. Topological indices for structure-activity correlations. Top. Curr. Chem., 1983, 114, 21-55.
[http://dx.doi.org/10.1007/BFb0111212]
[6]
Diudea, M.V., Ed.; QSPR/QSAR Studies by moleculer descriptors; NOVA: New York, 2001.
[7]
Xu, K.; Das, K.Ch. Zagreb indices and polynomials of TUHRC4 and TUSC4C8 nanotubes. MATCH Commun. Math. Comput. Chem., 2012, 68, 257-272.
[8]
Das, K.C.; Gutman, I. Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem., 2004, 52, 103-112.
[9]
Furtula, B.; Gutman, I.; Dehmer, M. On structural-sensitivity of degree-based topological indices. Appl. Math. Comput., 2013, 219(17), 8973-8978.
[10]
Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem., 2004, 50, 83-92.
[11]
Narumi, H.; Katayana, H. Simple topological index, a newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons. Mem. Fac. Engin. Hokkaido Univ., 1984, 16, 209-214.
[12]
Furtula, B.; Graovac, A.; Vukic, E ~evi, D.Augmented Zagreb index. J. Math. Chem., 2010, 48, 370-380.
[http://dx.doi.org/10.1007/s10910-010-9677-3]
[13]
Ghorbani, M.; Azimi, N. Note on multiple Zagre indices. Iran. J. Math. Chem., 2012, 3, 137-143.
[14]
Shirdel, G.H.; Rezapour, H.; Sayadi, A.M. The hyper-Zagreb index of graph operations. Iran. J. Math. Chem., 2013, 4, 213-220.
[15]
Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem., 2015, 53, 1184-1190.
[http://dx.doi.org/10.1007/s10910-015-0480-z]
[16]
Eliasi, M.; Taeri, B. Four new sums of graphs and their Wiener indices. Discrete Appl. Math., 2009, 157, 794-803.
[http://dx.doi.org/10.1016/j.dam.2008.07.001]
[17]
Deng, H.; Sarala, D.; Ayyaswamy, S.K.; Balachandran, S. The Zagreb indices of four operations on graphs. Appl. Math. Comput., 2016, 275, 422-431.
[http://dx.doi.org/10.1016/j.amc.2015.11.058]
[18]
Akhter, S.; Imran, M. The sharp bounds on general sum-connectivity index of four operations on graphs. J. Inequal. Appl., 2016, 241.
[http://dx.doi.org/10.1186/s13660-016-1186-x]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy