Abstract
Introduction: In this paper, we present a novel hybrid model m-polar Diophantine fuzzy N-soft set and define its operations.
Methods: We generalize the concepts of fuzzy sets, soft sets, N-soft sets, fuzzy soft sets, intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, Pythagorean fuzzy sets, Pythagorean fuzzy soft sets and Pythagorean fuzzy N-soft sets by incorporating our proposed model. Additionally, we define three different sorts of complements for Pythagorean fuzzy N-soft sets and examine few outcomes, which do not hold in Pythagorean fuzzy N-soft sets complements unlike to crisp set. We further discuss (α, β, γ) -cut of m-polar Diophantine fuzzy N-soft sets and their properties. Lastly, we prove our claim that the defined model is a generalization of the soft set, N-soft set, fuzzy Nsoft set, intuitionistic fuzzy N soft set, and Pythagorean fuzzy N-soft set.
Results: m-polar Diophantine fuzzy N-soft set is more efficient and an adaptable model to manage uncertainties as it also overcomes drawbacks of existing models, which are to be generalized.
Conclusion: We introduced the novel concept of m-polar Diophantine fuzzy N-soft sets (MPDFNS sets).
Keywords: m-polar Diophantine fuzzy N-soft sets, m-polar diophantine fuzzy N-soft set complements, (α, β, γ)-cut of mpolar diophantine fuzzy N-soft set, fuzzy sets, soft sets, intuitionistic sets.
[http://dx.doi.org/10.1016/S0019-9958(65)90241-X]
[http://dx.doi.org/10.1016/S0898-1221(99)00056-5]
[http://dx.doi.org/10.1016/j.camwa.2008.11.009]
[http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608375]
[http://dx.doi.org/10.1002/int.21584]
[http://dx.doi.org/10.1109/TFUZZ.2013.2278989]
[http://dx.doi.org/10.1002/int.21880]
[http://dx.doi.org/10.1007/s00521-016-2607-y]
[http://dx.doi.org/10.1016/j.asoc.2015.08.054]
[http://dx.doi.org/10.1007/978-3-319-19105-8_17]
[http://dx.doi.org/10.1007/s12543-011-0064-y]
[http://dx.doi.org/10.1002/int.21827]
[http://dx.doi.org/10.1002/int.21809]
[http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017020197]
[http://dx.doi.org/10.1016/j.asoc.2017.08.003]
[http://dx.doi.org/10.1002/int.21965]
[http://dx.doi.org/10.1007/s10115-017-1085-6]
[http://dx.doi.org/10.1016/j.ins.2015.10.012]
[http://dx.doi.org/10.1007/s00500-017-2838-6]
[http://dx.doi.org/10.1007/s00355-013-0766-7]
[http://dx.doi.org/10.1016/j.inffus.2011.11.001]
[http://dx.doi.org/10.1007/s10462-016-9490-x]
[http://dx.doi.org/10.1016/S0165-0114(86)80034-3]
[http://dx.doi.org/10.1155/2014/416530 PMID: 25025087]
[http://dx.doi.org/10.1016/j.ins.2006.12.008]
[http://dx.doi.org/10.1002/int.21676]
[http://dx.doi.org/10.1109/TFUZZ.2013.2278989]
[http://dx.doi.org/10.1109/ACCESS.2020.2984583]
[http://dx.doi.org/10.1007/s12652-019-01377-0]
[http://dx.doi.org/10.1016/j.engappai.2019.05.012]
[http://dx.doi.org/10.15388/Informatica.2019.211]
[http://dx.doi.org/10.1109/ACCESS.2020.3025974]
[http://dx.doi.org/10.1109/ACCESS.2020.3019485]
[http://dx.doi.org/10.22436/jmcs.022.03.08]
[http://dx.doi.org/10.1109/ACCESS.2020.3020366]