Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

On m-polar Diophantine Fuzzy N-soft Set with Applications

Author(s): Jia-Bao Liu, Shahbaz Ali*, Muhammad Khalid Mahmood and Muhammad Haris Mateen

Volume 25, Issue 3, 2022

Published on: 30 December, 2020

Page: [536 - 546] Pages: 11

DOI: 10.2174/1386207323666201230092354

Price: $65

Abstract

Introduction: In this paper, we present a novel hybrid model m-polar Diophantine fuzzy N-soft set and define its operations.

Methods: We generalize the concepts of fuzzy sets, soft sets, N-soft sets, fuzzy soft sets, intuitionistic fuzzy sets, intuitionistic fuzzy soft sets, Pythagorean fuzzy sets, Pythagorean fuzzy soft sets and Pythagorean fuzzy N-soft sets by incorporating our proposed model. Additionally, we define three different sorts of complements for Pythagorean fuzzy N-soft sets and examine few outcomes, which do not hold in Pythagorean fuzzy N-soft sets complements unlike to crisp set. We further discuss (α, β, γ) -cut of m-polar Diophantine fuzzy N-soft sets and their properties. Lastly, we prove our claim that the defined model is a generalization of the soft set, N-soft set, fuzzy Nsoft set, intuitionistic fuzzy N soft set, and Pythagorean fuzzy N-soft set.

Results: m-polar Diophantine fuzzy N-soft set is more efficient and an adaptable model to manage uncertainties as it also overcomes drawbacks of existing models, which are to be generalized.

Conclusion: We introduced the novel concept of m-polar Diophantine fuzzy N-soft sets (MPDFNS sets).

Keywords: m-polar Diophantine fuzzy N-soft sets, m-polar diophantine fuzzy N-soft set complements, , β, γ)-cut of mpolar diophantine fuzzy N-soft set, fuzzy sets, soft sets, intuitionistic sets.

[1]
Zadeh, L.A. Fuzzy sets. Inf. Control, 1965, 8, 338.
[http://dx.doi.org/10.1016/S0019-9958(65)90241-X]
[2]
Atanassov, K.T. Intuitionistic fuzzy sets. V. Sgurev,Ed., VII ITKRs Session, Sofia, 1984.
[3]
Atanassov, K.T.; Stoeva, S. Intuitionistic fuzzy sets Polish Symp. on Interval Fuzzy Mathematics, Poznan 1983. pp. 23
[4]
Molodtsov, D. Soft set theory first results. Comput. Math. Appl., 1999, 37, 19.
[http://dx.doi.org/10.1016/S0898-1221(99)00056-5]
[5]
Ali, M.I.; Feng, F.; Liu, X.; Min, W.K.; Shabir, M. On some new operations in soft set theory. Comput. Math. Appl., 2009, 57, 1547.
[http://dx.doi.org/10.1016/j.camwa.2008.11.009]
[6]
Yager, R.R. Pythagorean fuzzy subsets. Joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS) IEEE., 2013, 57.
[http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608375]
[7]
Yager, R.R.; Abbasov, A.M. Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst., 2013, 28, 436.
[http://dx.doi.org/10.1002/int.21584]
[8]
Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst., 2014, 22, 958.
[http://dx.doi.org/10.1109/TFUZZ.2013.2278989]
[9]
Peng, X.; Yuan, H.; Yang, Y. Pythagorean fuzzy information measures and their applications. Int. J. Intell. Syst., 2017, 32, 991.
[http://dx.doi.org/10.1002/int.21880]
[10]
Peng, X.D.; Yang, Y.; Song, J.P.; Jiang, Y. Pythagorean fuzzy soft set and its application. Comput. Eng., 2015, 41, 224.
[11]
Peng, X.; Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl., 2018, 29, 939.
[http://dx.doi.org/10.1007/s00521-016-2607-y]
[12]
Yang, Y.; Wang, Y.; Zhang, Y.; Zhang, D. Commentary on Generalized intuitionistic fuzzy soft sets with applications in decision-making. Appl. Soft Comput., 2015, 37, 519.
[http://dx.doi.org/10.1016/j.asoc.2015.08.054]
[13]
Alkhazaleh, S.; Salleh, A.R.; Hassan, N. Possibility fuzzy soft set. Adv. Decis. Sci., 2011.
[14]
Zhang, H.; Xiong, L.; Ma, W. On interval-valued hesitant fuzzy soft sets. Math. Probl. Eng., 2015.
[15]
Zhang, H.D.; Shu, L. Dual hesitant fuzzy soft set and its properties; Fuzzy Systems & Operations Research and Management, 2016, p. 171.
[http://dx.doi.org/10.1007/978-3-319-19105-8_17]
[16]
Sebastian, S.; Ramakrishnan, T.V. Multi-fuzzy sets: An extension of fuzzy sets. Fuzzy Inf. Eng., 2011, 3, 35.
[http://dx.doi.org/10.1007/s12543-011-0064-y]
[17]
Garg, H. A novel correlation coefficients between Pythagorean fuzzy sets and its applications to decision‐making processes. Int. J. Intell. Syst., 2016, 31, 1234.
[http://dx.doi.org/10.1002/int.21827]
[18]
Garg, H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its application to decision making. Int. J. Intell. Syst., 2016, 31, 886.
[http://dx.doi.org/10.1002/int.21809]
[19]
Garg, H. A new improved score function of an interval-valued Pythagorean fuzzy set based TOPSIS method. Int. J. Uncertain. Quantif., 2017, 7(5), 463-474.
[http://dx.doi.org/10.1615/Int.J.UncertaintyQuantification.2017020197]
[20]
Mohagheghi, V.; Mousavi, S.M.; Vahdani, B. Enhancing decision-making flexibility by introducing a new last aggregation evaluating approach based on multi-criteria group decision making and Pythagorean fuzzy sets. Appl. Soft Comput., 2017, 61, 527.
[http://dx.doi.org/10.1016/j.asoc.2017.08.003]
[21]
Wei, G.; Wei, Y. Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications. Int. J. Intell. Syst., 2018, 33, 634.
[http://dx.doi.org/10.1002/int.21965]
[22]
Wan, S.P.; Jin, Z.; Dong, J.Y. Pythagorean fuzzy mathematical programming method for multi-attribute group decision making with Pythagorean fuzzy truth degrees. Knowl. Inf. Syst., 2018, 55, 437.
[http://dx.doi.org/10.1007/s10115-017-1085-6]
[23]
Zhang, X. Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci., 2016, 330, 104.
[http://dx.doi.org/10.1016/j.ins.2015.10.012]
[24]
Fatimah, F.; Rosadi, D.; Hakim, R.F.; Alcantud, J.C.R. N-soft sets and their decision making algorithms. Soft Comput., 2018, 22, 3829.
[http://dx.doi.org/10.1007/s00500-017-2838-6]
[25]
Alcantud, J.C.R.; Laruelle, A. Dis & approval voting: a characterization. Soc. Choice Welfare, 2014, 43, 1.
[http://dx.doi.org/10.1007/s00355-013-0766-7]
[26]
Brunelli, M.; Fedrizzi, M.; Fedrizzi, M. Fuzzy m-ary adjacency relations in social network analysis: Optimization and consensus evaluation. Inf. Fusion, 2014, 17, 36.
[http://dx.doi.org/10.1016/j.inffus.2011.11.001]
[27]
Ma, X.; Liu, Q.; Zhan, J. A survey of decision making methods based on certain hybrid soft set models. Artif. Intell. Rev., 2017, 47, 507.
[http://dx.doi.org/10.1007/s10462-016-9490-x]
[28]
Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst., 1986, 20, 87.
[http://dx.doi.org/10.1016/S0165-0114(86)80034-3]
[29]
Chen, J.; Li, S.; Ma, S.; Wang, X. m-Polar fuzzy sets: an extension of bipolar fuzzy sets. ScientificWorldJournal, 2014, 2014416530
[http://dx.doi.org/10.1155/2014/416530 PMID: 25025087]
[30]
Aktaş, H.; Çağman, N. Soft sets and soft groups. Inf. Sci., 2007, 177, 2726.
[http://dx.doi.org/10.1016/j.ins.2006.12.008]
[31]
Maji, P.K.; Biswas, R.; Roy, A.R. Intuitionistic fuzzy soft sets. J. Fuzzy Mathematics, 2001, 9, 677.
[32]
Zhang, X.; Xu, Z. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst., 2014, 29, 1061.
[http://dx.doi.org/10.1002/int.21676]
[33]
Yager, R.R. Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst., 2013, 22, 958.
[http://dx.doi.org/10.1109/TFUZZ.2013.2278989]
[34]
Zhang, H.; Jia-Hua, D.; Yan, C. Multi-attribute group decision-making methods based on pythagorean fuzzy N-soft sets. IEEE Access, 2020, 8, 62298.
[http://dx.doi.org/10.1109/ACCESS.2020.2984583]
[35]
Senapati, T.; Yager, R.R. Fermatean fuzzy sets. J. Ambient Intell. Humaniz. Comput., 2020, 11, 663-674.
[http://dx.doi.org/10.1007/s12652-019-01377-0]
[36]
Senapati, T.; Yager, R.R. Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell., 2019, 85, 112.
[http://dx.doi.org/10.1016/j.engappai.2019.05.012]
[37]
Senapati, T.; Yager, R.R. Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making. Informatica, 2019, 30, 391.
[http://dx.doi.org/10.15388/Informatica.2019.211]
[38]
Farajzadeh, A.; Hosseinpour, A.; Kumam, W. On boundary value problems in normed fuzzy spaces; Thai J. Mathematics, 2020.
[39]
Munkong, J.; Ungchittrakool, K.; Farajzadeh, A. Auxiliary problem and iterative algorithm for perturbation of a generalized fuzzy mixed equilibrium problem in Hilbert space. J. Nonlinear Convex Anal., 2020, 21, 205.
[40]
Munkong, J.; Farajzadeh, A.; Ungchittrakool, K. Some existence theorems of generalized vector variational-like inequalities in fuzzy environment. J. Comput. Anal. Appl., 2019, 26.
[41]
Halimi, S.M.; Farajzadeh, A.P.; Kaewcharoen, A. On generalized strong vector variational inequality problem with fuzzy mappings. Thai J. Mathematics, 2018, 16, 79.
[42]
Siripitukdet, M.; Farajzadeh, A.; Julatha, P. Characterization of semigroup in ierm of their q, delta fuzzy ideals. JP J. Algebra Number Theory, 2017, 39, 815.
[43]
Zeng, S.; Shoaib, M.; Ali, S.; Abbas, Q.; Nadeem, M.S. Complex vague graphs and their application in decision-making problems. IEEE Access, 2020, 8174094
[http://dx.doi.org/10.1109/ACCESS.2020.3025974]
[44]
Mahmood, M.K.; Zeng, S.; Gulfam, M.; Ali, S.; Jin, Y. Bipolar neutrosophic dombi aggregation operators with application in multi-attribute decision making problems. IEEE Access, 2020, 8156600
[http://dx.doi.org/10.1109/ACCESS.2020.3019485]
[45]
Gulzar, M.; Alghazzawi, D.; Mateen, M.H.; Premkumar, M. On some characterization of Q-complex fuzzy sub-rings. J. Math. Com. Sci., 2021, 22, 295.
[http://dx.doi.org/10.22436/jmcs.022.03.08]
[46]
Gulzar, M.; Alghazzawi, D.; Mateen, M.H.; Kausar, N. A Certain Class of t-Intuitionistic Fuzzy Subgroups. IEEE Access, 2020, 8163260
[http://dx.doi.org/10.1109/ACCESS.2020.3020366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy