Abstract
This review collects for the first time enantioselective one-pot processes promoted by green chiral zinc catalysts. It illustrates how much these cheap, non-toxic and environmentally benign catalysts allow unprecedented asymmetric domino and tandem reactions of many types to be achieved, allowing direct access to a wide variety of very complex chiral molecules.
Keywords: Asymmetric one-pot reactions, asymmetric domino reactions, asymmetric tandem reactions, asymmetric zinc catalysis, metal catalysis, chirality.
Graphical Abstract
[http://dx.doi.org/10.1016/j.jhazmat.2019.121019] [PMID: 31442687]
[http://dx.doi.org/10.1016/j.jmst.2020.06.023]
[http://dx.doi.org/10.1016/j.jmst.2020.01.025]
[http://dx.doi.org/10.1029/95RG01302]
(b) Beller, M.; Bolm, C. Transition Metals for Organic Synthesis; Wiley-VCH: Weinheim, 1998.
[http://dx.doi.org/10.1002/9783527619399]
(c) Jacobsen, E.N.; Pfaltz, A.; Yamamoto, H. Comprehensive Asymmetric Catalysis; Springer: Berlin, 1999.
[http://dx.doi.org/10.1007/978-3-642-58571-5]
(d) Ojima, I. Catalytic Asymmetric Synthesis; Wiley-VCH. , 2000.
[http://dx.doi.org/10.1002/0471721506]
(e) Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis; John Wiley & Sons: Hoboken,, 2002.
(f) de Meijere, A.; von Zezschwitz, P.; Nüske, H.; Stulgies, B. New Cascade and Multiple Cross-Coupling Reactions for the Efficient Construction of Complex Molecules. J. Organomet. Chem., 2002, 653, 129-140.
[http://dx.doi.org/10.1016/S0022-328X(02)01168-3]
(g) Beller, M.; Bolm, C. Metals for Organic Synthesis, 2nd ed; Wiley-VCH: Weinheim, 2004.
(h) Tietze, L.F.; Ila, H.; Bell, H.P. Enantioselective palladium-catalyzed transformations. Chem. Rev., 2004, 104(7), 3453-3516.
[http://dx.doi.org/10.1021/cr030700x] [PMID: 15250747]
(i) Ramón, D.J.; Yus, M. In the arena of enantioselective synthesis, titanium complexes wear the laurel wreath. Chem. Rev., 2006, 106(6), 2126-2208.
[http://dx.doi.org/10.1021/cr040698p] [PMID: 16771446]
(j) Pellissier, H.; Clavier, H. Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Chem. Rev., 2014, 114, 2775-2823.
[http://dx.doi.org/10.1021/cr4004055] [PMID: 24428605]
(k) Pellissier, H. Recent Advances in Enantioselective Vanadium-Catalyzed Transformations. Coord. Chem. Rev., 2015, 284, 93-110.
[http://dx.doi.org/10.1016/j.ccr.2014.09.014]
(l) Pellissier, H. Enantioselective Silver-Catalyzed Transformations. Chem. Rev., 2016, 116(23), 14868-14917.
[http://dx.doi.org/10.1021/acs.chemrev.6b00639] [PMID: 27960274]
[http://dx.doi.org/10.1039/C5RA10102F]
(b) Bauer, T. Enantioselective dialkylzinc-mediated alkynylation, arylation and alkenylation of carbonyl compounds. Coord. Chem. Rev., 2015, 299, 83-150.
[http://dx.doi.org/10.1016/j.ccr.2015.03.025]
(c) Saranya, S.; Harry, N.A.; Ujwaldev, S.M.; Anilkumar, G. Recent Advances and Perspectives on the Zinc-Catalyzed Nitroaldol (Henry) Reaction. Asian J. Org. Chem., 2017, 6, 1349-1360.
[http://dx.doi.org/10.1002/ajoc.201700290]
(d) Wu, H-L.; Chang, C-A.; Wu, P-Y.; Uang, B-J. Recent developments in Zn-catalyzed asymmetric addition reaction to ketones: Syntheses of chiral tertiary alcohols. Tetrahedron Lett., 2017, 58, 706-710.
[http://dx.doi.org/10.1016/j.tetlet.2017.01.034]
(e) Rohit, K.R.; Ujwaldev, S.M.; Krishnan, K.K.; Anilkumar, G. Recent Developments and Perspectives in the Zinc-Catalysed Michael Addition. Asian J. Org. Chem., 2018, 7, 85-102.
[http://dx.doi.org/10.1002/ajoc.201700491]
(b) Bunce, R.A. Recent advances in the use of tandem reactions for organic synthesis. Tetrahedron, 1995, 51, 13103-13159.
[http://dx.doi.org/10.1016/0040-4020(95)00649-S]
(c) Padwa, A.; Weingarten, M.D. Cascade Processes of Metallo Carbenoids. Chem. Rev., 1996, 96(1), 223-270.
[http://dx.doi.org/10.1021/cr950022h] [PMID: 11848752]
(d) Tietze, L.F.; Rackelmann, N. Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl. Chem., 2004, 76, 1967-1983.
[http://dx.doi.org/10.1351/pac200476111967]
(e) Fogg, D.E.; dos Santos, E.N. Tandem catalysis: a taxonomy and illustrative review. Coord. Chem. Rev., 2004, 248, 2365-2379.
[http://dx.doi.org/10.1016/j.ccr.2004.05.012]
(f) Wasilke, J-C.; Obrey, S.J.; Baker, R.T.; Bazan, G.C. Concurrent tandem catalysis. Chem. Rev., 2005, 105(3), 1001-1020.
[http://dx.doi.org/10.1021/cr020018n] [PMID: 15755083]
(g) Nicolaou, K.C.; Edmonds, D.J.; Bulger, P.G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. Engl., 2006, 45(43), 7134-7186.
[http://dx.doi.org/10.1002/anie.200601872] [PMID: 17075967]
(h) Chapman, C.J.; Frost, C.G. Tandem and Domino Catalytic Strategies for Enantioselective Synthesis. Synthesis, 2007, 2017(1), 1-21.
[http://dx.doi.org/10.1055/s-2006-950379]
(i) Padwa, A.; Bur, S.K. The domino way to heterocycles. Tetrahedron, 2007, 63(25), 5341-5378.
[http://dx.doi.org/10.1016/j.tet.2007.03.158] [PMID: 17940591]
(j) D’Souza, D.M.; Müller, T.J.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev., 2007, 36(7), 1095-1108.
[http://dx.doi.org/10.1039/B608235C] [PMID: 17576477]
(k) Alba, A-N.; Companyo, X.; Viciano, M.; Rios, R. Organocatalytic Domino Reactions. Curr. Org. Chem., 2009, 13, 1432-1474.
[http://dx.doi.org/10.2174/138527209789055054]
(l) Nicolaou, K.C.; Chen, J.S. The art of total synthesis through cascade reactions. Chem. Soc. Rev., 2009, 38(11), 2993-3009.
[http://dx.doi.org/10.1039/b903290h] [PMID: 19847336]
(m) de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
(n) Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[http://dx.doi.org/10.1021/cr00075a007]
(b) Tietze, L.F.; Beifuss, U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. Angew. Chem. Int. Ed. Engl., 1993, 32, 131-163.
[http://dx.doi.org/10.1002/anie.199301313]
(c) Tietze, L.F. Domino Reactions in Organic Synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
(d) Parsons, P.J.; Penkett, C.S.; Shell, A.J. Tandem Reactions in Organic Synthesis: Novel Strategies for Natural Product Elaboration and the Development of New Synthetic Methodology. Chem. Rev., 1996, 96(1), 195-206.
[http://dx.doi.org/10.1021/cr950023+] [PMID: 11848750]
(e) Dalko, P.I.; Moisan, L. In the golden age of organocatalysis. Angew. Chem. Int. Ed. Engl., 2004, 43(39), 5138-5175.
[http://dx.doi.org/10.1002/anie.200400650] [PMID: 15455437]
(f) Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew. Chem. Int. Ed. Engl., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
(g) Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005.
[http://dx.doi.org/10.1002/3527605118]
(h) Tietze, L.F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
[http://dx.doi.org/10.1002/9783527609925]
(i) Pellissier, H. Asymmetric domino reactions. Part B: Reactions based on the use of chiral catalysts and biocatalysts. Tetrahedron, 2006, 62, 2143-2173.
[http://dx.doi.org/10.1016/j.tet.2005.10.041]
(j) Pellissier, H. Asymmetric domino reactions. Part A: Reactions based on the use of chiral auxiliaries. Tetrahedron, 2006, 62, 1619-1665.
[http://dx.doi.org/10.1016/j.tet.2005.10.040]
(k) Enders, D.; Grondal, C.; Hüttl, M.R.M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed. Engl., 2007, 46(10), 1570-1581.
[http://dx.doi.org/10.1002/anie.200603129] [PMID: 17225236]
(l) Guillena, G.; Ramon, D.J.; Yus, M. Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron Asymmetry, 2007, 18, 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002]
(m) Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
(n) Orru, R.V.A.; Ruijter, E. Synthesis of Heterocycles via Multicomponent Reactions, Topics in Heterocyclic Chemistry; Springer: Berlin, 2010.
(o) Pellissier, H. Recent Developments in Asymmetric Organocatalytic Domino Reactions. Adv. Synth. Catal., 2012, 354, 237-294.
[http://dx.doi.org/10.1002/adsc.201100714]
(p) Clavier, H.; Pellissier, H. Recent Developments in Enantioselective Metal-Catalyzed Domino Reactions. Adv. Synth. Catal., 2012, 354, 3347-3403.
[http://dx.doi.org/10.1002/adsc.201200254]
(q) Pellissier, H. Stereocontrolled domino reactions. Chem. Rev., 2013, 113(1), 442-524.
[http://dx.doi.org/10.1021/cr300271k] [PMID: 23157479]
(r) Pellissier, H. Asymmetric Domino Reactions; Royal Society of Chemistry: Cambridge, 2013.
(s) Tietze, L.F. Domino Reactions - Concepts for Efficient Organic Synthesis; Wiley-VCH: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527671304]
(t) Zhu, J.; Wang, Q.; Wang, M. Multicomponent Reactions in Organic Synthesis; Wiley: Weinheim, 2014.
[http://dx.doi.org/10.1002/9783527678174]
(u) Herrera, R.P.; Marques-Lopez, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; Wiley: Weinheim, 2015.
(v) Snyder, S.A. Science of Synthesis. In:Applications of Domino Transformations in Organic Synthesis; Thieme Verlag: Stuttgart, 2016.
(w) Pellissier, H. Recent Developments in Enantioselective Metal-Catalyzed Domino Reactions. Adv. Synth. Catal., 2016, 358, 2194-2259.
[http://dx.doi.org/10.1002/adsc.201600462]
(x) Pellissier, H. Recent developments in enantioselective metal-catalyzed domino reactions. Adv. Synth. Catal., 2019, 361, 1733-1755.
[http://dx.doi.org/10.1002/adsc.201801371]
[http://dx.doi.org/10.1136/bmj.326.7386.409] [PMID: 12595353]
[http://dx.doi.org/10.1111/fcp.12110] [PMID: 25659970]
[http://dx.doi.org/10.3390/ijms18112334] [PMID: 29113075]
[http://dx.doi.org/10.1111/j.1469-8137.2007.01996.x] [PMID: 17286818]
[http://dx.doi.org/10.1039/B815482A] [PMID: 19177216]
[http://dx.doi.org/10.1051/agro:2002073]
[http://dx.doi.org/10.1016/S0021-9258(17)41344-5] [PMID: 21023625]
[http://dx.doi.org/10.1016/j.aquatox.2006.01.006] [PMID: 16472524]
[http://dx.doi.org/10.1093/ajcn/51.2.225] [PMID: 2407097]
[http://dx.doi.org/10.1186/s13011-015-0025-2] [PMID: 26238243]
[http://dx.doi.org/10.1016/j.tet.2014.12.022]
[http://dx.doi.org/10.1002/9783527675944]
(b) Enthaler, S. Rise of the Zinc Age in Homogeneous Catalysis? ACS Catal., 2013, 3, 150-158.
[http://dx.doi.org/10.1021/cs300685q]
(c) Wu, X-F.; Neumann, H. Zinc‐Catalyzed Organic Synthesis: C‒C, C‒N, C‒O Bond Formation Reactions. Adv. Synth. Catal., 2012, 354, 3141-3160.
[http://dx.doi.org/10.1002/adsc.201200547]
[http://dx.doi.org/10.1039/C4CS00430B] [PMID: 25708795]
[http://dx.doi.org/10.1002/adsc.201800868]
[http://dx.doi.org/10.1002/slct.201904146]
[http://dx.doi.org/10.1021/ja00163a052]
(b) Sawamura, M.; Nagata, H.; Sakamoto, H.; Ito, Y. Chiral phosphine ligands modified by crown ethers: an application to palladium-catalyzed asymmetric allylation of. beta.-diketones. J. Am. Chem. Soc., 1992, 114, 2586-2592.
[http://dx.doi.org/10.1021/ja00033a035]
[http://dx.doi.org/10.1021/ja003033n]
[http://dx.doi.org/10.1021/ar500374r] [PMID: 25650587]
[http://dx.doi.org/10.1002/1521-3773(20020301)41:5<861::AID-ANIE861>3.0.CO;2-V] [PMID: 12491361]
[http://dx.doi.org/10.1021/ja028782e] [PMID: 12517138]
(b) Trost, B.M.; Jaratjaroonphong, J.; Reutrakul, V. A direct catalytic asymmetric Mannich-type reaction via a dinuclear zinc catalyst: synthesis of either anti- or syn-α-hydroxy-β-amino ketones. J. Am. Chem. Soc., 2006, 128(9), 2778-2779.
[http://dx.doi.org/10.1021/ja057498v] [PMID: 16506738]
[http://dx.doi.org/10.1021/ja809723u] [PMID: 19281239]
(b) Trost, B.M.; Hirano, K. Highly stereoselective synthesis of α-alkyl-α-hydroxycarboxylic acid derivatives catalyzed by a dinuclear zinc complex. Angew. Chem. Int. Ed. Engl., 2012, 51(26), 6480-6483.
[http://dx.doi.org/10.1002/anie.201201116] [PMID: 22644705]
[http://dx.doi.org/10.1021/ja054871q] [PMID: 16390095]
(b) Trost, B.M.; Quintard, A. Asymmetric catalytic alkynylation of acetaldehyde: application to the synthesis of (+)-tetrahydropyrenophorol. Angew. Chem. Int. Ed. Engl., 2012, 51(27), 6704-6708.
[http://dx.doi.org/10.1002/anie.201203035] [PMID: 22674869]
[http://dx.doi.org/10.1021/ja711080y] [PMID: 18237176]
[http://dx.doi.org/10.1021/ol300577y] [PMID: 22545918]
[http://dx.doi.org/10.1002/anie.201306749] [PMID: 24155160]
[http://dx.doi.org/10.1016/j.tet.2014.06.109]
[http://dx.doi.org/10.1038/s41929-018-0093-6]
[http://dx.doi.org/10.1021/acs.orglett.9b00496] [PMID: 30829494]
[http://dx.doi.org/10.1021/acs.orglett.0c00318] [PMID: 32017581]
[http://dx.doi.org/10.1039/C9OB00544G] [PMID: 30969299]
[http://dx.doi.org/10.1039/C9OB01233H] [PMID: 31310252]
[http://dx.doi.org/10.1021/acscatal.8b03694]
(b) Pellissier, H. Synthesis of Chiral 3-Substituted 3-Amino-2-oxindoles through Enantioselective Catalytic Domino and Tandem Reactions. Synthesis, 2019, 51, 1311-1318.
[http://dx.doi.org/10.1055/s-0037-1610350]
[http://dx.doi.org/10.1021/acs.joc.9b03378] [PMID: 32083864]
[http://dx.doi.org/10.1002/chem.201501655] [PMID: 26177976]
[http://dx.doi.org/10.1021/acs.orglett.9b00386] [PMID: 30865463]
[http://dx.doi.org/10.1021/acs.orglett.9b02658] [PMID: 31456408]
[http://dx.doi.org/10.1039/D0OB00541J] [PMID: 32400845]
[http://dx.doi.org/10.1021/acs.joc.9b00645] [PMID: 31145619]
[http://dx.doi.org/10.1002/9783527635207.ch5]
(b) Desimoni, G.; Faita, G.; Jørgensen, K.A. Update 1 of: C2-symmetric chiral bis(oxazoline) ligands in asymmetric catalysis. Chem. Rev., 2011, 111(11), PR284-PR437.
[http://dx.doi.org/10.1021/cr100339a] [PMID: 22077602]
[http://dx.doi.org/10.1002/asia.201100561] [PMID: 22174103]
[http://dx.doi.org/10.1002/anie.200602042] [PMID: 16874830]
[http://dx.doi.org/10.1002/anie.200300635] [PMID: 15352183]
(b) Shao, Z.; Zhang, H. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Chem. Soc. Rev., 2009, 38(9), 2745-2755.
[http://dx.doi.org/10.1039/b901258n] [PMID: 19690751]
(c) Zhong, C.; Shi, X. When Organocatalysis Meets Transition-Metal Catalysis. Eur. J. Org. Chem., 2010, 2999-3025.
[http://dx.doi.org/10.1002/ejoc.201000004]
(d) Rueping, M.; Koenigs, R.M.; Atodiresei, I. Unifying metal and Brønsted acid catalysis--concepts, mechanisms, and classifications. Chemistry, 2010, 16(31), 9350-9365.
[http://dx.doi.org/10.1002/chem.201001140] [PMID: 20665582]
(e) Zhou, J. Recent advances in multicatalyst promoted asymmetric tandem reactions. Chem. Asian J., 2010, 5(3), 422-434.
[http://dx.doi.org/10.1002/asia.200900458] [PMID: 20052703]
(f) Ambrosini, L.M.; Lambert, T.H. Multicatalysis: Advancing Synthetic Efficiency and Inspiring Discovery. ChemCatChem, 2010, 2, 1373-1380.
[http://dx.doi.org/10.1002/cctc.200900323]
(g) Piovesana, S.; Scarpino Schietroma, D.M.; Bella, M. Multiple catalysis with two chiral units: an additional dimension for asymmetric synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6216-6232.
[http://dx.doi.org/10.1002/anie.201005955] [PMID: 21608089]
(h) Shibasaki, M.; Kanai, M.; Matsunaga, S.; Kumagai, N. Multimetallic Multifunctional Catalysts for Asymmetric Reactions. Top. Organomet. Chem., 2011, 37, 1-30.
[http://dx.doi.org/10.1007/3418_2011_1]
(i) Patil, N.T. Merging metal and N-heterocyclic carbene catalysis: on the way to discovering enantioselective organic transformations. Angew. Chem. Int. Ed. Engl., 2011, 50(8), 1759-1761.
[http://dx.doi.org/10.1002/anie.201006866] [PMID: 21271627]
(j) Patil, N.T.; Shinde, V.S.; Gajula, B. A one-pot catalysis: the strategic classification with some recent examples. Org. Biomol. Chem., 2012, 10(2), 211-224.
[http://dx.doi.org/10.1039/C1OB06432K] [PMID: 22072256]
(k) Allen, A.E.; Macmillan, D.W.C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. (Camb.), 2012, 2012(3), 633-658.
[http://dx.doi.org/10.1039/c2sc00907b] [PMID: 22518271]
(l) Park, J.; Hong, S. Cooperative bimetallic catalysis in asymmetric transformations. Chem. Soc. Rev., 2012, 41(21), 6931-6943.
[http://dx.doi.org/10.1039/c2cs35129c] [PMID: 22842925]
(m) Du, Z.; Shao, Z. Combining transition metal catalysis and organocatalysis--an update. Chem. Soc. Rev., 2013, 42(3), 1337-1378.
[http://dx.doi.org/10.1039/C2CS35258C] [PMID: 23154522]
(n) Schindler, C.S.; Jacobsen, E.N. Chemistry. A new twist on cooperative catalysis. Science, 2013, 340(6136), 1052-1053.
[http://dx.doi.org/10.1126/science.1238769] [PMID: 23723222]
(o) Pellissier, H. Recent Developments in Enantioselective Multicatalysed Tandem Reactions. Tetrahedron, 2013, 69, 7171-7210.
[http://dx.doi.org/10.1016/j.tet.2013.06.020]
(p) Pellissier, H. Enantioselective Multicatalysed Tandem Reactions; Royal Society of Chemistry: Cambridge, 2014.
(q) Chen, D-F.; Han, Z-Y.; Zhou, X-L.; Gong, L-Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Acc. Chem. Res., 2014, 47(8), 2365-2377.
[http://dx.doi.org/10.1021/ar500101a] [PMID: 24911184]
(r) Matsunaga, S.; Shibasaki, M. Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes. Chem. Commun. (Camb.), 2014, 50(9), 1044-1057.
[http://dx.doi.org/10.1039/C3CC47587E] [PMID: 24281133]
(s) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev., 2014, 114(18), 9047-9153.
[http://dx.doi.org/10.1021/cr5001496] [PMID: 25203602]
(t) Lohr, T.L.; Marks, T.J. Orthogonal tandem catalysis. Nat. Chem., 2015, 7(6), 477-482.
[http://dx.doi.org/10.1038/nchem.2262] [PMID: 25991525]
(u) Inamdar, S.M.; Shinde, V.S.; Patil, N.T. Enantioselective cooperative catalysis. Org. Biomol. Chem., 2015, 13(30), 8116-8162.
[http://dx.doi.org/10.1039/C5OB00986C] [PMID: 26123696]
(v) Zhou, J. Multicatalyst System in Asymmetric Catalysis; Wiley: Weinheim, 2015.
(w) Galvan, A.; Fananas, F.J.; Rodriguez, F. Multicomponent and Multicatalytic Reactions – A Synthetic Strategy Inspired by Nature. Eur. J. Inorg. Chem., 2016, 1306-1313.
[http://dx.doi.org/10.1002/ejic.201501287]
(x) Afewerki, S.; Córdova, A. Combinations of Aminocatalysts and Metal Catalysts: A Powerful Cooperative Approach in Selective Organic Synthesis. Chem. Rev., 2016, 116(22), 13512-13570.
[http://dx.doi.org/10.1021/acs.chemrev.6b00226] [PMID: 27723291]
[http://dx.doi.org/10.1002/anie.200904905] [PMID: 19894243]
[http://dx.doi.org/10.1002/adsc.201100482]
[http://dx.doi.org/10.1002/chem.201303583] [PMID: 24677230]
[http://dx.doi.org/10.1021/acs.orglett.5b02489] [PMID: 26412346]
[http://dx.doi.org/10.1002/adsc.201701557]
[http://dx.doi.org/10.1002/adsc.201800266]
[http://dx.doi.org/10.1039/C2CS35370A] [PMID: 23172010]
[http://dx.doi.org/10.1021/jacs.5b00033] [PMID: 25821893]
[http://dx.doi.org/10.1039/D0CC00693A] [PMID: 32167511]
[http://dx.doi.org/10.1021/ar200015s] [PMID: 21702458]
(b) Liu, X.; Lin, L.; Feng, X.; Chiral, N. N -dioxide ligands: synthesis, coordination chemistry and asymmetric catalysis. Org. Chem. Front., 2014, 1, 298-302.
[http://dx.doi.org/10.1039/c3qo00059a]
[http://dx.doi.org/10.1021/ol2019949] [PMID: 21859119]
[http://dx.doi.org/10.1002/anie.201810961] [PMID: 30644632]
[http://dx.doi.org/10.1002/anie.201910898] [PMID: 31613040]
[http://dx.doi.org/10.1002/adsc.200900219]
[http://dx.doi.org/10.1021/acs.joc.5b00055] [PMID: 25621816]
[http://dx.doi.org/10.1021/acs.joc.5b01871] [PMID: 26579727]
[http://dx.doi.org/10.1002/adsc.201901457]
[http://dx.doi.org/10.1002/chem.200601347] [PMID: 17186561]
[http://dx.doi.org/10.1039/C6CC09457K] [PMID: 28106898]
[http://dx.doi.org/10.1002/anie.201909596] [PMID: 31489736]
[http://dx.doi.org/10.1021/acs.orglett.0c02505] [PMID: 32822188]