Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Triazoloquinolines I: Synthetic Methods and Pharmacological Properties of [1,2,3]triazoloquinoline Derivatives

Author(s): Rizk E. Khidre*, Ibrahim M.A. Radini, Tahah A. Ameen and Ahmed A.M. Abdelgawad

Volume 25, Issue 8, 2021

Published on: 02 February, 2021

Page: [876 - 893] Pages: 18

DOI: 10.2174/1385272825666210202122645

Price: $65

Abstract

This review deals with the synthetic methods and pharmacological properties of [1,2,3]triazoloquinoline derivatives. There are ten isomers of fused [1,2,3]triazoloquinoline according to the junction between triazole and quinoline. The synthetic methods are subdivided into groups according to the type of isomers. The pharmacological activity of [1,2,3]triazoloquinoline was also reported.

Keywords: 1, 2, 3-Triazoloquinoline, quinoline, triazole, synthesis, heterocycles, pharmacological activities.

Graphical Abstract

[1]
Gomtsyan, A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd., 2012, 48, 7-10.
[http://dx.doi.org/10.1007/s10593-012-0960-z]
[2]
Pozharsky, A.F.; Soldatenkov, A.T.; Katritzky, A.R. Heterocycles in life and society: an introduction to heterocyclic chemistry, biochemistry and applications. In:Heterocycles in Life and Society; JohnWiley: Chichester, 2011.
[http://dx.doi.org/10.1002/9781119998372]
[3]
Morimoto, Y.; Matsuda, F.; Shirahama, H. Total synthesis of (±)-virantmycin and determination of its stereochemistry. Synlett, 1991, 1991(3), 202-203.
[http://dx.doi.org/10.1055/s-1991-20680]
[4]
Isobe, M.; Nishikawa, T.; Yamamoto, N.; Tsukiyama, T.; Ino, A.; Okita, T. Methodologies for synthesis of heterocyclic compounds. J. Heterocycl. Chem., 1992, 29(3), 619-625.
[http://dx.doi.org/10.1002/jhet.5570290303]
[5]
Michael, J.P. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep., 1997, 14(1), 11-20.
[http://dx.doi.org/10.1039/np9971400011] [PMID: 9121729]
[6]
Navneetha, O.; Deepthi, K.; Rao, A.M.; Jyostna, T.S. A review on chemotherapeutic activities of quinoline. Int. J. Pharm. Chem. Biol. Sci., 2017, 7(4), 364-372.
[7]
Liu, B.; Li, F.; Zhou, T.; Tang, X-Q.; Hu, G-W. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J. Heterocycl. Chem., 2018, 55(8), 1863-1873.
[http://dx.doi.org/10.1002/jhet.3241]
[8]
Hu, Y-Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L-S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[9]
Vijayakumar, V. An Overview: the biologically important quninoline derivatives. Int. J. Chemtech Res., 2016, 9, 629-634.
[10]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and therapeutic potential of quinoline derivatives. Res. Chem. Intermed., 2017, 43, 2765-2798.
[http://dx.doi.org/10.1007/s11164-016-2794-2]
[11]
Jhanwar, D.; Sharma, J. use of quinoline derivatives in cancer treatment. Int. J. Pharm. Res. Bio. Sci., 2015, 4(2), 130-148.
[12]
Chung, P-Y.; Bian, Z-X.; Pun, H-Y.; Chan, D.; Chan, A-S.; Chui, C-H.; Tang, J-C.; Lam, K-H. Recent advances in research of natural and synthetic bioactive quinolines. Future Med. Chem., 2015, 7(7), 947-967.
[http://dx.doi.org/10.4155/fmc.15.34] [PMID: 26061110]
[13]
Markees, D.G.; Dewey, V.C.; Kidder, G.W. Antiprotozoal 4-aryloxy-2-aminoquinolines and related compounds. J. Med. Chem., 1970, 13(2), 324-326.
[http://dx.doi.org/10.1021/jm00296a048] [PMID: 5418519]
[14]
Campbell, S.F.; Hardstone, J.D.; Palmer, M.J. 2,4-Diamino-6,7-dimethoxy-quinoline derivatives as alpha 1-adrenoceptor antagonists and antihypertensive agents. J. Med. Chem., 1988, 31(5), 1031-1035.
[http://dx.doi.org/10.1021/jm00400a025] [PMID: 2896245]
[15]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed. Engl., 2003, 42(43), 5274-5293.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
[16]
Elliott, J.M.; Carling, R.W.; Chambers, M.; Chicchi, G.G.; Hutson, P.H.; Jones, A.B.; MacLeod, A.; Marwood, R.; Meneses-Lorente, G.; Mezzogori, E.; Murray, F.; Rigby, M.; Royo, I.; Russell, M.G.N.; Sohal, B.; Tsao, K.L.; Williams, B.N. ′,2-diphenylquinoline-4-carbohydrazide based NK3 receptor antagonists. Bioorg. Med. Chem. Lett., 2006, 16(22), 5748-5751.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.086] [PMID: 16950620]
[17]
Duffour, J.; Gourgou, S.; Desseigne, F.; Debrigode, C.; Mineur, L.; Pinguet, F.; Poujol, S.; Chalbos, P.; Bressole, F.; Ychou, M. Multicentre phase II study using increasing doses of irinotecan combined with a simplified LV5FU2 regimen in metastatic colorectal cancer. Cancer Chemother. Pharmacol., 2007, 60(3), 383-389.
[http://dx.doi.org/10.1007/s00280-006-0372-9] [PMID: 17124595]
[18]
Alhaider, A.A.; Abdelkader, M.A.; Lien, E.J. Design, synthesis, and pharmacological activities of 2-substituted 4-phenylquinolines as potential antidepressant drugs. J. Med. Chem., 1985, 28(10), 1394-1398.
[http://dx.doi.org/10.1021/jm00148a004] [PMID: 4045918]
[19]
Desai, N.C.; Kotadiya, G.M.; Trivedi, A.R. Studies on molecular properties prediction, antitubercular and antimicrobial activities of novel quinoline based pyrimidine motifs. Bioorg. Med. Chem. Lett., 2014, 24(14), 3126-3130.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.002] [PMID: 24856067]
[20]
Sangani, C.B.; Makawana, J.A.; Zhang, X.; Teraiya, S.B.; Lin, L.; Zhu, H.L. Design, synthesis and molecular modeling of pyrazole-quinoline-pyridine hybrids as a new class of antimicrobial and anticancer agents. Eur. J. Med. Chem., 2014, 76, 549-557.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.018] [PMID: 24607998]
[21]
Patel, S.R.; Gangwal, R.; Sangamwar, A.T.; Jain, R. Synthesis, biological evaluation and 3D QSAR study of 2,4-disubstituted quinolines as anti-tuberculosis agents. Eur. J. Med. Chem., 2015, 93, 511-522.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.034] [PMID: 25747550]
[22]
Khidre, R.E.; Ameen, T.A.; Salem, M.A.I. Tetrazoloquinolines: synthesis, reactions, and applications. Curr. Org. Chem., 2020, 24(4), 439-464.
[http://dx.doi.org/10.2174/1385272824666200217095341]
[23]
Shaikh, A.; Meshram, J.S. Quinoline fused 2-azetidinone derivatives bearing dihyropyrimidinone: benign synthesis and its pharmacological assessment. Curr. Bioact. Compd., 2018, 14, 134-141.
[http://dx.doi.org/10.2174/1573407213666170201113846]
[24]
Liu, D.; Xue, A.; Liu, Z.; Zhang, Y.; Peng, P.; Wang, H. Synthesis and anti-tumor activity evaluation of novel 7-fluoro-4-(1-piperazinyl) quinolines. Lett. Drug Des. Discov., 2019, 16, 663-669.
[http://dx.doi.org/10.2174/1570180815666180820131036]
[25]
Kumari, L.; Mazumder, A.; Pandey, D.; Yar, M.S.; Kumar, R.; Mazumder, R.; Sarafroz, M.; Ahsan, M.J.; Kumar, V.; Gupta, S. Synthesis and biological potentials of quinoline analogues: a review of literature. Mini Rev. Org. Chem., 2019, 16(7), 653-688.
[http://dx.doi.org/10.2174/1570193X16666190213105146]
[26]
Sumana, K.; Prashanth, J.; Rao, K.P.; Subramanyam, M.; Anuradha, V. Rao. M.V. B. Facile synthesis of 6-phenyl-6h-chromeno [4,3-b] quinoline derivatives using NaHSO4@SiO2 re-usable catalyst and their antibacterial activity study correlated by molecular docking studies. Lett. Drug Des. Discov., 2019, 6, 1-10.
[http://dx.doi.org/10.2174/1570180816666190731115809]
[27]
Han, C.; Ren, J.; Su, F.; Hu, X.; Li, M.; Wang, Z.; Wu, L. Hybrids of quinoline and anilinopyrimidine: novel egfrt790m inhibitors with antiproliferative activity against non-small cell lung cancer cell lines. Anticancer. Agents Med. Chem., 2020, 20(6), 724-733.
[http://dx.doi.org/10.2174/1871520620666200302113206] [PMID: 32116203]
[28]
Marepu, N.; Gosi, M.; Vedula, S.S.; Yeturu, S.; Pal, M. Ultrasound-assisted synthesis of 6-substituted indolo[2,3-b]quinolines: their evaluation as potential cytotoxic agents. Mini Rev. Med. Chem., 2019, 19(7), 599-608.
[http://dx.doi.org/10.2174/1389557518666180727170055] [PMID: 30058486]
[29]
Utreja, D.; Sharma, S.; Goyal, A.; Kaur, K.; Kaushal, S. Synthesis and biological activity of quaternary quinolinium salts: a review. Curr. Org. Chem., 2019, 23(21), 2271-2294.
[http://dx.doi.org/10.2174/1385272823666191023122704]
[30]
Upadhyay, K.D.; Shah, A.K. Evaluation of pyrano[3,2-c]quinoline analogues as anticancer agents. Anticancer. Agents Med. Chem., 2019, 19(10), 1285-1292.
[http://dx.doi.org/10.2174/1871520619666190308122734] [PMID: 30854977]
[31]
Mahajan, S.; Gupta, S.; Jariwala, N.; Bhadane, D.; Bhutani, L.K.; Kulkarni, S.; Singh, I.P. Design, synthesis and anti-HIV-1 activity of modified styrylquinolines. Lett. Drug Des. Discov., 2018, 15, 937-944.
[http://dx.doi.org/10.2174/1570180815666171212143339]
[32]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[33]
Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G.C.; Sorba, G.; Genazzani, A.A. Rapid synthesis of triazole-modified resveratrol analogues via Click chemistry. J. Med. Chem., 2006, 49(2), 467-470.
[http://dx.doi.org/10.1021/jm051118z] [PMID: 16420033]
[34]
Becer, C.R.; Hoogenboom, R.; Schubert, U.S. Click chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. Engl., 2009, 48(27), 4900-4908.
[http://dx.doi.org/10.1002/anie.200900755] [PMID: 19475588]
[35]
Kim, W.G.; Choi, B.; Yang, H-J.; Han, J-A.; Jung, H.; Cho, H.; Kang, S.; Hong, S.Y. Covalent conjugation of small-molecule adjuvants to nanoparticles induces robust cytotoxic T cell responses via DC activation. Bioconjug. Chem., 2016, 27(9), 2007-2013.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00277] [PMID: 27504746]
[36]
Giroud, M.; Kuhn, B.; Saint-Auret, S.; Kuratli, C.; Martin, R.E.; Schuler, F.; Diederich, F.; Kaiser, M.; Brun, R.; Schirmeister, T.; Haap, W. 2H-1,2,3-Triazole-based dipeptidyl nitriles: potent, selective, and trypanocidal rhodesain inhibitors by structure-based design. J. Med. Chem., 2018, 61(8), 3370-3388.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01870] [PMID: 29590751]
[37]
Shen, Q.K.; Deng, H.; Wang, S.B.; Tian, Y.S.; Quan, Z.S. Synthesis, and evaluation of in vitro and in vivo anticancer activity of 14-substituted oridonin analogs: A novel and potent cell cycle arrest and apoptosis inducer through the p53-MDM2 pathway. Eur. J. Med. Chem., 2019, 173, 15-31.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.005] [PMID: 30981113]
[38]
Liu, J.; Ren, Z.; Fan, L.; Wei, J.; Tang, X.; Xu, X.; Yang, D. Design, synthesis, biological evaluation, structure-activity relationship, and toxicity of clinafloxacin-azole conjugates as novel antitubercular agents. Bioorg. Med. Chem., 2019, 27(1), 175-187.
[http://dx.doi.org/10.1016/j.bmc.2018.11.035] [PMID: 30522898]
[39]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: in vitro and in vivo biological evaluation and docking study. Bioorg. Chem., 2019, 83, 303-316.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.056] [PMID: 30396115]
[40]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[41]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700-111736.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[42]
Lal, K.; Yadav, P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(1), 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531] [PMID: 27528183]
[43]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[44]
Asif, M. A mini review on antimalarial activities of biologically active substituted triazoles derivatives. Int. J. Adv. Res. Chem. Sci., 2014, 1(6), 22-28.
[45]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q.C.; Chang, L.; Lv, Z.S.; Feng, L.S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[46]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: a promising antitubercular agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[47]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[48]
Asif, M. Pharmacological activities of triazole analogues as antibacterial, antifungal, antiviral agents. Pharm. Sci. Asia., 2017, 44(2), 59-74.
[http://dx.doi.org/10.29090/psa.2017.02.059]
[49]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[50]
Ramalingam, T.; Murty, M.S.R.; Nageswar, Y.V.D.; Sattur, P.B. Synthesis of some fused triazoloquinolines. J. Heterocycl. Chem., 1990, 27(4), 981-982.
[http://dx.doi.org/10.1002/jhet.5570270429]
[51]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: the privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[52]
Feng, L.S.; Xu, Z.; Chang, L.; Li, C.; Yan, X.F.; Gao, C.; Ding, C.; Zhao, F.; Shi, F.; Wu, X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med. Res. Rev., 2020, 40(3), 931-971.
[http://dx.doi.org/10.1002/med.21643] [PMID: 31692025]
[53]
Xu, Z. 1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 206112686
[http://dx.doi.org/10.1016/j.ejmech.2020.112686] [PMID: 32795773]
[54]
Buckle, D.R. Studies on ν-triazoles. Part 1. Synthesis of 4,9-dihydro-9-oxo-1H-ν-triazolo[4,5-b]quinolines by cyclization of 5-arylamino-ν-triazole-4-carboxylic acids with polyphosphoric acid. J. Chem. Res. Synop., 1980, 9, 308.
[55]
Buckle, D.R.; Smith, H. Buckle, D.R.; Smith, H. Triazoloquinoline derivatives and their pharmaceutical use. E.P. patent 19790627, 1979.
[56]
Chen, C-Y.; Yang, C-H.; Hu, W-P.; Kishore Vandavasi, J.; Chung, M-I.; Wang, J-J. Synthesis of fused triazolo[4,5-d]quinoline/chromene/thiochro-mene derivatives via palladium catalysis mediated by tetrabutylammonium iodide. RSC Adv,, 2013, 3(8), 2710-2719.
[http://dx.doi.org/10.1039/c2ra22799a]
[57]
Sanna, P.; Sequi, P.A.; Paglietti, G. Triazolo[4,5-f]quinolines. Part VI. Synthesis and evaluation of 9-aminoalkyl(aryl)-2-methyl-2H-[4,5-f]quinolines as anticancer agents. Preliminary results of in vitro screening. Farmaco, 1995, 50(1), 47-54.
[PMID: 7702720]
[58]
Sanna, P.; Carta, A.; Paglietti, G.; Zanetti, S.; Fadda, G. 1,2,3-triazolo[4,5-h]quinolines. III. Preparation and antimicrobial evaluation of 4-ethyl-4,7-dihydro-1(2)-R-1(2)H triazolo[4,5-h]quinolin-7-one-6-carboxylic acids as anti-infectives of the urinary tract. Farmaco, 1992, 47(7-8), 1001-1019.
[PMID: 1332728]
[59]
Nuvole, A.; Sanna, P.; Paglietti, G.; Juliano, C.; Zanetti, S.; Cappuccinelli, P. 1,2,3-triazolo[4,5-f]quinolines. II. Preparation and antimicrobial evaluation of 6-ethyl-6,9-dihydro-1(2)(3)-R-1(2) (3)H-triazolo [4,5-f]quinolin-9-one-8-carboxylic acids as anti-infectives of the urinary tract (1). Farmaco, 1989, 44(6), 619-632.
[PMID: 2553038]
[60]
Ryu, C.K.; Oh, S.Y.; Choi, S.J.; Kang, D.Y. Synthesis of antifungal evaluation of 2H-[1,2,3]Triazolo[4,5-g]isoquinoline-4,9-diones. Chem. Pharm. Bull. (Tokyo), 2014, 62(11), 1119-1124.
[http://dx.doi.org/10.1248/cpb.c14-00527] [PMID: 25196129]
[61]
Oyama, K.; Teraoka, T.; Yamamoto, K. Synthesis and antifungal evaluation of 2H-[1,2,3]triazolo[4,5-g]isoquinoline-4,9-diones. Chem. Pharm. Bull., 2002, 62(11), 1119-1124.
[62]
Carta, A.; Briguglio, I.; Piras, S.; Corona, P.; Boatto, G.; Nieddu, M.; Giunchedi, P.; Marongiu, M.E.; Giliberti, G.; Iuliano, F.; Blois, S.; Ibba, C.; Busonera, B.; La Colla, P. Quinoline tricyclic derivatives. Design, synthesis and evaluation of the antiviral activity of three new classes of RNA-dependent RNA polymerase inhibitors. Bioorg. Med. Chem., 2011, 19(23), 7070-7084.
[http://dx.doi.org/10.1016/j.bmc.2011.10.009] [PMID: 22047799]
[63]
Sanna, P.; Carta, A.; Paglietti, G. Synthesis of two novel tricyclic rings: triazolo[4,5-g]quinolines and pyrido[2,3-g]quinoxalines derived from 6,7-diaminoquinolines. Heterocycles, 2000, 53(2), 423-432.
[http://dx.doi.org/10.3987/COM-99-8766]
[64]
Khidre, R.E.; Abdou, W.M. Wittig-Horner reagents: powerful tools in the synthesis of 5-and 6-heterocyclic compounds; shedding light on their application in pharmaceutical chemistry. Turk. J. Chem., 2016, 40, 225-247.
[http://dx.doi.org/10.3906/kim-1502-56]
[65]
Khidre, R.E.; Abdel-Wahab, B.F. Application of benzoylaceteonitrile in the synthesis of pyridines derivatives. Curr. Org. Chem., 2013, 17, 430-445.
[http://dx.doi.org/10.2174/1385272811317040009]
[66]
Radini, I.A.M.; Abdel-Wahab, B.F.; Khidre, R.E. Synthetic routes to imidazothiazines. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 844-856.
[http://dx.doi.org/10.1080/10426507.2015.1119148]
[67]
Khidre, R.E.; Radini, I.A.M.; Mostafa, M.S.; Ameen, T.A. Synthetic applications of 2-diazo-1,3-indanedione. Indian J. Heterocycl. Chem., 2019, 29, 167-179.
[68]
Khidre, R.E.; Radini, I.A.M.; Ibrahim, D.A. Synthetic approaches of pyrazolyl quinolines. Mini Rev. Org. Chem., 2019, 16, 353-360.
[http://dx.doi.org/10.2174/1570193X15666180419142511]
[69]
Abdou, W.M.; Khidre, R.E. Overview of the chemical reactivity of phosphonyl carbanions toward some carbon-nitrogen systems. Curr. Org. Chem., 2012, 16, 913-930.
[http://dx.doi.org/10.2174/138527212800194782]
[70]
Deeb, A.; Abdelgawad, A.A.M. Utility of 3-amino-1H-pyrazolo[3,4-c]pyridazine in heterocyclic synthesis. Chem. Heterocycl. Compd., 2015, 51(9), 785-798.
[http://dx.doi.org/10.1007/s10593-015-1776-4]
[71]
Deeb, A.; Abdelgawad, A.A.M. Heterocyclization of 5-aminothieno[2,3-c]pyridazine-6-carbonitriles. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(10), 637-650.
[http://dx.doi.org/10.1080/10426507.2018.1487438]
[72]
Schaefer, H.; Gewald, K.; Seifert, M. Synthesis and reactions of 2-arylamino-3-nitroquinolines. J. Prakt. Chem. (Leipzig), 1976, 318(1), 39-50.
[73]
Fleet, G.W.J.; Fleming, I. Preparation of some N-(aminotriazolo)pyridines and -quinolines, their oxidation with lead tetraacetate, and the trapping of the resulting pyridynes and quinolynes with tetraphenylcylopentadienone (tetracyclone). J. Chem. Soc., 1969, 13, 1758-1763.
[http://dx.doi.org/10.1039/J39690001758]
[74]
Chan, T.M.; Friary, R.; Jones, H.; Schwerdt, J.H.; Seidl, V.; Watnick, A.S.; Williams, S.M. Transaminations of enaminones: a synthesis of tricyclic, N-aryl, 1,2,3-triazole-fused pyridones. J. Heterocycl. Chem., 1990, 27(4), 1135-1142.
[http://dx.doi.org/10.1002/jhet.5570270462]
[75]
Abbasi, M.M.; Nasr, M.; Zoorob, H.H. Base induced cyclization of some quinolines. Formation of fused nitrogen heterocyclic ring system. Monatsh. Chem., 1980, 111(4), 963-969.
[http://dx.doi.org/10.1007/BF00899263]
[76]
Upadhyaya, K.; Ajay, A.; Mahar, R.; Pandey, R.; Kumar, B.; Shukla, S.K.; Tripathi, R.P. A strategy to access fused triazoloquinoline and related nucleoside analogs. Tetrahedron, 2013, 69(40), 8547-8558.
[http://dx.doi.org/10.1016/j.tet.2013.07.088]
[77]
Li, K.; Chen, J.; Li, J.; Chen, Y.; Qu, J.; Guo, X.; Chen, C.; Chen, B. One-pot synthesis of 4-substituted 1H-[1,2,3]triazolo[4,5-c]quinolines through CuO-promoted tandem cyclization reactions of (E)-3-(2-bromoaryl)-1-arylprop-2-en-1-ones with sodium azide. Eur. J. Org. Chem., 2013, 2013(28), 6246-6248.
[http://dx.doi.org/10.1002/ejoc.201300924]
[78]
Fujita, M.; Egawa, H.; Kataoka, M.; Miyamoto, T.; Nakano, J.; Matsumoto, J. Imidazo- and triazoloquinolones as antibacterial agents. Synthesis and structure-activity relationships. Chem. Pharm. Bull. (Tokyo), 1995, 43(12), 2123-2132.
[http://dx.doi.org/10.1248/cpb.43.2123] [PMID: 8582014]
[79]
Kamel, M.; Sherif, S.; Issa, R.M.; Abd-El-Hay, F.I. Studies on triazolo-and imidazo-[4.5-f]quinolines. Tetrahedron, 1973, 29(1), 221-225.
[http://dx.doi.org/10.1016/S0040-4020(01)99399-8]
[80]
Unangst, P.C.; Heindel, N.D. Preparation of 1,2,3-triazolo[4,5-f]quinoline N-oxides from 6-nitro-5,8-dimethoxyquinaldine. Org. Prep. Proced. Int., 1974, 6(6), 295-298.
[http://dx.doi.org/10.1080/00304947409355123]
[81]
Sanna, P.; Sequi, A.; Piras, S.; Paglietti, G. Reaction of 5-aminobenzotriazoles with methyl propiolate. Formation of triazolo[4,5-f]quinolines and related compounds. Unusual products in the Michael addition reaction of 2-methyl-2H-5-aminobenzotriazole. Heterocycles, 1995, 41(11), 2459-2474.
[http://dx.doi.org/10.3987/COM-95-7145]
[82]
Sanna, P.; Carta, A.; Paglietti, G. Synthesis of triazolo[4,5-f]quinolines. An unusual case of displacement of a nitro group in the reaction of 8-acetylamino-6-chloro-5-nitroquinoline with hydrazine and methylhydrazine. Heterocycles, 1999, 50(2), 693-702.
[http://dx.doi.org/10.3987/COM-98-S(H)34]
[83]
Kutkevicius, S.; Stanisauskaite, A.; Svilainis, A. Study of products from the reaction of 2-phenyl-5-amino-1,2,3-benzotriazole with epichlorohydrin; Deposited Doc, 1977.
[84]
Sanna, P.; Paglietti, G. 1,2,3-Triazolo[4,5-f]quinolines. I. A new class of heterocyclic compounds derived from 5-aminobenzotriazoles, β-ketoesters and diethyl ethoxymethylenemalonate of potential pharmacological interest. Farmaco, 1989, 44(6), 609-618.
[85]
Milata, V.; Ilavsky, D. Thermal cyclocondensations of 3-N-(4- and 5-benzimidazolyl- and benztriazolyl)amino derivatives of 2-propenoic acid. Collect. Czech. Chem. Commun., 1987, 52(12), 2918-2925.
[http://dx.doi.org/10.1135/cccc19872918]
[86]
Milata, V.; Ilavsky, D. Synthesis and spectral properties of 9-oxo-6,9-dihydroimidazo- and triazoloquinoline-8-carboxylic acids and esters. Stud. Org. Chem., 1988, 35, 424-426.
[87]
Carta, A.; Sias, A.; Piras, S.; Paglietti, G. Reactions of alkylation of biologically interesting triazolo[4,5-g]quinolines and triazolo[4,5-g]quinoline-1-oxides with electrophilic reagents. Heterocycles, 2008, 75(10), 2493-2505.
[http://dx.doi.org/10.3987/COM-08-11415]
[88]
Carta, A.; Paglietti, G. A new synthesis of triazolo[4,5-g]quinolines and unexpected ring reduced products by treatment with hydrazine hydrate. ARKIVOC, 2004, (5), 66-75.
[http://dx.doi.org/10.3998/ark.5550190.0005.507]
[89]
Milata, V.; Ilavsky, D.; Goljer, I.; Lesko, J.; Chahinian, M.; Henry-Basch, E. 4-Vinylamino derivatives of 2-methylbenzotriazole. Collect. Czech. Chem. Commun., 1990, 55(4), 1038-1048.
[http://dx.doi.org/10.1135/cccc19901038]
[90]
Ferlin, M.G.; Castagliuolo, I.; Chiarelotto, G. Synthesis and characterization of some N-Mannich bases of [1,2,3]triazoloquinolines. J. Heterocycl. Chem., 2002, 39(4), 631-638.
[http://dx.doi.org/10.1002/jhet.5570390405]
[91]
Slater, R.H. Quinoline compounds containing arsenic. V. Synthesis of 7,8-triazoloquinoline-5-arsonic acid. J. Chem. Soc., 1932, 2196-2197.
[http://dx.doi.org/10.1039/jr9320002196]
[92]
Abramovitch, R.A.; Takaya, T. Reaction of sulfonyl azides with pyridines and fused pyridine derivatives. J. Org. Chem., 1972, 37(12), 2022-2029.
[http://dx.doi.org/10.1021/jo00977a035]
[93]
Xiang, J.; Yin, Y-G.; Mei, P. Cu(II)-assisted oxidation of quinoline-2-carbaldehyde hydrazone to give [1,2,3]triazolo[1,5-a]quinoline: The first example of Cu(I) complex containing [1,2,3]triazolo-ligand. Inorg. Chem. Commun., 2007, 10(10), 1168-1171.
[http://dx.doi.org/10.1016/j.inoche.2007.06.013]
[94]
Ballesteros-Garrido, R.; Leroux, F.R.; Ballesteros, R.; Abarca, B.; Colobert, F. The deprotonative metalation of [1,2,3]triazolo[1,5-a]quinoline. Synthesis of 8-haloquinoline-2-carboxaldehydes. Tetrahedron, 2009, 65(22), 4410-4417.
[http://dx.doi.org/10.1016/j.tet.2009.03.058]
[95]
Abarca, B.; Ballesteros, R.; Elmasnouy, M. Triazolopyridines 20. hydrogenation reactions. Tetrahedron, 1999, 55(44), 12881-12884.
[http://dx.doi.org/10.1016/S0040-4020(99)00761-9]
[96]
Abarca, B.; Gomez-Aldaravi, E.; Jones, G. Triazolopyridines. Part 4. Directed lithiation using 1,2,3-triazolo[1,5-a]quinoline. J. Chem. Res. Synop., 1984, 15(34), 140-141.
[http://dx.doi.org/10.1002/CHIN.198434207]
[97]
Abbott, P.A.; Bonnert, R.V.; Caffrey, M.V.; Cage, P.A.; Cooke, A.J.; Donald, D.K.; Furber, M.; Hill, S.; Withnall, J. Fused mesoionic heterocycles: synthesis of [1,2,3]triazolo[1,5-a]quinoline, [1,2,3]triazolo[1,5-a]quinazoline, [1,2,3]triazolo[1,5-a]quinoxaline and [1,2,3]triazolo[5,1-c]benzotriazine derivatives. Tetrahedron, 2002, 58(16), 3185-3198.
[http://dx.doi.org/10.1016/S0040-4020(02)00269-7]
[98]
Ballesteros-Garrido, R.; Blanco, F.; Ballesteros, R.; Leroux, F.R.; Abarca, B.; Colobert, F.; Alkorta, I.; Elguero, J. 3-(Pyridin-2-yl)[1,2,3]triazolo[1,5-a]quinoline: A theoretical and experimental analysis of ring-chain isomerisation. Eur. J. Org. Chem., 2009, (33), 5765-5778.
[http://dx.doi.org/10.1002/ejoc.200900818]
[99]
Llabres-Campaner, P.J.; Guijarro, L.; Giarratano, C.; Ballesteros-Garrido, R.; Zaragozá, R.J.; Aurell, M.J.; García-España, E.; Ballesteros, R.; Abarca, B. Synthesis, optical properties, and DNA interaction of new diquats based on triazolopyridines and riazoloquinolines. Chemistry, 2017, 23(52), 12825-12832.
[http://dx.doi.org/10.1002/chem.201701618] [PMID: 28815815]
[100]
Ballesteros-Garrido, R.; Delgado-Pinar, E.; Abarca, B.; Ballesteros, R.; Leroux, F.R.; Colobert, F.; Zaragoza, R.J.; Garcia-Espana, E. Triazolopyridines. Part 28. The ring-chain isomerization strategy: triazolopyridine- and triazoloquinoline-pyridine based fluorescence ligands. Tetrahedron, 2012, 68(19), 3701-3707.
[http://dx.doi.org/10.1016/j.tet.2012.03.029]
[101]
Smalley, R.K.; Teguiche, M. 1,2,3-Triazolo[1,5-a]quinolines, -[1,7]naphthy-ridines, and -benzo[1,5]diazepines by the action of diethyl 1,3-acetonedi-carboxylate anion on ortho-substituted aryl azides. Synthesis, 1990, (8), 654-656.
[http://dx.doi.org/10.1055/s-1990-26970]
[102]
Wang, Z.; Li, B.; Zhang, X.; Fan, X. One-Pot Cascade Reactions Leading to pyrido[2′,1′:2,3]imidazo[4,5-c][1,2,3]triazolo[1,5-a]quinolines under bimeta-llic relay catalysis with air as the oxidant. J. Org. Chem., 2016, 81(15), 6357-6363.
[http://dx.doi.org/10.1021/acs.joc.6b00996] [PMID: 27351209]
[103]
Abarca, B.; Ballesteros, R.; Houari, N. Triazolopyridines. 19. Synthesis and reactions of ylides derived from [1,2,3]triazolo[1,5-a]quinoline and [1,2,3]triazolo[5,1-a]isoquinoline with methyl propiolate. Tetrahedron, 1997, 53(37), 12765-12770.
[http://dx.doi.org/10.1016/S0040-4020(97)00796-5]
[104]
Béres, M.; Hajós, G.; Riedl, Z.; Soós, T.; Timári, G.; Messmer, A. Valence bond isomerization of fused [1,2,3]triazolium salts with bridgehead nitrogen atom. fused azolium salts. J. Org. Chem., 1999, 64(15), 5499-5503.
[http://dx.doi.org/10.1021/jo990328e] [PMID: 11674613]
[105]
Abarca, B.; Ballesteros, R.; Gomez-Aldaravi, E.; Jones, G. Triazolopyridines. Part 5. The reactions of 1,2,3-triazolo[5,1-a]isoquinoline: a new route to 1,3-disubstituted isoquinolines. J. Chem. Soc., Perkin Trans. 1, 1985, 9, 1897-1901.
[http://dx.doi.org/10.1039/P19850001897]
[106]
Abarca, B.; Ballesteros, R.; Jones, G.; Mojarrad, F. Nucleophilic substitutions on bromotriazolopyridines - an improved route to 2,6-disubstituted pyridines and to 1,3-disubstituted isoquinolines. Tetrahedron Lett., 1986, 27(30), 3543-3546.
[http://dx.doi.org/10.1016/S0040-4039(00)84845-5]
[107]
Eltsov, A.V.; Khokhlov, V.N.; Levandovskaya, T.V. Derivatives of the triazolo[4,5,1-ij]quinoline system. Zh. Org. Khim, 1971, 7(10), 2201-2212.
[108]
Schultz, A.G.; Staib, R.R.; Eng, K.K. 2,4-Cyclohexadien-1-ones in organic synthesis. Further studies of molecular rearrangements occurring from products in intramolecular azide-olefin cycloadditions. J. Org. Chem., 1987, 52(14), 2968-2972.
[http://dx.doi.org/10.1021/jo00390a002]
[109]
Schultz, A.G.; Sha, C-K. Triazoline photochemistry. Pyrrole formation by retro-Diels-Alder synthesis. J. Org. Chem., 1980, 45(10), 2040-2041.
[http://dx.doi.org/10.1021/jo01298a072]
[110]
Katritzky, A.R.; Bobrov, S.; Kirichenko, K.; Ji, Y.; Steel, P.J. Syntheses of Examples of the 5,6-dihydro-4H-[1,2,3]triazolo[4,5,1-ij]quinoline, 4,5,6,7-tetrahydro[1,2,3]triazolo[4,5,1-jk][1,4]benzodiazepine, and 5,6,7,8-tetrahy-dro-4H-[1,2,3]triazolo[4,5,1-kl][1]benzazocine ring systems. J. Org. Chem., 2003, 68(14), 5713-5719.
[http://dx.doi.org/10.1021/jo0342018] [PMID: 128394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy