Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Application of Quantum Dots in Drug Delivery

Author(s): Subham Jain N., Preethi Somanna* and Amit B. Patil

Volume 12, Issue 1, 2022

Published on: 11 February, 2021

Article ID: e070921191305 Pages: 16

DOI: 10.2174/2210681211666210211092823

Price: $65

Abstract

Background: The nanotechnology which has vast growth in the research field and the outcome product of nanotechnology is nanoparticles. Quantum dots with a size range of 2-10 nm represent a new form in nanotechnology materials. It has shown widespread attention in recent years in the field of science and its application in drug delivery. Quantum dots are semiconductor nanocrystals which possess interesting properties and characteristics, such as unique optical properties, quantum confinement effect and emit fluorescence on excitation with a light source which makes them a potential candidate for nano-probes and for carriers for biological application.

Objectives: The objective of the article is to explain the role and application of Quantum dots in drug delivery and its future application in pharmaceutical science and research. This review focuses on drug delivery through Quantum dots and Quantum dots helping nanocarriers for drug delivery. The development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research. The Quantum DOT labelled nano-carrier can deliver the drugs with fewer side effects and it can trace the drug location in the body.

Results: The fluorescent emission of Quantum dots is better than other organic dyes which lead to better drug delivery for cancer or acting as a tag for other drug carriers.

Conclusion: Because of the emission property of Quantum dots, it can be used with other drug carriers and later it can be traced with the help of Quantum dots. Quantum dots can be used as smart drug delivery.

Keywords: Cancer, drug delivery, nanocarrier, nanotechnology, Quantum dots, sensors.

Graphical Abstract

[1]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[2]
Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A.M. Biological applications of Quantum dots. Biomaterials, 2007, 28(31), 4717-4732.
[http://dx.doi.org/10.1016/j.biomaterials.2007.07.014] [PMID: 17686516]
[3]
Iga, A.M.; Robertson, J.H.P.; Winslet, M.C.; Seifalian, A.M. Clinical potential of Quantum dots J. Biomed. Biotechnol., 2007, 2007.
[http://dx.doi.org/10.1155/2007/76087]
[4]
Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol., 2010, 28(11), 580-588.
[http://dx.doi.org/10.1016/j.tibtech.2010.07.006] [PMID: 20724010]
[5]
Riyahi-Alam, N.; Behrouzkia, Z.; Seifalian, A.; Haghgoo, J.S. Properties evaluation of a new MRI contrast agent based on Gd-loaded nanoparticles. Biol. Trace Elem. Res., 2010, 137(3), 324-334.
[http://dx.doi.org/10.1007/s12011-009-8587-3] [PMID: 20049554]
[6]
Henglein, A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev., 1989, 89(8), 1861-1873.
[http://dx.doi.org/10.1021/cr00098a010]
[7]
Trindade, T.; O’Brien, P.; Pickett, N.L. Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chem. Mater., 2001, 13(11), 3843-3858.
[http://dx.doi.org/10.1021/cm000843p]
[8]
Kuchibhatla, S.V.N.T.; Karakoti, A.S.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci., 2007, 52(5), 699-913.
[http://dx.doi.org/10.1016/j.pmatsci.2006.08.001]
[9]
Bera, D.; Kuiry, S.C.; Seal, S. Synthesis of nanostructured materials using template-assisted electrodeposition. JOM, 2004, 56(1), 49-53.
[http://dx.doi.org/10.1007/s11837-004-0273-5]
[10]
Probst, C.E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv. Drug Deliv. Rev., 2013, 65(5), 703-718.
[http://dx.doi.org/10.1016/j.addr.2012.09.036] [PMID: 23000745]
[11]
Jin, Y.; Gao, X. Plasmonic fluorescent Quantum dots. Nat. Nanotechnol., 2009, 4(9), 571-576.
[http://dx.doi.org/10.1038/nnano.2009.193] [PMID: 19734929]
[12]
Ekimov, A.I. Quantum size effect in three dimensional microscopic semiconductor crystals. Phys. Today, 1981, 34(6), 363.
[13]
Rocha, T.L.; Mestre, N.C.; Sabóia-Morais, S.M.T.; Bebianno, M.J. Environmental behaviour and ecotoxicity of Quantum dots at various trophic levels: A review. Environ. Int., 2017, 98, 1-17.
[http://dx.doi.org/10.1016/j.envint.2016.09.021] [PMID: 27745949]
[14]
Matea, C.T.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[15]
Michalet, X. Quantum dots for live cells. Science, 2005, 307(5709), 538-545.
[16]
Alivisatos, A.P.; Chun, M.; Church, G.M.; Deisseroth, K.; Donoghue, J.P.; Greenspan, R.J.; McEuen, P.L.; Roukes, M.L.; Sejnowski, T.J.; Weiss, P.S.; Yuste, R. Neuroscience. The Brain Activity Map. Science, 2013, 339(6125), 1284-1285.
[17]
Ji, X.; Peng, F.; Zhong, Y.; Su, Y.; He, Y. Fluorescent Quantum dots: Synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf. B Biointerfaces, 2014, 124, 132-139.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.036] [PMID: 25224376]
[18]
Kidane, A.G.; Burriesci, G.; Edirisinghe, M.; Ghanbari, H.; Bonhoeffer, P.; Seifalian, A.M. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater., 2009, 5(7), 2409-2417.
[http://dx.doi.org/10.1016/j.actbio.2009.02.025] [PMID: 19497802]
[19]
Marukhyan, S.S.; Gasparyan, V.K. Fluorometric immunoassay for human serum albumin based on its inhibitory effect on the immunoaggregation of Quantum dots with silver nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 173, 34-38.
[http://dx.doi.org/10.1016/j.saa.2016.08.029] [PMID: 27591512]
[20]
Weng, J.; Ren, J. Luminescent Quantum dots: A very attractive and promising tool in biomedicine. Curr. Med. Chem., 2006, 13(8), 897-909.
[http://dx.doi.org/10.2174/092986706776361076] [PMID: 16611074]
[21]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[22]
Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Fluorescence nanoparticles “Quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target., 2011, 19(7), 475-486.
[http://dx.doi.org/10.3109/1061186X.2010.526227] [PMID: 20964619]
[23]
Smith, A.M.; Dave, S.; Nie, S.; True, L.; Gao, X. Multicolor Quantum dots for molecular diagnostics of cancer. Expert Rev. Mol. Diagn., 2006, 6(2), 231-244.
[http://dx.doi.org/10.1586/14737159.6.2.231] [PMID: 16512782]
[24]
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol., 2004, 22(1), 47-52.
[http://dx.doi.org/10.1038/nbt927] [PMID: 14704706]
[25]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.K.; Nie, S. In vivo cancer targeting and imaging with semiconductor Quantum dots. Nat. Biotechnol., 2004, 22(8), 969-976.
[http://dx.doi.org/10.1038/nbt994] [PMID: 15258594]
[26]
Weissleder, R.; Kelly, K.; Sun, E.Y.; Shtatland, T.; Josephson, L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol., 2005, 23(11), 1418-1423.
[http://dx.doi.org/10.1038/nbt1159] [PMID: 16244656]
[27]
Smith, A.M.; Duan, H.; Mohs, A.M.; Nie, S. Bioconjugated Quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev., 2008, 60(11), 1226-1240.
[http://dx.doi.org/10.1016/j.addr.2008.03.015] [PMID: 18495291]
[28]
Chan, W.C.W.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[http://dx.doi.org/10.1126/science.281.5385.2016] [PMID: 9748158]
[29]
Yaghini, E.; Seifalian, A.M.; MacRobert, A.J. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy. Nanomedicine (Lond.), 2009, 4(3), 353-363.
[http://dx.doi.org/10.2217/nnm.09.9] [PMID: 19331542]
[30]
Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor Quantum dots. Nat. Biotechnol., 2003, 21(1), 41-46.
[http://dx.doi.org/10.1038/nbt764] [PMID: 12459735]
[31]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of Quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599), 1759-1762.
[http://dx.doi.org/10.1126/science.1077194] [PMID: 12459582]
[32]
Qi, L.; Gao, X. Emerging application of Quantum dots for drug delivery and therapy. Expert Opin. Drug Deliv., 2008, 5(3), 263-267.
[http://dx.doi.org/10.1517/17425247.5.3.263] [PMID: 18318649]
[33]
Zharkova, I.S.; Markina, N.E. Markin A v., Drozd DD, Speranskaya ES, Goryacheva IY. Influence of electric field on the properties of the polymer stabilized luminescent Quantum dots in aqueous solutions. J. Lumin., 2016, 176, 65-70.
[http://dx.doi.org/10.1016/j.jlumin.2016.03.018]
[34]
Larson, D.R.; Zipfel, W.R.; Williams, R.M.; Clark, S.W.; Bruchez, M.P.; Wise, F.W.; Webb, W.W. Water-soluble Quantum dots for multiphoton fluorescence imaging in vivo. Science, 2003, 300(5624), 1434-1436.
[http://dx.doi.org/10.1126/science.1083780] [PMID: 12775841]
[35]
Hardman, R. A toxicologic review of Quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect., 2006, 114(2), 165-172.
[http://dx.doi.org/10.1289/ehp.8284] [PMID: 16451849]
[36]
Zrazhevskiy, P.; Gao, X. Multifunctional Quantum dots for personalized medicine. Nano Today, 2009, 4(5), 414-428.
[http://dx.doi.org/10.1016/j.nantod.2009.07.004] [PMID: 20161004]
[37]
Sonvico, F.; Dubernet, C.; Colombo, P.; Couvreur, P. Metallic colloid nanotechnology, applications in diagnosis and therapeutics. Curr. Pharm. Des., 2005, 11(16), 2095-2105.
[http://dx.doi.org/10.2174/1381612054065738] [PMID: 15974961]
[38]
Demir, G.M.; Ilhan, M.; Akkol, E.K.; Taştan, H.; Işık, A.; Değim, İ.T. Effect of Paclitaxel loaded chitosan nanoparticles and Quantum dots on breast cancer. Proceedings, 2017, 1(10), 1074.
[http://dx.doi.org/10.3390/proceedings1101074]
[39]
Wang, Y.; Chen, L. Quantum dots, lighting up the research and development of nanomedicine. Nanomedicine (Lond.), 2011, 7(4), 385-402.
[http://dx.doi.org/10.1016/j.nano.2010.12.006] [PMID: 21215327]
[40]
Bagalkot, V. Quantum Dot−aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett., 2007, 7(10), 3065-3070.
[http://dx.doi.org/pubs.acs.org/doi/abs/10.1021/nl071546n]
[41]
Zhao, M.X.; Li, J.M.; Du, L.; Tan, C.P.; Xia, Q.; Mao, Z.W.; Ji, L.N. Targeted cellular uptake and siRNA silencing by quantum-dot nanoparticles coated with β-cyclodextrin coupled to amino acids. Chemistry, 2011, 17(18), 5171-5179.
[http://dx.doi.org/10.1002/chem.201003523] [PMID: 21465588]
[42]
Olerile, L.D.; Liu, Y.; Zhang, B.; Wang, T.; Mu, S.; Zhang, J.; Selotlegeng, L.; Zhang, N. Near-infrared mediated Quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf. B Biointerfaces, 2017, 150, 121-130.
[http://dx.doi.org/10.1016/j.colsurfb.2016.11.032] [PMID: 27907859]
[43]
Yuan, Q.; Hein, S.; Misra, R.D.K. New generation of chitosan-encapsulated ZnO Quantum dots loaded with drug: synthesis, characterization and in vitro drug delivery response. Acta Biomater., 2010, 6(7), 2732-2739.
[http://dx.doi.org/10.1016/j.actbio.2010.01.025] [PMID: 20100604]
[44]
Wang, X.; Sun, X.; Lao, J.; He, H.; Cheng, T.; Wang, M.; Wang, S.; Huang, F. Multifunctional graphene Quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B Biointerfaces, 2014, 122, 638-644.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.043] [PMID: 25129696]
[45]
Ye, F.; Barrefelt, A.; Asem, H.; Abedi-Valugerdi, M.; El-Serafi, I.; Saghafian, M.; Abu-Salah, K.; Alrokayan, S.; Muhammed, M.; Hassan, M. Biodegradable polymeric vesicles containing magnetic nanoparticles, Quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials, 2014, 35(12), 3885-3894.
[http://dx.doi.org/10.1016/j.biomaterials.2014.01.041] [PMID: 24495486]
[46]
Yao, X.; Niu, X.; Ma, K.; Huang, P.; Grothe, J.; Kaskel, S.; Zhu, Y. Graphene Quantum dots-capped magnetic mesoporous Silica Nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small, 2017, 13(2), 1-11.
[http://dx.doi.org/10.1002/smll.201602225] [PMID: 27735129]
[47]
Iannazzo, D.; Pistone, A.; Salamò, M.; Galvagno, S.; Romeo, R.; Giofré, S.V.; Branca, C.; Visalli, G.; Di Pietro, A. Graphene Quantum dots for cancer targeted drug delivery. Int. J. Pharm., 2017, 518(1-2), 185-192.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.060] [PMID: 28057464]
[48]
Nigam, P.; Waghmode, S.; Louis, M.; Wangnoo, S.; Chavan, P.; Sarkar, D. Graphene Quantum dots conjugated albumin nanoparticles for targeted drug delivery and imaging of pancreatic cancer. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(21), 3190-3195.
[http://dx.doi.org/10.1039/C4TB00015C] [PMID: 32261580]
[49]
Cai, X.; Luo, Y.; Zhang, W.; Du, D.; Lin, Y. pH-sensitive ZnO Quantum dots-Doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces, 2016, 8(34), 22442-22450.
[http://dx.doi.org/10.1021/acsami.6b04933] [PMID: 27463610]
[50]
Li, Z.; Xu, W.; Wang, Y.; Shah, B.R.; Zhang, C.; Chen, Y.; Li, Y.; Li, B. Quantum dots loaded nanogels for low cytotoxicity, pH-sensitive fluorescence, cell imaging and drug delivery. Carbohydr. Polym., 2015, 121, 477-485.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.016] [PMID: 25659723]
[51]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther., 2010, 128(2), 324-335.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[52]
Delehanty, J.B.; Boeneman, K.; Bradburne, C.E.; Robertson, K.; Medintz, I.L. Quantum dots: A powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv., 2009, 6(10), 1091-1112.
[http://dx.doi.org/10.1517/17425240903167934] [PMID: 19691443]
[53]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[54]
Abbaspourrad, A.; Datta, S.S.; Weitz, D.A. Controlling release from pH-responsive microcapsules. Langmuir, 2013, 29(41), 12697-12702.
[http://dx.doi.org/10.1021/la403064f] [PMID: 24041287]
[55]
Sui, X.; Luo, C.; Wang, C.; Zhang, F.; Zhang, J.; Guo, S. Graphene Quantum dots enhance anticancer activity of cisplatin via increasing its cellular and nuclear uptake. Nanomedicine (Lond.), 2016, 12(7), 1997-2006.
[http://dx.doi.org/10.1016/j.nano.2016.03.010] [PMID: 27085903]
[56]
Qian, C.; Yan, P.; Wan, G.; Liang, S.; Dong, Y.; Wang, J. Facile synthetic photoluminescent graphene quantum dots encapsulated β-cyclodextrin drug carrier system for the management of macular degeneration: Detailed analytical and biological investigations. J. Photochem. Photobiol. B, 2018, 189(September), 244-249.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.019] [PMID: 30419519]
[57]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2002, 54(5), 631-651.
[http://dx.doi.org/10.1016/S0169-409X(02)00044-3] [PMID: 12204596]
[58]
Zhao, M.X.; Zhu, B.J. The research and applications of Quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11(1), 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[59]
Bruchez, M., Jr; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385), 2013-2016.
[http://dx.doi.org/10.1126/science.281.5385.2013] [PMID: 9748157]
[60]
Alivisatos, A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., 1996, 3654(95), 13226-13239.
[http://dx.doi.org/10.1021/jp9535506]
[61]
Xing, Y.; Smith, A.M.; Agrawal, A.; Ruan, G.; Nie, S. Molecular profiling of single cancer cells and clinical tissue specimens with semiconductor Quantum dots. Int. J. Nanomedicine, 2006, 1(4), 473-481.
[http://dx.doi.org/10.2147/nano.2006.1.4.473] [PMID: 17722280]
[62]
Tokumasu, F.; Dvorak, J. Development and application of Quantum dots for immunocytochemistry of human erythrocytes. J. Microsc., 2003, 211(Pt 3), 256-261.
[http://dx.doi.org/10.1046/j.1365-2818.2003.01219.x] [PMID: 12950474]
[63]
Qiu, J.; Zhang, R.; Li, J.; Sang, Y.; Tang, W.; Rivera Gil, P.; Liu, H. Fluorescent graphene Quantum dots as traceable, pH-sensitive drug delivery systems. Int. J. Nanomedicine, 2015, 10, 6709-6724.
[PMID: 26604747]
[64]
Chen, A.A.; Derfus, A.M.; Khetani, S.R.; Bhatia, S.N. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res., 2005, 33(22)e190
[http://dx.doi.org/10.1093/nar/gni188] [PMID: 16352864]
[65]
Tan, W.B.; Jiang, S.; Zhang, Y. Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials, 2007, 28(8), 1565-1571.
[http://dx.doi.org/10.1016/j.biomaterials.2006.11.018] [PMID: 17161865]
[66]
Jia, N; Lian, Q; Shen, H; Wang, C; Li, X. Nanotubes and Quantum dots., 2010.
[67]
Akin, D.; Sturgis, J.; Ragheb, K.; Sherman, D.; Burkholder, K.; Robinson, J.P.; Bhunia, A.K.; Mohammed, S.; Bashir, R. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol., 2007, 2(7), 441-449.
[http://dx.doi.org/10.1038/nnano.2007.149] [PMID: 18654330]
[68]
Weng, K.C.; Noble, C.O.; Papahadjopoulos-sternberg, B.; Chen, F.F.; Drummond, D.C.; Kirpotin, D.B. Targeted tumor cell internalization and imaging of QDs with liposome. Nano Lett., 2008, 8(9), 2851-2857.
[69]
Chan, W.C.W.; Maxwell, D.J.; Gao, X.; Bailey, R.E.; Han, M.; Nie, S. Lipid Quantum dot bilayer vesicles. Nat. Mater., 2003, 2(1), 1992-1999.
[70]
Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P-Y.; Geissbühler, I.; Demurtas, D.; Dubochet, J.; Vogel, H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. Engl., 2006, 45(33), 5478-5483.
[http://dx.doi.org/10.1002/anie.200600545] [PMID: 16847983]
[71]
Lewis, B.A.; Engelman, D.M. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol., 1983, 166(2), 211-217.
[http://dx.doi.org/10.1016/S0022-2836(83)80007-2] [PMID: 6854644]
[72]
Dudu, V.; Ramcharan, M.; Gilchrist, M.L.; Holland, E.C.; Vazquez, M. Liposome delivery of Quantum dots to the cytosol of live cells. J. Nanosci. Nanotechnol., 2008, 8(5), 2293-2300.
[http://dx.doi.org/10.1166/jnn.2008.185] [PMID: 18572640]
[73]
Al-Jamal, W.T.; Al-Jamal, K.T.; Bomans, P.H.; Frederik, P.M.; Kostarelos, K. Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small, 2008, 4(9), 1406-1415.
[http://dx.doi.org/10.1002/smll.200701043] [PMID: 18711753]
[74]
Al-Jamal, W.T.; Al-Jamal, K.T.; Tian, B.; Cakebread, A.; Halket, J.M.; Kostarelos, K. Tumor targeting of functionalized quantum dot-liposome hybrids by intravenous administration. Mol. Pharm., 2009, 6(2), 520-530.
[http://dx.doi.org/10.1021/mp800187d] [PMID: 19718803]
[75]
Chu, M.; Zhuo, S.; Xu, J.; Sheng, Q.; Hou, S.; Wang, R. Liposome-coated Quantum dots targeting the sentinel lymph node. J. Nanopart. Res., 2010, 12(1), 187-197.
[http://dx.doi.org/10.1007/s11051-009-9593-2]
[76]
Raemdonck, K.; Demeester, J.; de Smedt, S. Advanced nanogel engineering for drug delivery. Soft Matter, 2009, 5(4), 707-715.
[http://dx.doi.org/10.1039/B811923F]
[77]
Hasegawa, U.; Nomura, S.M.; Kaul, S.C.; Hirano, T.; Akiyoshi, K. Nanogel-quantum dot hybrid nanoparticles for live cell imaging. Biochem. Biophys. Res. Commun., 2005, 331(4), 917-921.
[http://dx.doi.org/10.1016/j.bbrc.2005.03.228] [PMID: 15882965]
[78]
Gong, Y.; Gao, M.; Wang, D.; Möhwald, H. Incorporating fluorescent CdTe nanocrystals into a hydrogel via hydrogen bonding: Toward fluorescent microspheres with temperature-responsive properties. Chem. Mater., 2005, 17(10), 2648-2653.
[http://dx.doi.org/10.1021/cm047932c]
[79]
Wu, W.; Zhou, T.; Shen, J.; Zhou, S. Optical detection of glucose by CdS Quantum dots immobilized in smart microgels. Chem. Commun. (Camb.), 2009, (29), 4390-4392.
[http://dx.doi.org/10.1039/b907348e] [PMID: 19597602]
[80]
Salcher, A.; Nikolic, M.S.; Casado, S.; Vélez, M.; Weller, H.; Juárez, B.H. CdSe/CdS nanoparticles immobilized on pNIPAm-based microspheres. J. Mater. Chem., 2010, 20(7), 1367-1374.
[http://dx.doi.org/10.1039/B917022G]
[81]
Tan, W.B.; Huang, N.; Zhang, Y. Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured Quantum dots for bioapplications. J. Colloid Interface Sci., 2007, 310(2), 464-470.
[http://dx.doi.org/10.1016/j.jcis.2007.01.083] [PMID: 17321535]
[82]
Tan, W.B.; Zhang, Y. Multifunctional quantum-dot-based magnetic chitosan nanobeads. Adv. Mater., 2005, 17(19), 2375-2380.
[http://dx.doi.org/10.1002/adma.200401650]
[83]
Bajwa, N.; Kumar Mehra, N.; Jain, K.; Kumar Jain, N. Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized Quantum dots. Artif. Cells Nanomed. Biotechnol., 2016, 44(7), 1774-1782.
[http://dx.doi.org/10.3109/21691401.2015.1102740] [PMID: 26508412]
[84]
Khanmohammadi, M.; Elmizadeh, H.; Ghasemi, K. Investigation of size and morphology of chitosan nanoparticles used in drug delivery system employing chemometric technique. Iran. J. Pharm. Res., 2015, 14(3), 665-675.
[85]
Shi, D.; Guo, Y.; Dong, Z.; Lian, J.; Wang, W.; Liu, G. Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging. Adv. Mater., 2007, 19(22), 4033-4037.
[http://dx.doi.org/10.1002/adma.200700035]
[86]
Guo, Y.; Shi, D.; Cho, H.; Dong, Z.; Kulkarni, A.; Pauletti, G.M. In vivo imaging and drug storage by quantum-dot-conjugated carbon nanotubes. Adv. Funct. Mater., 2008, 18(17), 2489-2497.
[http://dx.doi.org/10.1002/adfm.200800406]
[87]
Sheng, Y.; Dai, W.; Gao, J.; Li, H.; Tan, W.; Wang, J.; Deng, L.; Kong, Y. pH-sensitive drug delivery based on chitosan wrapped graphene Quantum dots with enhanced fluorescent stability. Mater. Sci. Eng. C, 2020, 112(March)110888
[http://dx.doi.org/10.1016/j.msec.2020.110888] [PMID: 32409046]
[88]
Lemon, B.I.; Crooks, R.M. Preparation and characterization of dendrimer-encapsulated CdS semiconductor Quantum dots. J. Am. Chem. Soc., 2000, 122(51), 12886-12887.
[http://dx.doi.org/10.1021/ja0031321]
[89]
Liu, J.; Li, H.; Wang, W.; Xu, H.; Yang, X.; Liang, J.; He, Z. Use of ester-terminated polyamidoamine dendrimers for stabilizing Quantum dots in aqueous solutions. Small, 2006, 2(8-9), 999-1002.
[http://dx.doi.org/10.1002/smll.200500421] [PMID: 17193157]
[90]
Saifuddin, N.; Raziah, A.Z.; Junizah, A.R. Carbon nanotubes: A review on structure and their interaction with proteins. J. Chem., 2013, 2013676815
[http://dx.doi.org/10.1155/2013/676815]
[91]
Frantz, S.; Smith, A. New drug approvals for 2002. Nat. Rev. Drug Discov., 2003, 2(2), 95-96.
[http://dx.doi.org/10.1038/nrd1014] [PMID: 12572538]
[92]
Liu, B.R.; Huang, Y.W.; Winiarz, J.G.; Chiang, H.J.; Lee, H.J. Intracellular delivery of Quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials, 2011, 32(13), 3520-3537.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.041] [PMID: 21329975]
[93]
Prokop, A.; Davidson, J.M. Gene delivery into cells and tissues. Principles Tissue Eng., 2007, 1, 493-515.https://linkinghub.elsevier.com/rtrieve/pii/B9780123706157500391 [cited 2020 Dec 11]
[94]
Lovri, J; Yan, SB; Fortin, GRA; Winnik, FM Differences in subcellular distribution and toxicity of green and red emitting CdTe Quantum dots. 2005, 1, 377-85.
[95]
Nabiev, I.; Mitchell, S.; Davies, A.; Williams, Y.; Kelleher, D.; Moore, R.; Gun’ko, Y.K.; Byrne, S.; Rakovich, Y.P.; Donegan, J.F.; Sukhanova, A.; Conroy, J.; Cottell, D.; Gaponik, N.; Rogach, A.; Volkov, Y. Nonfunctionalized nanocrystals can exploit a cell’s active transport machinery delivering them to specific nuclear and cytoplasmic compartments. Nano Lett., 2007, 7(11), 3452-3461.
[http://dx.doi.org/10.1021/nl0719832] [PMID: 17949046]
[96]
Wu, W.; Aiello, M.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. In-situ immobilization of Quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials, 2010, 31(11), 3023-3031.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.011] [PMID: 20106519]
[97]
Pan, J.; Feng, S.S. Targeting and imaging cancer cells by folate-decorated, Quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials, 2009, 30(6), 1176-1183.
[http://dx.doi.org/10.1016/j.biomaterials.2008.10.039] [PMID: 19062089]
[98]
Schroeder, J.E.; Shweky, I.; Shmeeda, H.; Banin, U.; Gabizon, A. Folate-mediated tumor cell uptake of Quantum dots entrapped in lipid nanoparticles. J. Control. Release, 2007, 124(1-2), 28-34.
[http://dx.doi.org/10.1016/j.jconrel.2007.08.028] [PMID: 17928088]
[99]
Bharali, D.J.; Lucey, D.W.; Jayakumar, H.; Pudavar, H.E.; Prasad, P.N. Folate-receptor-mediated delivery of InP Quantum dots for bioimaging using confocal and two-photon microscopy. J. Am. Chem. Soc., 2005, 127(32), 11364-11371.
[http://dx.doi.org/10.1021/ja051455x] [PMID: 16089466]
[100]
Balaure, P.C.; Grumezescu, A.M. Smart synthetic polymer nanocarriers for controlled and site-specific drug delivery. Curr. Top. Med. Chem., 2015, 15(15), 1424-1490.
[http://dx.doi.org/10.2174/1568026615666150414115852] [PMID: 25877097]
[101]
Li, X.; Xu, X.; Jin, A.; Jia, Q.; Zhou, H.; Kang, S.; Lou, Y.; Gao, J.; Lu, J. Self-assembled HCV core virus-like particles targeted and inhibited tumor cell migration and invasion. Nanoscale Res. Lett., 2013, 8(1), 401.
[http://dx.doi.org/10.1186/1556-276X-8-401] [PMID: 24074276]
[102]
Han, J.H.; Sudheendra, L.; Kennedy, I.M. FRET-based homogeneous immunoassay on a nanoparticle-based photonic crystal. Anal. Bioanal. Chem., 2015, 407(18), 5243-5247.
[http://dx.doi.org/10.1007/s00216-015-8708-0] [PMID: 25956600]
[103]
Merkx, M.; Golynskiy, M.V.; Lindenburg, L.H.; Vinkenborg, J.L. Rational design of FRET sensor proteins based on mutually exclusive domain interactions. Biochem. Soc. Trans., 2013, 41(5), 1201-1205.
[http://dx.doi.org/10.1042/BST20130128] [PMID: 24059509]
[104]
Win, K.Y.; Teng, C.P.; Ye, E.; Low, M.; Han, M.Y. Evaluation of polymeric nanoparticle formulations by effective imaging and quantitation of cellular uptake for controlled delivery of doxorubicin. Small, 2015, 11(9-10), 1197-1204.
[http://dx.doi.org/10.1002/smll.201402073] [PMID: 25400129]
[105]
Gui, R.; Wan, A.; Zhang, Y.; Li, H.; Zhao, T. Ratiometric and time-resolved fluorimetry from Quantum dots featuring drug carriers for real-time monitoring of drug release in situ. Anal. Chem., 2014, 86(11), 5211-5214.
[http://dx.doi.org/10.1021/ac501293e] [PMID: 24827984]
[106]
Biju, V.; Mundayoor, S.; Omkumar, R.V.; Anas, A.; Ishikawa, M. Bioconjugated Quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol. Adv., 2010, 28(2), 199-213.
[http://dx.doi.org/10.1016/j.biotechadv.2009.11.007] [PMID: 19969062]
[107]
Vashist, S.K.; Tewari, R.; Raiteri, R. Review of quantum dot technologies for cancer detection and treatment. J. Mater., 2006. ArticleID=1726
[108]
Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov., 2009, 8(2), 129-138.
[http://dx.doi.org/10.1038/nrd2742] [PMID: 19180106]
[109]
Qi, L.; Gao, X. Quantum dot amphipol nanocomplex time imaging of siRNA. ACS Nano, 2008, 2(7), 1403-1410.
[110]
Derfus, A.M.; Chen, A.A.; Min, D.H.; Ruoslahti, E.; Bhatia, S.N. Targeted quantum dot conjugates for siRNA delivery. Bioconjug. Chem., 2007, 18(5), 1391-1396.
[http://dx.doi.org/10.1021/bc060367e] [PMID: 17630789]
[111]
Kim, E.M.; Jeong, H.J. Current status and future direction of nanomedicine: Focus on Advanced biological and medical applications. Nucl. Med. Mol. Imaging, 2017, 51(2), 106-117.
[http://dx.doi.org/10.1007/s13139-016-0435-8] [PMID: 28559935]
[112]
Soltesz, E.G.; Kim, S.; Laurence, R.G.; DeGrand, A.M.; Parungo, C.P.; Dor, D.M.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V.; Mihaljevic, T. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent Quantum dots. Ann. Thorac. Surg., 2005, 79(1), 269-277.
[http://dx.doi.org/10.1016/j.athoracsur.2004.06.055] [PMID: 15620956]
[113]
Soltesz, E.G.; Kim, S.; Kim, S.W.; Laurence, R.G.; De Grand, A.M.; Parungo, C.P.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann. Surg. Oncol., 2006, 13(3), 386-396.
[http://dx.doi.org/10.1245/ASO.2006.04.025] [PMID: 16485157]
[114]
Jung, K.H.; Choe, Y.S.; Paik, J.Y.; Lee, K.H. 99mTc-Hydrazinonicotinamide epidermal growth factor-polyethylene glycol-quantum dot imaging allows quantification of breast cancer epidermal growth factor receptor expression and monitors receptor downregulation in response to cetuximab therapy. J. Nucl. Med., 2011, 52(9), 1457-1464.
[http://dx.doi.org/10.2967/jnumed.111.087619] [PMID: 21849406]
[115]
Singh, B.R.; Singh, B.N.; Khan, W.; Singh, H.B.; Naqvi, A.H. ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS Quantum dots. Biomaterials, 2012, 33(23), 5753-5767.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.045] [PMID: 22594971]
[116]
Chan, W.H.; Shiao, N.H.; Lu, P.Z. CdSe Quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol. Lett., 2006, 167(3), 191-200.
[http://dx.doi.org/10.1016/j.toxlet.2006.09.007] [PMID: 17049762]
[117]
Zhang, H.; Xu, T.; Li, C.W.; Yang, M. A microfluidic device with microbead array for sensitive virus detection and genotyping using Quantum dots as fluorescence labels. Biosens. Bioelectron., 2010, 25(11), 2402-2407.
[http://dx.doi.org/10.1016/j.bios.2010.02.032] [PMID: 20483585]
[118]
Xiang, Q.; Huang, J.; Huang, H.; Mao, W.; Ye, Z. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene Quantum dots. RSC Advances, 2018, 8(4), 1820-1825.
[http://dx.doi.org/10.1039/C7RA11945C]
[119]
Abbasi, E.; Kafshdooz, T.; Bakhtiary, M.; Nikzamir, N.; Nikzamir, N.; Nikzamir, M.; Mohammadian, M.; Akbarzadeh, A. Biomedical and biological applications of Quantum dots. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 885-891.
[PMID: 25615877]
[120]
Geys, J.; Nemmar, A.; Verbeken, E.; Smolders, E.; Ratoi, M.; Hoylaerts, M.F.; Nemery, B.; Hoet, P.H. Acute toxicity and prothrombotic effects of Quantum dots: impact of surface charge. Environ. Health Perspect., 2008, 116(12), 1607-1613.
[http://dx.doi.org/10.1289/ehp.11566] [PMID: 19079709]
[121]
Aubret, A.; Pillonnet, A.; Houel, J.; Dujardin, C.; Kulzer, F. CdSe/ZnS Quantum dots as sensors for the local refractive index. Nanoscale, 2016, 8(4), 2317-2325.
[http://dx.doi.org/10.1039/C5NR06998J] [PMID: 26750539]
[122]
Heli, H.; Sattarahmady, N.; Hatam, G.R.; Reisi, F.; Vais, R.D. An electrochemical genosensor for Leishmania major detection based on dual effect of immobilization and electrocatalysis of cobalt-zinc ferrite Quantum dots. Talanta, 2016, 156-157, 172-179.
[http://dx.doi.org/10.1016/j.talanta.2016.04.065] [PMID: 27260450]
[123]
Andreadou, M.; Liandris, E.; Gazouli, M.; Mataragka, A.; Tachtsidis, I.; Goutas, N.; Vlachodimitropoulos, D.; Ikonomopoulos, J. Detection of Leishmania-specific DNA and surface antigens using a combination of functionalized magnetic beads and cadmium selenite Quantum dots. J. Microbiol. Methods, 2016, 123, 62-67.
[http://dx.doi.org/10.1016/j.mimet.2015.11.019] [PMID: 26658854]
[124]
Huang, H.; Wang, B.; Chen, M.; Liu, M.; Leng, Y.; Liu, X. Fluorescence turn-on sensing of ascorbic acid and alkaline phosphatase activity based on graphene Quantum dots. Sens. Actuators B Chem., 2016, 235, 356-361.
[http://dx.doi.org/10.1016/j.snb.2016.05.080]
[125]
Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K.Y.; Zhau, H.E.; Chung, L.W.; Petros, J.A.; O’Regan, R.M.; Yezhelyev, M.V.; Simons, J.W.; Wang, M.D.; Nie, S. Bioconjugated Quantum dots for multiplexed and quantitative immunohistochemistry. Nat. Protoc., 2007, 2(5), 1152-1165.
[http://dx.doi.org/10.1038/nprot.2007.107] [PMID: 17546006]
[126]
Akhtar, R.S.; Latham, C.B.; Siniscalco, D.; Fuccio, C.; Roth, K.A. Immunohistochemical detection with Quantum dots. Methods Mol. Biol., 2007, 374, 11-28.
[PMID: 17237526]
[127]
Campbell, C.T.; Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 2007, 28(15), 2380-2392.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.047] [PMID: 17337300]
[128]
Lee, G.C.; Jeon, E.S.; Kim, W.S.; Le, D.T.; Yoo, J.H.; Chong, C.K. Evaluation of a rapid diagnostic test, NanoSign® Influenza A/B Antigen, for detection of the 2009 pandemic influenza A/H1N1 viruses. Virol. J., 2010, 7, 244.
[http://dx.doi.org/10.1186/1743-422X-7-244] [PMID: 20849665]
[129]
Yeom, S.H.; Han, M.E.; Kang, B.H.; Kim, K.J.; Yuan, H.; Eum, N.S. Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sens. Actuators B Chem., 2013, 177, 376-383.
[http://dx.doi.org/10.1016/j.snb.2012.10.099]
[130]
Christman, M.C.; Kedwaii, A.; Xu, J.; Donis, R.O.; Lu, G. Pandemic (H1N1) 2009 virus revisited: An evolutionary retrospective. Infect. Genet. Evol., 2011, 11(5), 803-811.
[http://dx.doi.org/10.1016/j.meegid.2011.02.021] [PMID: 21382522]
[131]
Özyer, S.; Unlü, S.; Çelen, S.; Uzunlar, O.; Saygan, S.; Su, F.A.; Beşli, M.; Danışman, N.; Mollamahmutoğlu, L. Pandemic influenza H1N1 2009 virus infection in pregnancy in Turkey. Taiwan. J. Obstet. Gynecol., 2011, 50(3), 312-317.
[http://dx.doi.org/10.1016/j.tjog.2010.07.002] [PMID: 22030045]
[132]
Girard, M.P.; Tam, J.S.; Assossou, O.M.; Kieny, M.P. The 2009 A (H1N1) influenza virus pandemic: A review. Vaccine, 2010, 28(31), 4895-4902.
[http://dx.doi.org/10.1016/j.vaccine.2010.05.031] [PMID: 20553769]
[133]
Hay, A.J.; Gregory, V.; Douglas, A.R.; Lin, Y.P. The evolution of human influenza viruses. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2001, 356(1416), 1861-1870.
[http://dx.doi.org/10.1098/rstb.2001.0999] [PMID: 11779385]
[134]
Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T.C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E.Y. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron., 2017, 89(Pt 2), 998-1005.
[http://dx.doi.org/10.1016/j.bios.2016.10.045] [PMID: 27825520]
[135]
Saxena, S.K.; Kotikalapudi, R.; Tiwari, S.; Muvva, M.; Influenza, A. H1N1)pdm09 virus. Future Virol., 2012, 7(10), 947-950.
[136]
Wang, H.Z.; Wang, H.Y.; Liang, R.Q.; Ruan, K.C. Detection of tumor marker CA125 in ovarian carcinoma using Quantum dots. Acta Biochim. Biophys. Sin. (Shanghai), 2004, 36(10), 681-686.
[http://dx.doi.org/10.1093/abbs/36.10.681] [PMID: 15483748]
[137]
Jha, S.; Mathur, P.; Ramteke, S. Jain, NK Pharmaceutical potential of Quantum dots. Artif. Cells Nanomed. Biotechnol., 2018, 46(1), 57-65.
[http://dx.doi.org/10.1080/21691401.2017.1411932]
[138]
Juzenas, P.; Chen, W.; Sun, Y.P.; Coelho, M.A.N.; Generalov, R.; Generalova, N.; Christensen, I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev., 2008, 60(15), 1600-1614.
[http://dx.doi.org/10.1016/j.addr.2008.08.004] [PMID: 18840487]
[139]
Fan, A.M.; Alexeeff, G. Nanotechnology and nanomaterials: Toxicology, risk assessment, and regulations. J. Nanosci. Nanotechnol., 2010, 10(12), 8646-8657.
[http://dx.doi.org/10.1166/jnn.2010.2493] [PMID: 21121378]
[140]
Pelley, J.L.; Daar, A.S.; Saner, M.A. State of academic knowledge on toxicity and biological fate of Quantum dots. Toxicol. Sci., 2009, 112(2), 276-296.
[http://dx.doi.org/10.1093/toxsci/kfp188l] [PMID: 19684286]
[141]
Singh, P.A. Nano technical trends for cancer treatment: Quantum dots a smart drug delivery system. Int. J. Pharm. Sci. Res., 2016, 7(4), 1360-1374.
[142]
Ballinger, C.T.; Sargent, T. Evident technologies introduces evidot composites. Evid. Technol, 2004, 1-2.
[143]
Quantum dot market by product, material | COVID-19 impact analysis Markets and markets, Available from: https://www.marketsandmarkets.com/Market-Reports/quantum-dots-qd-market-694.html
[144]
Bardajee, G.R.; Bayat, M.; Nasri, S.; Vancaeyzeele, C. pH-Responsive fluorescent dye-labeled metal-chelating polymer with embedded cadmium telluride Quantum dots for controlled drug release of doxorubicin. React. Funct. Polym., 2018, 133, 45-56.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.09.008]
[148]
Wickramasinghe, N.; Choudhary, S.; Geisler, E. Bionanotechnology: Its applications and relevance to healthcare. Int. J. Biomed. Eng. Technol., 2007, 1(1), 41.
[http://dx.doi.org/10.1504/IJBET.2007.014136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy