Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Extraction and Characterization of Fatty Acids from the Leaves and Stems of Clinacanthus nutans Using Supercritical Carbon Dioxide and Soxhlet Method

Author(s): Sahena Ferdosh*, Kamaruzzaman Yunus, Mohammad A. Rashid and Zaidul Islam Sarker

Volume 12, Issue 6, 2022

Published on: 21 January, 2022

Article ID: e020221191038 Pages: 7

DOI: 10.2174/2210315511666210202161905

Price: $65

Abstract

Background: The composition and bioactivity of natural plant extract strongly depend on the extraction technique employed. Clinacanthus nutans Lindau (C. nutans) is a well-known medicinal plant in South-East Asia that has been traditionally used for the treatment of various diseases. Several conventional methods have been using for the extraction of bioactive compounds from C. nutans. However, extraction of fatty acids using supercritical carbon dioxide was not reported yet from this medicinal herbs.

Objective: The main objective of the study is to examine the potential of supercritical carbon dioxide (scCO2) extraction of fatty acids from leaves and stems of C. nutans.

Method: Fatty acid compositions were determined from leaves and stems of C. nutans oil extracted by scCO2 (temperature 45-65 °C, pressure 25-35 MPa) and compared to the results of Soxhlet extraction.

Results: Supercritical CO2 extraction shows the highest oil recovery in both leaves (3.7%) and stems (1.6%) at pressure 35 MPa, temperature 65°C and 2 ml/min flow rate, which was closer to the yield of Soxhlet. The scCO2 yields presented a higher percentage of polyunsaturated fatty acids (PUFA), especially linoleic acid (C18:2n-6). Palmitic acid ranging from 42%- 47% in leaves and stems of C. nutans was found dominant saturated fatty acids (SFA) in both scCO2 and Soxhlet method.

Conclusion: The current results indicate that leaves and stems of C. nutans could be a potential source of fatty acids, especially biologically active compounds.

Keywords: Clinacanthus nutans, supercritical carbon dioxide, Soxhlet method, fatty acids, leaves, stems.

Graphical Abstract

[1]
Ching, S.M.; Zakaria, Z.A.; Paimin, F.; Jalalian, M. Complementary alternative medicine use among patients with type 2 diabetes mellitus in the primary care setting: a cross-sectional study in Malaysia. BMC Complement. Altern. Med., 2013, 13, 148.
[http://dx.doi.org/10.1186/1472-6882-13-148] [PMID: 23802882]
[2]
Khoo, L.W.; Audrey Kow, S.; Lee, M.T.; Tan, C.P.; Shaari, K.; Tham, C.L.; Abas, F. A Comprehensive Review on Phytochemistry and Pharmacological Activities of Clinacanthus nutans (Burm.f.) Lindau. Evid. Based Complement. Alternat. Med., 2018, 2018, 9276260.
[http://dx.doi.org/10.1155/2018/9276260] [PMID: 30105077]
[3]
Global Fatty Acid Market Research Report: By Source (Animal Source and Plant Source), by Type (Saturated, Monounsaturated, and Polyunsaturated), by Application (Food & Beverages, Animal Feed, Pharmaceuticals & Nutraceuticals, Personal Care, and Others), and Region (North America, Europe, Asia-Pacific, and Rest of the World)—Forecast till 2024 https://www.marketresearchfuture.com/reports/fatty-acid-market-2456 2020.
[4]
Minihane, A.M.; Armah, C.K.; Miles, E.A.; Madden, J.M.; Clark, A.B.; Caslake, M.J.; Packard, C.J.; Kofler, B.M.; Lietz, G.; Curtis, P.J.; Mathers, J.C.; Williams, C.M.; Calder, P.C. Consumption of Fish Oil Providing Amounts of Eicosapentaenoic Acid and Docosahexaenoic Acid That Can Be Obtained from the Diet Reduces Blood Pressure in Adults with Systolic Hypertension: A Retrospective Analysis. J. Nutr., 2016, 146(3), 516-523.
[http://dx.doi.org/10.3945/jn.115.220475] [PMID: 26817716]
[5]
Paul Amminger, G.; Miriam, R. Schäfer, Monika Schlögelhofer, Claudia M Klier, Patrick D McGorry. Longer-term Outcome in the Prevention of Psychotic Disorders by the Vienna omega-3 Study. Nat. Commun., 2015, 11(6), 7934.
[http://dx.doi.org/10.1038/ncomms8934]
[6]
Lange, K.W. Omega-3 fatty acids and mental health. J. Glob. Health, 2020, 4(1), 18-30.
[http://dx.doi.org/10.1016/j.glohj.2020.01.004]
[7]
Perona, J.S.; Garcia-Rodrigue, S.; Castellano, J.M. Plants as alternative sources of n-3 polyunsaturated fatty acids.Polyunsaturated fatty acids (PUFAs): Food sources, health effects and significance in biochemistry; Nova Science Publishers, Inc., 2018, pp. 187-228.
[8]
Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulain, N.A.N.; Omar, A.K.M. Application of Supercritical CO2 in Lipid Extraction - A Review. J. Food Eng., 2009, 95(2), 240-253.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.06.026]
[9]
de Melo, M. M.R.; Sapatinha, M.; Pinheiro, J.; Lemos, M.F.L.; Bandarra, N.M.; Batista, I.; Paulo, M.C.; Coutinho, J.; Saraiva, J.A.; Portugal, I.; Silva, C.M. Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. J CO2 Util, 2020, 38, 24-31.
[10]
Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Yazid, A.M.; Khatib, A.; Norulaini, N.A.N. Fatty acid compositions of fish oil extracted from different parts of Indian mackerel (Rastrelliger kanagurta) using various techniques of supercritical CO2 extraction. Food Chem., 2010, 120(3), 879-885.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.055]
[11]
Pouya, M.H.; Moghadas, B.K.; Rad, A.S. Supercritical Extraction of Heracleum persicum Plant and Mathematical Modeling. Nat. Prod. J., 2020, 2020(10), 298-311.
[http://dx.doi.org/10.2174/2210315509666190404151351]
[12]
Zaeri, Hossein; Moghadas, Bahareh Kamyab; Honarvar, Bijan; Rad, Ali Shokuhi Response Surface Methodology Towards Optimization of Calotropis Procera Essential Oil Extraction by Using Supercritical CO2. Nat Prod J, 2020.
[13]
AOAC. AOAC, Official Method 969.33. Fatty acids in oils and fats. Preparation of methyl esters. Boron triflfluoride method. Official Methods of Analysis of AOAC International, (19th ed. ), AOAC International, Gaithersburg, MD, USA2012.
[14]
Sahena, F.; Zaidul, I.S.M.; Norulaini, N.A.N.; Jahurul, M.H.A.; Kashif, G.; Awang, M.B.; Omar, A.K.M. Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Korean J. Chem. Eng., 2013, 30(7), 1466-1472.
[http://dx.doi.org/10.1007/s11814-013-0070-3]
[15]
Arna’iz, E.; Bernal, J´. Marı’a Teresa Martı’n, Cristina Garcı’a-Viguera, Jose´ Luis Bernal and Laura Toribio. Supercritical fluid extraction of lipids from Broccoli leaves. Eur. J. Lipid Sci. Technol., 2011, 113, 479-486.
[http://dx.doi.org/10.1002/ejlt.201000407]
[16]
Md kamal Uddin, SM Shamsuzzaman, LO Qiau zi, Mohdselamat Medom and Mahmudul Hasan. Effects of salinity on growth, antioxidant contents and proximate compositions of Sabah snake grass (Clinacanthus nutans (Burm. F.) lindau). Bangladesh J. Bot., 2017, 46(1), 263-269.
[17]
Zaleha Abd. Aziz, Hasmadi Mamat, Mohd. Fadzelly Abu Bakar. (2015). Nutritional Composition and Trace Elements Contents of Unfermented and Fermented Clinacanthus nutans L. Herbal Tea. J Trop Resour Sustain Sci, 2015, 3, 16-29.
[18]
Kong, H.S.; Abdullah Sani, N. Nutritional Values and Amino Acid Profiles of Clinacanthus nutans (Belalai Gajah/ Sabah Snake Grass) from Two Farms in Negeri Sembilan, Malaysia. Pertanika, J. Trop. Agric. Sci., 2017, 40(4), 639-652.
[19]
Sarega, N.; Imam, M.U.; Esa, N.M.; Zawawi, N.; Ismail, M. Effects of phenolic-rich extracts of Clinacanthus nutans on high fat and high cholesterol diet-induced insulin resistance. BMC Complement. Altern. Med., 2016, 16, 88.
[http://dx.doi.org/10.1186/s12906-016-1049-5] [PMID: 26924713]
[20]
Adnan, M.; Hussain, J.; Shah, M.T.; Shinwari, Z.K.; Ullah, F. Bahader, Ali., Khan, N., Khan, A. L. and Watanabe, T. Proximate and nutrient composition of medicinal plants of humid and sub-humid regions in North-west Pakistan. J. Med. Plants Res., 2010, 4, 339-345.
[21]
Ayuba, V.O.; Ojobe, T.O.; Ayuba, S.A. Phytochemical and proximate composition of Datura innoxia leaf, seed, stem, pod and root. J. Med. Plants Res., 2011, 5(14), 2952-2955.
[22]
Idris, S.; Iyaka, Y.A.; Ndamitso, M.M.; Paiko, Y.B. Nutritional Composition of the Leaves and Stems of Ocimum gratissimum. J Emer Trends Energ Appl Sci, 2011, 2(5), 801-805.
[23]
Esau, K. Anatomy of seed plants. Soil Sci., 1960, 90(2), 149.
[http://dx.doi.org/10.1097/00010694-196008000-00031]
[24]
Abdulkadir, A.R.; Zawawi, D.D.; Jahan, M.S. Proximate and Phytochemical Screening of Different Parts of Moringa oleifera. Russ. Agric. Sci., 2016, 42(1), 34-36.
[http://dx.doi.org/10.3103/S106836741601002X]
[25]
Graça, J.; Schreiber, L.; Rodrigues, J.; Pereira, H. Glycerol and glyceryl esters of omega-hydroxyacids in cutins. Phytochemistry, 2002, 61(2), 205-215.
[http://dx.doi.org/10.1016/S0031-9422(02)00212-1] [PMID: 12169316]
[26]
Okenwa, U.I.; Donatus, E.O. Investigation of the chemical composition of Brachystegia eurycoma harms plant parts used in herbal medicine. Int. J. Pharm. Sci. Rev. Res., 2013, 3(6), 51-55.
[27]
Karimi, E.; Jaafar, H.Z.; Ghasemzadeh, A.; Ebrahimi, M. Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biol. Res., 2015, 48, 9.
[http://dx.doi.org/10.1186/0717-6287-48-9] [PMID: 25761515]
[28]
A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev., 2011, 15(3), 1615-1624.
[http://dx.doi.org/10.1016/j.rser.2010.11.054]
[29]
Ana, N. Mustapa, Ángel Martin, Rafael B. Mato, María José Cocero. Extraction of phytocompounds from the medicinal plant Clinacanthus nutans Lindau by microwave-assisted extraction and supercritical carbon dioxide extraction. Ind. Crops Prod., 2015, 74, 83-94.
[http://dx.doi.org/10.1016/j.indcrop.2015.04.035]
[30]
Intan, S.C.S.; Basri, M.; Chan, K.W.; Ashari, S.E.; Hamid, R.F.M.; Ismail, M. In vitro antioxidant, cytotoxic and phytochemical studies of Clinacanthus nutans Lindau leaf extracts. Afr. J. Pharm. Pharmacol., 2015, 9(34), 861-874.
[http://dx.doi.org/10.5897/AJPP2015.4396]
[31]
Aftab, A.K.; Mahesar, S.A.; Khaskheli, A.R.; Sherazi, S.T.H.; Sofia, Q.; Zakia, K. Gas chromatographic coupled mass spectroscopic study of fatty acids composition of Nigella sativa L. (Kalonji) oil commercially available in Pakistan. Int. Food Res. J., 2014, 21(4), 1533-1537.
[32]
Agoramoorthy, G.; Chandrasekaran, M.; Venkatesalu, H.M.J. Antibacterial and antifungal activities of fatty acid methyl esters of the blind-your-eye mangrove from India. Braz. J. Microbiol., 2007, 38, 739-742.
[http://dx.doi.org/10.1590/S1517-83822007000400028]
[33]
Simonetto, M.; Infante, M.; Sacco, R.L.; Rundek, T.; Della-Morte, D. A novel anti-inflammatory role of omega-3 PUFAs in prevention and treatment of atherosclerosis and vascular cognitive impairment and dementia. Nutrients, 2019, 11(10), 2279.
[http://dx.doi.org/10.3390/nu11102279] [PMID: 31547601]
[34]
Nazirah Hamzah, N.; Ferdosh, S.; Islam Sarker, M.Z.; Ghafoor, K.; Yunus, K.; Jalal Khan Chowdhury, A.; Abdul Bari, N.A. Biological Activities and Extraction Technologies of Pheonix dactylifera: A Review. Nat. Prod. J., 2019, 9, 3-13.
[http://dx.doi.org/10.2174/2210315508666180327152800]
[35]
Goswami, S.; Chatterjee, B.; Mallik, M. Proof of presence of unusually naturally occurring homologous series of fifteen saturated odd and even fatty acids in Acanthus ilicifolius L. (Acanthaceae). J. Indian Chem. Soc., 2004, 81, 696-706.
[36]
Kanetsuna, F. Bactericidal effect of fatty acids on mycobacteria, with particular reference to the suggested mechanism of intracellular killing. Microbiol. Immunol., 1985, 29(2), 127-141.
[http://dx.doi.org/10.1111/j.1348-0421.1985.tb00811.x] [PMID: 4010540]
[37]
Tokuda, H.; Ito, M.; Sueyasu, T.; Sasaki, H.; Morita, S.; Kaneda, Y.; Rogi, T.; Kondo, S.; Kouzaki, M.; Tsukiura, T.; Shibata, H. Effects of combining exercise with long-chain polyunsaturated fatty acid supplementation on cognitive function in the elderly: a randomised controlled trial. Sci. Rep., 2020, 10(1), 12906.
[http://dx.doi.org/10.1038/s41598-020-69560-4] [PMID: 32737350]
[38]
Singh, J.E. Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation. Curr. Nutr. Rep., 2020, 9(3), 264-277.
[http://dx.doi.org/10.1007/s13668-020-00329-x] [PMID: 32621236]
[39]
McGaw, L.J.; Jäger, A.K.; van Staden, J. Antibacterial effects of fatty acids and related compounds from plants. S. Afr. J. Bot., 2002, 68, 417-423.
[http://dx.doi.org/10.1016/S0254-6299(15)30367-7]
[40]
Harborne, J.B.; Baxter, H. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants; Taylor and Francis Ltd: London, 1993, pp. 34-38.
[41]
Nakatsuji, T.; Kao, M.C.; Fang, J.Y.; Zouboulis, C.C.; Zhang, L.; Gallo, R.L.; Huang, C.M. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J. Invest. Dermatol., 2009, 129(10), 2480-2488.
[http://dx.doi.org/10.1038/jid.2009.93] [PMID: 19387482]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy