Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

A Novel and Efficient Nano Alumina Based Cu (II) Catalyst for Three- Component Synthesis of 5-Substituted-1H-Tetrazoles

Author(s): Amin Khoshnoud, Ali Reza Pourali* and Hossein Behniafar

Volume 19, Issue 5, 2022

Published on: 02 February, 2021

Page: [408 - 417] Pages: 10

DOI: 10.2174/1570178618666210202155047

Price: $65

Abstract

Tetrazoles, as one of the most important synthetic heterocyclic compounds, have so many applications in organic chemistry, the photographic industry, coordination chemistry, explosives and in particular, medicinal chemistry. Numerous methods have been reported in the literature for the synthesis of tetrazoles, but much of them have some drawbacks, including the use of strong Lewis acids or expensive and toxic metals and the employment of acidic media. Azides may react with acids to yield toxic and flammable HN3 gas. Furthermore, many methods used high polar solvents such as DMF at high temperatures and very tedious work-up. Heterogeneous catalysts are preferred because of owing to easy handling, safety, recoverability and reusability. Catalyst separation and recycling are highly desirable because catalysts are often very expensive. On the other hand, in spite of higher reactivity and selectivity of homogeneous catalysts, the difficulty of separating them from the reaction medium can lead to the problem of reusing the catalyst. Also, most homogeneous catalysts are thermally unstable. To benefit both types of catalysts, one solution is using nanoparticles. Their higher surface area is the advantage of nanoparticles, which allows them to enhance the reaction rate. Many commercially important catalysts include active nanoparticles spread on high area oxide supports. Such catalysts are highly complex materials that are optimized to work for plenty of turnovers at high reaction rates with high selectivity.

Aldehyde (1 mmol), hydroxylamine hydrochloride (0.10 mg, 1.5 mmol), sodium azide (0.10 g, 1.5 mmol), distilled water (5 mL) and nano Al2O3@PCH-Cu (II) (0.01g, 1.04% mol) were added to round bottom flask (25 mL) and stirred at room temperature. After the completion of the reaction, water (10 mL) was added into the reaction mixture and filtered. Excess sodium azide and hydroxylamine hydrochloride are dissolved in water and the catalyst remains on the filter. Extraction of product with diethyl ether (3×10 mL) and then evaporation of ether afforded the product. The product was recrystallized using hot ethanol to obtain pure product.

We synthesized a novel, stable, highly reactive and efficient nano-sized heterogeneous catalyst (nano Al2O3@PCH-Cu (II)). We characterized it by FT-IR, ICP, SEM, TGA and EDX analysis. This catalyst was used for the efficient one-pot three-component synthesis of 5-substituted-1H-tetrazoles. A one-pot three-component synthesis of 5-substituted-1H-tetrazoles is conducted, a reaction between various benzaldehydes, hydroxyl amine hydrochloride and sodium azide in the presence of a novel and highly efficient nano alumina supported poly(carboxylic acid hydrazide) Cu(II) complex, nano Al2O3@PCHCu( II), as heterogeneous catalyst in H2O at room temperature. This method has very mild reaction conditions as well as the advantages of easy separation and reusability of the catalyst, very short reaction times, high yields and using H2O as green solvent. Furthermore, using this method, very high TON and TOF values are obtained for all isolated products.

Keywords: Tetrazole, Sodium azide, Heterogeneous catalyst, Nano alumina, Nanoparticles, Copper complex.

Graphical Abstract

[1]
Roh, J.; Vávrová, K.; Hrabálek, A. Eur. J. Org. Chem., 2012, 31, 6101-6118.
[http://dx.doi.org/10.1002/ejoc.201200469]
[2]
Popova, E.A.; Protas, A.V.; Trifonov, R.E. Anticancer. Agents Med. Chem., 2018, 17(14), 1856-1868.
[http://dx.doi.org/10.2174/1871520617666170327143148] [PMID: 28356016]
[3]
Poonian, M.S.; Nowoswiat, E.F. J. Med. Chem., 1976, 19, 1017-1020.
[http://dx.doi.org/10.1021/jm00230a008] [PMID: 966248]
[4]
Abell, A.; Foulds, G. Perkin Trans. I, 1997, 1, 2475-2482.
[http://dx.doi.org/10.1039/a702458d]
[5]
Gagnon, A.; Landry, S.; Coulombe, R.; Jakalian, A.; Guse, I.; Thavonekham, B.; Bonneau, P.R.; Yoakim, C.; Simoneau, B. Bioorg. Med. Chem. Lett., 2009, 19(4), 1199-1205.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.074] [PMID: 19138518]
[6]
Suemaru, K.; Yoshikawa, M.; Aso, H.; Watanabe, M. Epilepsy Res., 2018, 145, 153-159.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.06.016] [PMID: 30007240]
[7]
Bhaskar, V.; Mohite, P.J. Optoelectron. Biomed. Mater., 2011, 3, 7-16.
[8]
Alonen, A.; Jansson, J.; Kallonen, S.; Kiriazis, A.; Aitio, O.; Finel, M.; Kostiainen, R. Bioorg. Chem., 2008, 36(3), 148-155.
[http://dx.doi.org/10.1016/j.bioorg.2008.02.004] [PMID: 18378273]
[9]
Adamec, J.; Waisser, K.; Kuneš, J.; Kaustová, J. An Int. J. Pharm. Med. Chem., 2005, 338, 385-389.
[10]
Peet, N.P.; Baugh, L.E.; Sunder, S.; Lewis, J.E.; Matthews, E.H.; Olberding, E.L.; Shah, D. N. J. Med. Chem., 1986, 29(11), 2403-2409.
[http://dx.doi.org/10.1021/jm00161a045] [PMID: 2431144]
[11]
Nohara, A.; Kuriki, H.; Saijo, T.; Sugihara, H.; Kanno, M.; Sanno, Y. J. Org. Chem., 2005, 70, 10198-10201.
[12]
Upadhayaya, R.S.; Jain, S.; Sinha, N.; Kishore, N.; Chandra, R.; Arora, S.K. Eur. J. Med. Chem., 2004, 39(7), 579-592.
[http://dx.doi.org/10.1016/j.ejmech.2004.03.004] [PMID: 15236838]
[13]
Dhayanithi, V.; Shafi, S.S.; Kumaran, K.; Jai, S.K.; Ragavan, V.R.; Goud, K.S.P.; Pati, H.N. J. Serb. Chem. Soc., 2011, 76, 165-175.
[http://dx.doi.org/10.2298/JSC090421001D]
[14]
Holland, G.F.; Pereira, J. N. J. Med. Chem., 1967, 10(2), 149-154.
[http://dx.doi.org/10.1021/jm00314a004] [PMID: 6034054]
[15]
Husain, A.; Azim, M.S.; Mitra, M.; Bhasin, P.S. J. Appl. Pharm. Sci., 2011, 1, 12-17.
[16]
Al-Majed, A-R.A.; Assiri, E.; Khalil, N.Y.; Abdel-Aziz, H.A. Comprehensive profile in profiles of drug substances, excipients and related methodology; Brittain, H., Ed.; Academic Press, 2015, Vol. 40, p. 159.
[17]
Ardiana, F.; Indrayanto, G. Comprehensive profile in profiles of drug substances, excipients and related methodology; Brittain, H., Ed.; Academic Press, 2015, Vol. 40, p. 229.
[18]
Alonen, A.; Finel, M.; Kostiainen, R. Biochem. Pharmacol., 2008, 76(6), 763-772.
[http://dx.doi.org/10.1016/j.bcp.2008.07.006] [PMID: 18674515]
[19]
Yıldız, Y.; Esirden, I.; Erken, E.; Demir, E.; Kaya, M.; Şen, F. ChemistrySelect, 2016, 1, 1695-1701.
[http://dx.doi.org/10.1002/slct.201600265]
[20]
Wittenberger, S.J. Org. Prep. Proced. Int., 1994, 26, 499-531.
[http://dx.doi.org/10.1080/00304949409458050]
[21]
Modarresi Alam, A.R.; Nasrollahzadeh, M. Turk. J. Chem., 2009, 33, 267-280.
[22]
Wang, Z.; Liu, Z.; Cheon, S.H. Bull. Korean Chem. Soc., 2015, 36, 198-202.
[http://dx.doi.org/10.1002/bkcs.10045]
[23]
Anuradha, L. ChemistrySelect, 2017, 2, 6865-6876.
[http://dx.doi.org/10.1002/slct.201701252]
[24]
Nasrollahzadeh, M.; Bayat, Y.; Habibi, D.; Moshaee, S. Tetrahedron Lett., 2009, 50, 4435-4438.
[http://dx.doi.org/10.1016/j.tetlet.2009.05.048]
[25]
Mitra, B.; Mukherjee, S.; Pariyar, G.C.; Ghosh, P. Tetrahedron Lett., 2018, 59, 1385-1389.
[http://dx.doi.org/10.1016/j.tetlet.2018.02.067]
[26]
Safaei-Ghomi, J.; Paymard-Samani, S.; Zahedi, S.; Shahbazi-Alavi, H. Naturforsch., 2015, 70b, 819-828.
[http://dx.doi.org/10.1515/znb-2015-0070]
[27]
Habibi, D.; Nasrollahzadeh, M.; Kamali, T.A. Green Chem., 2011, 13, 3499-3504.
[http://dx.doi.org/10.1039/c1gc15245a]
[28]
Demko, Z.P.; Sharpless, K.B. J. Org. Chem., 2001, 66(24), 7945-7950.
[http://dx.doi.org/10.1021/jo010635w] [PMID: 11722189]
[29]
Esmaeilpour, M.; Sardarian, A.R.; Firouzabadi, H. Appl. Organomet. Chem., 2018, 32, e4300.
[http://dx.doi.org/10.1002/aoc.4300]]
[30]
Abadi, S.S.A.D.M.; Zarchi, M.A.K. New J. Chem., 2017, 41, 10397-10406.
[http://dx.doi.org/10.1039/C7NJ02222K]
[31]
Dandia, A.; Khan, S.; Sharma, R.; Parihar, S.; Parewa, V. ChemistrySelect, 2017, 2, 9684-9690.
[http://dx.doi.org/10.1002/slct.201702234]
[32]
Khodamorady, M.; Bahrami, K. ChemistrySelect, 2019, 4, 8183-8194.
[http://dx.doi.org/10.1002/slct.201901497]
[33]
Du, Z.; Si, C.; Li, Y.; Wang, Y.; Lu, J. Int. J. Mol. Sci., 2012, 13(4), 4696-4703.
[http://dx.doi.org/10.3390/ijms13044696] [PMID: 22606004]
[34]
Ghasemzadeh, M.S.; Akhlaghinia, B. Bull. Chem. Soc. Jpn., 2017, 90, 1119-1128.
[http://dx.doi.org/10.1246/bcsj.20170148]
[35]
Kazemnejadi, M.; Sardarian, A.R. RSC Adv., 2016, 6, 91999-92006.
[http://dx.doi.org/10.1039/C6RA19631D]
[36]
Behrouz, S. J. Saudi Chem. Soc., 2017, 21, 220-228.
[http://dx.doi.org/10.1016/j.jscs.2016.08.003]
[37]
Sharghi, H.; Shiri, P.; Aberi, M. Catal. Lett., 2017, 147, 2844-2862.
[http://dx.doi.org/10.1007/s10562-017-2173-7]
[38]
Akula, R.K.; Adimulam, C.S.; Gangaram, S.; Kengiri, R.; Banda, N.; Pamulaparthy, S.R. Lett. Org. Chem., 2014, 11, 440-445.
[http://dx.doi.org/10.2174/1570178611666140210213157]
[39]
Sajadi, S.M.; Maham, M. Lett. Org. Chem., 2014, 11, 35-39.
[http://dx.doi.org/10.2174/157017861101140113160634]
[40]
Cole-Hamilton, D. J. Science, 2003, 299(5613), 1702-1706.
[http://dx.doi.org/10.1126/science.1081881] [PMID: 12637737]
[41]
Chng, L.L.; Erathodiyil, N.; Ying, J.Y. Acc. Chem. Res., 2013, 46(8), 1825-1837.
[http://dx.doi.org/10.1021/ar300197s] [PMID: 23350747]
[42]
Xie, W.; Wan, F. Chem. Eng. J., 2019, 365, 40-50.
[http://dx.doi.org/10.1016/j.cej.2019.02.016]
[43]
Xie, W.; Wan, F. Fuel, 2018, 220, 248-256.
[http://dx.doi.org/10.1016/j.fuel.2018.02.014]
[44]
Xie, W.; Wang, H. Renew. Energy, 2020, 145, 1709-1719.
[http://dx.doi.org/10.1016/j.renene.2019.07.092]
[45]
Smith, K., Ed.; Solid Supports and Catalysts in Organic Synthesis; Ellis Horwood and PTR Prentice Hall: New York, 1992.
[46]
Rezazadeh, B.; Pourali, A.R.; Banaei, A.R.; Behniafar, H. J. Coord. Chem., 2019, 72, 3401-3416.
[http://dx.doi.org/10.1080/00958972.2019.1691724]
[47]
Adibian, F.; Pourali, A.R.; Maleki, B.; Baghayeri, M.; Amiri, A. Polyhedron, 2020, 175.
[48]
Moosavi-Zare, A.R.; Zolfigol, M.A.; Farahmand, S.; Zare, A.; Pourali, A.R.; Ayazi-Nasrabadi, R. Synlett, 2014, 25, 193-196.
[http://dx.doi.org/10.1055/s-0033-1340088]
[49]
Trueba, M.; Trasatti, S.P. Eur. J. Inorg. Chem., 2005, 3393-3403.
[http://dx.doi.org/10.1002/ejic.200500348]
[50]
Kabalka, G.W.; Pagni, R.M. Tetrahedron, 1997, 53, 7999-8065.
[http://dx.doi.org/10.1016/S0040-4020(97)00264-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy