Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Automated Radiosynthesis and Molecular Docking Studies of Coumarin- Triazole Hybrid with fluorine-18: A feasibility study

Author(s): Nerella Sridhar Goud*, Mahammad S. Ghouse, Chandana Nagaraju , Rose Dawn Bharath, Mallika Alvala and Pardeep Kumar*

Volume 15, Issue 1, 2022

Published on: 29 January, 2021

Page: [40 - 49] Pages: 10

DOI: 10.2174/1874471014666210129141221

Price: $65

Abstract

Background: Fluorine-18 is one of the promising radiotracers that can report target specific information related to its physiology to understand the disease status through the PET modality. In the current study, the radiochemical synthesis, purification, and molecular docking studies of fluorine-18 (18F) radiolabeled coumarin-triazole hybrid have been performed.

Objective: To develop target specific fluorine-18 radiotracer for the diagnosis in oncology.

Methods: GE Tracer-lab FX2N module with few modifications in the line connections was used for the radiosynthesis and purification of target molecule [18F]SG-2, 4-((2,6-dimethylmorpholino) methyl)-7-((1-(4-(fluoro-18F) benzyl)-1H-1,2,3-triazol-4-yl) oxy)-2H-chromen-2-one, through the nucleophilic radiofluorination mechanism. The radiochemical purity was measured by HPLC, and TLC analytical methods. The kryptofix levels were also evaluated by using the TLC method. The residual solvents like DMF, ethanol were measured using GC. The Schrödinger drug discovery suite 2018 was used to study the protein and ligand interactions.

Results: The quality control parameters revealed the purity, chemical identity, and limits of residual solvents. The radiochemical purity was 95.5 ± 2.3%, and dimethylformamide solvent limit was 89 ± 3 ppm. The molecular docking results had suggested that the cold target molecule has made strong electronic interactions and showed the possible pharmacokinetic (ADME) properties with galectin-1 protein. Overall, these results showed that [[18F]SG-2 radiolabeling with 18F radionuclide was feasible, and support of molecular docking studies suggest possible interactions with Galectin- 1.

Conclusion: we reported a feasibility study for labeling coumarin-triazole hybrid with fluorine-18 through aromatic nucleophilic fluorination reaction (SNAr).

Keywords: Fluorine-18, coumarin-triazole hybrid, positron emission tomography, molecular docking, Galectin-1.

Graphical Abstract

[1]
Alauddin, M.M. Positron emission tomography (PET) imaging with (18)F-based radiotracers. Am. J. Nucl. Med. Mol. Imaging, 2012, 2(1), 55-76.
[PMID: 23133802]
[2]
Varagnolo, L.; Stokkel, M.P.; Mazzi, U.; Pauwels, E.K. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl. Med. Biol., 2000, 27(2), 103-112.
[http://dx.doi.org/10.1016/S0969-8051(99)00109-2] [PMID: 10773538]
[3]
Zhuang, H.; Codreanu, I. Growing applications of FDG PET-CT imaging in non-oncologic conditions. J. Biomed. Res., 2015, 29(3), 189-202.
[PMID: 26060443]
[4]
Croteau, E.; Renaud, J.M.; Richard, M.A.; Ruddy, T.D.; Bénard, F.; deKemp, R.A. PET Metabolic Biomarkers for Cancer: Supplementary Issue: Biomarkers and Their Essential Role in the Development of Personalised Therapies (A). Biomarkers in Cancer, 2016.
[5]
Brust, P.; van den Hoff, J.; Steinbach, J. Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci. Bull., 2014, 30(5), 777-811.
[http://dx.doi.org/10.1007/s12264-014-1460-6] [PMID: 25172118]
[6]
Bonasera, T.A.; Ortu, G.; Rozen, Y.; Krais, R.; Freedman, N.M.; Chisin, R.; Gazit, A.; Levitzki, A.; Mishani, E. Potential (18)F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl. Med. Biol., 2001, 28(4), 359-374.
[http://dx.doi.org/10.1016/S0969-8051(01)00200-1] [PMID: 11395308]
[7]
Vallabhajosula, S. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Semin. Nucl. Med., 2007, 37(6), 400-419.
[http://dx.doi.org/10.1053/j.semnuclmed.2007.08.004] [PMID: 17920348]
[8]
Ishiwata, K.; Kimura, Y.; Oda, K.; Ishii, K.; Sakata, M.; Kawasaki, K.; Nariai, T.; Suzuki, Y.; Ishibashi, K.; Mishina, M.; Hashimoto, M.; Ishikawa, M.; Toyohara, J. Development of PET radiopharmaceuticals and their clinical applications at the Positron Medical Center. Geriatr. Gerontol. Int., 2010, 10(Suppl. 1), S180-S196.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00594.x] [PMID: 20590833]
[9]
Chou, F-C.; Chen, H-Y.; Kuo, C-C.; Sytwu, H-K. Role of Galectins in Tumors and in Clinical Immunotherapy. Int. J. Mol. Sci., 2018, 19(2), 430.
[http://dx.doi.org/10.3390/ijms19020430] [PMID: 29389859]
[10]
Goud, N.S.; Kumar, P.; Bharath, R.D. Recent Developments of Target Based Coumarin Derivatives as Potential Anticancer Agents. Mini Rev. Med. Chem., 2020, 20.
[http://dx.doi.org/10.2174/1389557520666200510000718] [PMID: 32386492]
[11]
Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: a small protein with major functions. Glycobiology, 2006, 16(11), 137R-157R.
[http://dx.doi.org/10.1093/glycob/cwl025] [PMID: 16840800]
[12]
Astorgues-Xerri, L.; Riveiro, M.E.; Tijeras-Raballand, A.; Serova, M.; Neuzillet, C.; Albert, S.; Raymond, E.; Faivre, S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev., 2014, 40(2), 307-319.
[http://dx.doi.org/10.1016/j.ctrv.2013.07.007] [PMID: 23953240]
[13]
Kluza, E.; Jacobs, I.; Hectors, S.J.C.G.; Mayo, K.H.; Griffioen, A.W.; Strijkers, G.J.; Nicolay, K. Dual-targeting of αvβ3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo. J. Control. Release, 2012, 158(2), 207-214.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.032] [PMID: 22079810]
[14]
Rajput, V.K.; Leffler, H.; Nilsson, U.J.; Mukhopadhyay, B. Synthesis and evaluation of iminocoumaryl and coumaryl derivatized glycosides as galectin antagonists. Bioorg. Med. Chem. Lett., 2014, 24(15), 3516-3520.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.063] [PMID: 24973029]
[15]
Pal, K.B.; Mahanti, M.; Huang, X.; Persson, S.; Sundin, A.P.; Zetterberg, F.R.; Oredsson, S.; Leffler, H.; Nilsson, U.J. Quinoline- galactose hybrids bind selectively with high affinity to a galectin-8 N-terminal domain. Org. Biomol. Chem., 2018, 16(34), 6295-6305.
[http://dx.doi.org/10.1039/C8OB01354C] [PMID: 30117507]
[16]
Pereira, A.; Martins, S.; Teresa Caldeira, A. Coumarins as Fluorescent Labels of Biomolecules.Phytochemicals in Human Health; Rao, V.; Mans, D.; Rao, L., Eds.; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.85973]
[17]
Jacobson, O.; Kiesewetter, D.O.; Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem., 2015, 26(1), 1-18.
[http://dx.doi.org/10.1021/bc500475e] [PMID: 25473848]
[18]
Sun, H.; DiMagno, S.G. Room-temperature nucleophilic aromatic fluorination: experimental and theoretical studies. Angew. Chem. Int. Ed. Engl., 2006, 45(17), 2720-2725.
[http://dx.doi.org/10.1002/anie.200504555] [PMID: 16548046]
[19]
Berridge, M.S.; Tewson, T.J. Chemistry of fluorine-18 radiopharmaceuticals. Int. J. Rad. Appl. Instrum. [A], 1986, 37(8), 685-693.
[http://dx.doi.org/10.1016/0883-2889(86)90262-5] [PMID: 3021669]
[20]
Tredwell, M.; Gouverneur, V. 18F labeling of arenes. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11426-11437.
[http://dx.doi.org/10.1002/anie.201204687] [PMID: 23086547]
[21]
Annual Congress of the European Association of Nuclear Medicine October 12 – 16, 2019 Barcelona, Spain. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46, 1-952.
[http://dx.doi.org/10.1007/s00259-019-04486-2]
[22]
Goud, N.S.; Joshi, R.K.; Bharath, R.D.; Kumar, P. Fluorine-18: A radionuclide with diverse range of radiochemistry and synthesis strategies for target based PET diagnosis. Eur. J. Med. Chem., 2020, 187, 111979.
[http://dx.doi.org/10.1016/j.ejmech.2019.111979] [PMID: 31877537]
[23]
Serdons, K.; Verbruggen, A.; Bormans, G. The presence of ethanol in radiopharmaceutical injections. J. Nucl. Med., 2008, 49(12), 2071-2071.
[http://dx.doi.org/10.2967/jnumed.108.057026] [PMID: 18997045]
[24]
Bonam, S.R.; Bhunia, D.; Muller, S.; Nerella, S.G.; Alvala, M.; Halmuthur Mahabalarao, S.K. Novel trisaccharide based phospholipids as immunomodulators. Int. Immunopharmacol., 2019, 74, 105684.
[http://dx.doi.org/10.1016/j.intimp.2019.105684] [PMID: 31200340]
[25]
Ntie-Kang, F. An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus, 2013, 2, 353.
[http://dx.doi.org/10.1186/2193-1801-2-353] [PMID: 23961417]
[26]
Goud, N.S.; Pooladanda, V.; Mahammad, S.G.; Jakkula, P.; Gatreddi, S.; Qureshi, I.A.; Alvala, R.; Godugu, C.; Alvala, M. Synthesis and Biological Evaluation of Morpholines Linked Coumarin- triazole Hybrids as Anticancer Agents. Chem Biol Drug Des, 2019.
[http://dx.doi.org/10.1111/cbdd.13578]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy