Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

The Radiosensitizing Effect of Olanzapine as an Antipsychotic Medication on Glioblastoma Cell

Author(s): Seyedeh Zahra Allahgholipour, Soghra Farzipour, Arash Ghasemi, Hossein Asgarian-Omran and Seyed Jalal Hosseinimehr*

Volume 15, Issue 1, 2022

Published on: 20 January, 2021

Page: [50 - 55] Pages: 6

DOI: 10.2174/1874471014666210120100448

Price: $65

Abstract

Background: Radiotherapy is used as one of the most effective regimens for cancer treatment, while radioresistance is a major drawback in cancer treatment.

Objectives: This study aimed to evaluate the sensitizing effect of olanzapine (OLA) with X-ray on glioblastoma (U-87 MG) cells death.

Methods: The synergistic killing effect of OLA with ionizing radiation (IR) on glioma was evaluated by colony formation assay. The generations of reactive oxygen species (ROS) and protein carbonyl (PC) as oxidized proteins were determined in OLA-treated and irradiated cells.

Results: Results of this study showed that OLA reduced the number of colonies in irradiated glioma cells.OLA elevated ROS and PC levels in irradiated cells. The synergistic killing effect of OLA with IR in U-87 MG cells was observed at concentrations of 1 μM and 20 μM of OLA. The maximum radiosensitizing effect of OLA was observed at a concentration of 20 μM.

Conclusion: The present study demonstrates that OLA has a radiosensitizing effect on cell death induced by IR in glioma cells.

Keywords: Olanzapine, synergistic, radiosensitizing, ROS, ionizing radiation, colony.

Graphical Abstract

[1]
Rizzo, A.E.; Yu, J.S. Radiation therapy for glioma stem cells. Adv. Exp. Med. Biol., 2015, 853, 85-110.
[http://dx.doi.org/10.1007/978-3-319-16537-0_6] [PMID: 25895709]
[2]
Han, X.; Xue, X.; Zhou, H.; Zhang, G. A molecular view of the radioresistance of gliomas. Oncotarget, 2017, 8(59), 100931-100941.
[http://dx.doi.org/10.18632/oncotarget.21753] [PMID: 29246031]
[3]
Montero, A.J.; Jassem, J. Cellular redox pathways as a therapeutic target in the treatment of cancer. Drugs, 2011, 71(11), 1385-1396.
[http://dx.doi.org/10.2165/11592590-000000000-00000] [PMID: 21812504]
[4]
Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis, 2017, 22(11), 1321-1335.
[http://dx.doi.org/10.1007/s10495-017-1424-9] [PMID: 28936716]
[5]
Malik, A.; Sultana, M.; Qazi, A.; Qazi, M.H.; Parveen, G.; Waquar, S.; Ashraf, A.B.; Rasool, M. Role of Natural Radiosensitizers and Cancer Cell Radioresistance: An Update. Anal. Cell. Pathol. (Amst.), 2016, 2016, 6146595.
[http://dx.doi.org/10.1155/2016/6146595] [PMID: 26998418]
[6]
Prommer, E. Olanzapine: palliative medicine update. Am. J. Hosp. Palliat. Care, 2013, 30(1), 75-82.
[http://dx.doi.org/10.1177/1049909112441241] [PMID: 22495793]
[7]
Sadowska-Bartosz, I.; Galiniak, S.; Bartosz, G.; Zuberek, M.; Grzelak, A.; Dietrich-Muszalska, A. Antioxidant properties of atypical antipsychotic drugs used in the treatment of schizophrenia. Schizophr. Res., 2016, 176(2-3), 245-251.
[http://dx.doi.org/10.1016/j.schres.2016.07.010] [PMID: 27449251]
[8]
Stanisavljevic, A.; Peric, I.; Pantelic, M.; Filipovic, D.M. Olanzapine alleviates oxidative stress in the liver of socially isolated rats. Can. J. Physiol. Pharmacol., 2017, 95(6), 634-640.
[http://dx.doi.org/10.1139/cjpp-2016-0598] [PMID: 28177683]
[9]
Todorović, N.; Tomanović, N.; Gass, P.; Filipović, D. Olanzapine modulation of hepatic oxidative stress and inflammation in socially isolated rats. Eur. J. Pharm. Sci., 2016, 81, 94-102.
[http://dx.doi.org/10.1016/j.ejps.2015.10.010] [PMID: 26474692]
[10]
Asghari, M.; Shaghaghi, Z.; Farzipour, S.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of olanzapine as an anti-psychotic drug against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Mol. Biol. Rep., 2019, 46(6), 5909-5917.
[http://dx.doi.org/10.1007/s11033-019-05024-x] [PMID: 31407246]
[11]
Mauri, M.C.; Steinhilber, C.P.; Marino, R.; Invernizzi, E.; Fiorentini, A.; Cerveri, G.; Baldi, M.L.; Barale, F. Clinical outcome and olanzapine plasma levels in acute schizophrenia. Eur. Psychiatry, 2005, 20(1), 55-60.
[http://dx.doi.org/10.1016/j.eurpsy.2004.09.009] [PMID: 15642445]
[12]
Kelly, D.L.; Richardson, C.M.; Yu, Y.; Conley, R.R. Plasma concentrations of high-dose olanzapine in a double-blind crossover study. Hum. Psychopharmacol., 2006, 21(6), 393-398.
[http://dx.doi.org/10.1002/hup.781] [PMID: 16850522]
[13]
Bergemann, N.; Frick, A.; Parzer, P.; Kopitz, J. Olanzapine plasma concentration, average daily dose, and interaction with co-medication in schizophrenic patients. Pharmacopsychiatry, 2004, 37(2), 63-68.
[http://dx.doi.org/10.1055/s-2004-815527] [PMID: 15048613]
[14]
Ogony, J.; Matthews, R.; Anni, H.; Shannon, K.; Ercal, N. The mechanism of elevated toxicity in HepG2 cells due to combined exposure to ethanol and ionizing radiation. J. Appl. Toxicol., 2008, 28(3), 345-355.
[http://dx.doi.org/10.1002/jat.1285] [PMID: 17631663]
[15]
Farzipour, S.; Amiri, F.T.; Mihandoust, E.; Shaki, F.; Noaparast, Z.; Ghasemi, A.; Hosseinimehr, S.J. Radioprotective effect of diethylcarbamazine on radiation-induced acute lung injury and oxidative stress in mice. J. Bioenerg. Biomembr., 2020, 52(1), 39-46.
[http://dx.doi.org/10.1007/s10863-019-09820-9] [PMID: 31853753]
[16]
Singh, A.; Bodas, M.; Wakabayashi, N.; Bunz, F.; Biswal, S. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid. Redox Signal., 2010, 13(11), 1627-1637.
[http://dx.doi.org/10.1089/ars.2010.3219] [PMID: 20446773]
[17]
Hosseinimehr, S.J. Flavonoids and genomic instability induced by ionizing radiation. Drug Discov. Today, 2010, 15(21-22), 907-918.
[http://dx.doi.org/10.1016/j.drudis.2010.09.005] [PMID: 20933097]
[18]
Choi, J.Y.; Cho, H.J.; Hwang, S.G.; Kim, W.J.; Kim, J.I.; Um, H.D.; Park, J.K. Podophyllotoxin acetate enhances γ-ionizing radiation-induced apoptotic cell death by stimulating the ROS/p38/caspase pathway. Biomed. Pharmacother., 2015, 70, 111-118.
[http://dx.doi.org/10.1016/j.biopha.2014.12.038] [PMID: 25776488]
[19]
Lee, S.L.; Son, A.R.; Ahn, J.; Song, J.Y. Niclosamide enhances ROS-mediated cell death through c-Jun activation. Biomed. Pharmacother., 2014, 68(5), 619-624.
[http://dx.doi.org/10.1016/j.biopha.2014.03.018] [PMID: 24750999]
[20]
Cho, H.J.; Ahn, K.C.; Choi, J.Y.; Hwang, S.G.; Kim, W.J.; Um, H.D.; Park, J.K. Luteolin acts as a radiosensitizer in non-small cell lung cancer cells by enhancing apoptotic cell death through activation of a p38/ROS/caspase cascade. Int. J. Oncol., 2015, 46(3), 1149-1158.
[http://dx.doi.org/10.3892/ijo.2015.2831] [PMID: 25586525]
[21]
Hosseinimehr, S.J.; Safavi, Z.; Kangarani Farahani, S.; Noaparst, Z.; Ghasemi, A.; Asgarian-Omran, H. The synergistic effect of mefenamic acid with ionizing radiation in colon cancer. J. Bioenerg. Biomembr., 2019, 51(3), 249-257.
[http://dx.doi.org/10.1007/s10863-019-09792-w] [PMID: 30847692]
[22]
Hosseinimehr, S.J.; Najafi, S.H.; Shafiee, F.; Hassanzadeh, S.; Farzipour, S.; Ghasemi, A.; Asgarian-Omran, H. Fluoxetine as an antidepressant medicine improves the effects of ionizing radiation for the treatment of glioma. J. Bioenerg. Biomembr., 2020, 52(3), 165-174.
[http://dx.doi.org/10.1007/s10863-020-09833-9] [PMID: 32405794]
[23]
Zhu, Y.; Zhao, Y.F.; Liu, R.S.; Xiong, Y.J.; Shen, X.; Wang, Y.; Liang, Z.Q. Olanzapine induced autophagy through suppression of NF-κB activation in human glioma cells. CNS Neurosci. Ther., 2019, 25(9), 911-921.
[http://dx.doi.org/10.1111/cns.13127] [PMID: 30955240]
[24]
Wang, Y.X.; Xu, S.Q.; Chen, X.H.; Liu, R.S.; Liang, Z.Q. Autophagy involvement in olanzapine-mediated cytotoxic effects in human glioma cells. Asian Pac. J. Cancer Prev., 2014, 15(19), 8107-8113.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8107] [PMID: 25338992]
[25]
Karpel-Massler, G.; Kast, R.E.; Westhoff, M.A.; Dwucet, A.; Welscher, N.; Nonnenmacher, L.; Hlavac, M.; Siegelin, M.D.; Wirtz, C.R.; Debatin, K.M.; Halatsch, M.E. Olanzapine inhibits proliferation, migration and anchorage-independent growth in human glioblastoma cell lines and enhances temozolomide’s antiproliferative effect. J. Neurooncol., 2015, 122(1), 21-33.
[http://dx.doi.org/10.1007/s11060-014-1688-7] [PMID: 25524815]
[26]
Kast, R.E.; Karpel-Massler, G.; Halatsch, M.E. Can the therapeutic effects of temozolomide be potentiated by stimulating AMP-activated protein kinase with olanzepine and metformin? Br. J. Pharmacol., 2011, 164(5), 1393-1396.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01320.x] [PMID: 21410456]
[27]
Ji, M.; Cui, J.; Xi, H.; Yang, Y.; Wang, L. Efficacy of olanzapine for quality of life improvement among patients with malignant tumor: A systematic review. Cancer Rep (Hoboken), 2019, 2(4)
[http://dx.doi.org/10.1002/cnr2.1167] [PMID: 32721128]
[28]
Navari, R.M.; Pywell, C.M.; Le-Rademacher, J.G.; White, P.; Dodge, A.B.; Albany, C.; Loprinzi, C.L. Olanzapine for the Treatment of Advanced Cancer-Related Chronic Nausea and/or Vomiting: A Randomized Pilot Trial. JAMA Oncol., 2020, 6(6), 895-899.
[http://dx.doi.org/10.1001/jamaoncol.2020.1052] [PMID: 32379269]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy