Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Perspective

An Alternative “Trojan Horse” Hypothesis for COVID-19: Immune Deficiency of IL-10 and SARS-CoV-2 Biology

Author(s): Mario Giosuè Balzanelli, Pietro Distratis, Sergey K. Aityan, Felice Amatulli, Orazio Catucci, Angelo Cefalo, Antonia De Michele, Gianna Dipalma, Francesco Inchingolo, Rita Lazzaro, Kieu Cao Diem Nguyen, Davide Palazzo, Marilina Tampoia, Van Hung Pham, Luigi Santacroce* and Ciro Gargiulo Isacco

Volume 22, Issue 1, 2022

Published on: 27 January, 2021

Page: [1 - 5] Pages: 5

DOI: 10.2174/1871530321666210127141945

Abstract

Abstract: The coronavirus disease 2019 (COVID-19) pandemic has been a challenge for emergency care units worldwide due to the large numbers of patients, the scarcity of information, the medical resources, and the uncertainty regarding the disease's etiology and pathogenesis. The transmission of the virus and a probable post-pandemic of SARS-CoV-2 will depend on how deep this disease, the duration of immunity and the degree of cross immunity between SARS-CoV-2 and other pathogens either bacteria or fungi can be understood. Most mortalities have been related to an atypical pneumonia consisted of a sudden worsening of general condition of the admitted positive COVID-19 patients. The severe thromboembolism, often characterized by violent pulmonary and systemic complications, have been described with a blend of inflammatory-infectious patterns that rapidly shifted into a typical systemic inflammatory response syndrome (SIRS) or into an acute respiratory distress syndrome (ARDS) that eventually concluded into a multi-organ failure (MOF) and death. The fatality rate reported in our Covid-19 structure, SG Moscati Hospital of Taranto province in Italy, was higher in elderly male people with preexisting chronic pulmonary disease (COPD), patients with cancer and preexisting cardio-vascular diseases (CVD). We assumed a different theoretical position to clarify the higher mortality seen among those patients that was not as obvious as it appeared, we thus offered different pathophysiological picture that could help to recent solutions in therapy and prevention.

Keywords: COVID-19, SARS-CoV-2, arterial blood gas (ABG), IL-10, IL-6, TNF-α, bronchial-alveolar lavage fluid (BALF).

Next »
Graphical Abstract

[1]
Santacroce, L.; Charitos, I.A.; Del Prete, R. COVID-19 in Italy: An overview from the first case to date. Electron J. Gen Med., 2020, 17(6), em235.
[http://dx.doi.org/10.29333/ejgm/7926]
[2]
Santacroce, L.; Bottalico, L.; Charitos, I.A. The impact of covid-19 on italy: A lesson for the future. Int. J. Occup. Environ. Med., 2020, 11(3), 151-152.
[http://dx.doi.org/10.34172/ijoem.2020.1984] [PMID: 32225178]
[3]
Santacroce, L.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Luperto, P.; De Nitto, E.; Topi, S. The human respiratory system and its microbiome at a glimpse. Biology (Basel), 2020, 9(10), 318.
[http://dx.doi.org/10.3390/biology9100318] [PMID: 33019595]
[4]
Santacroce, L.; Charitos, I.A.; Carretta, D.M.; De Nitto, E.; Lovero, R. The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. J. Mol. Med. (Berl.), 2021, 99(1), 93-106.
[http://dx.doi.org/10.1007/s00109-020-02012-8] [PMID: 33269412]
[5]
Taleghani, N.; Taghipour, F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens. Bioelectron., 2021, 174, 112830.
[http://dx.doi.org/10.1016/j.bios.2020.112830]
[6]
Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; Wang, C.; Zhao, J.; Sun, X.; Tian, R.; Wu, W.; Wu, D.; Ma, J.; Chen, Y.; Zhang, D.; Xie, J.; Yan, X.; Zhou, X.; Liu, Z.; Wang, J.; Du, B.; Qin, Y.; Gao, P.; Qin, X.; Xu, Y.; Zhang, W.; Li, T.; Zhang, F.; Zhao, Y.; Li, Y.; Zhang, S. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N. Engl. J. Med., 2020, 382(17), e38.
[http://dx.doi.org/10.1056/NEJMc2007575] [PMID: 32268022]
[7]
Yuen, K.S.; Ye, Z.W.; Fung, S.Y.; Chan, C.P.; Jin, D.Y. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci., 2020, 10, 40.
[http://dx.doi.org/10.1186/s13578-020-00404-4] [PMID: 32190290]
[8]
Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res., 2018, 149, 58-74.
[http://dx.doi.org/10.1016/j.antiviral.2017.11.001] [PMID: 29128390]
[9]
Santiago-Tirado, F.H.; Onken, M.D.; Cooper, J.A.; Klein, R.S.; Doering, T.L. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. MBio, 2017, 8(1), e02183-e16.
[http://dx.doi.org/10.1128/mBio.02183-16] [PMID: 28143979]
[10]
Hoffmann, J.; Machado, D.; Terrier, O.; Pouzol, S.; Messaoudi, M.; Basualdo, W.; Espínola, E.E.; Guillen, R.M.; Rosa-Calatrava, M.; Picot, V.; Bénet, T.; Endtz, H.; Russomando, G.; Paranhos-Baccalà, G. Viral and bacterial co-infection in severe pneumonia triggers innate immune responses and specifically enhances IP-10: a translational study. Sci. Rep., 2016, 6, 38532.
[http://dx.doi.org/10.1038/srep38532] [PMID: 27922126]
[11]
Almand, E.A.; Moore, M.D.; Jaykus, L.A. Virus-bacteria interactions: an emerging topic in human infection. Viruses, 2017, 9(3), 58.
[http://dx.doi.org/10.3390/v9030058] [PMID: 28335562]
[12]
Schirinzi, A.; Cazzolla, A.P.; Lovero, R.; Lo Muzio, L.; Testa, N.F.; Ciavarella, D.; Palmieri, G.; Pozzessere, P.; Procacci, V.; Di Serio, F.; Santacroce, L. New insights in laboratory testing for covid-19 patients: looking for the role and predictive value of Human epididymis secretory protein 4 (HE4) and the innate immunity of the oral cavity and respiratory tract. Microorganisms, 2020, 8(11), 1718.
[http://dx.doi.org/10.3390/microorganisms8111718] [PMID: 33147871]
[13]
Magrone, T.; Magrone, M.; Jirillo, E. Focus on receptors for coronaviruses with special reference to angiotensin- converting enzyme 2 as a potential drug target - a perspective. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(6), 807-811.
[http://dx.doi.org/10.2174/1871530320666200427112902] [PMID: 32338224]
[14]
Liu, Y; Sawalha, AH; Lu, Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol., 2021, 33(2), 155-162.
[http://dx.doi.org/10.1097/BOR.0000000000000776.]
[15]
Cazzolla, A.P.; Lovero, R.; Lo Muzio, L.; Testa, N.F.; Schirinzi, A.; Palmieri, G.; Pozzessere, P.; Procacci, V.; Di Comite, M.; Ciavarella, D.; Pepe, M.; De Ruvo, C.; Crincoli, V.; Di Serio, F.; Santacroce, L. Taste and Smell Disorders in COVID-19 Patients: Role of Interleukin-6. ACS Chem. Neurosci., 2020, 11(17), 2774-2781.
[http://dx.doi.org/10.1021/acschemneuro.0c00447] [PMID: 32786309]
[16]
Pizurki, L.; Morris, M.A.; Chanson, M.; Solomon, M.; Pavirani, A.; Bouchardy, I.; Suter, S. Cystic fibrosis transmembrane conductance regulator does not affect neutrophil migration across cystic fibrosis airway epithelial monolayers. Am. J. Pathol., 2000, 156(4), 1407-1416.
[http://dx.doi.org/10.1016/S0002-9440(10)65009-2] [PMID: 10751364]
[17]
Gao, M.; Yang, L.; Chen, X.; Deng, Y.; Yang, S.; Xu, H.; Chen, Z.; Gao, X. A study on infectivity of asymptomatic SARS-CoV-2 carriers. Respir. Med., 2020, 169, 106026.
[http://dx.doi.org/10.1016/j.rmed.2020.106026] [PMID: 32513410]
[18]
DiMango, E; Ratner, A.J; Bryan, R. Activation of NF-κB by adherent Pseudomonas aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J. Clin., 1998, 101(11), 2598-2605.
[19]
Dong, M.; He, F.; Deng, Y. How to understand herd immunity in the context of COVID-19. Viral Immunol., 2020, 34(3), 174-181.
[http://dx.doi.org/10.1089/vim.2020.0195]
[20]
Schyns, J.; Bureau, F.; Marichal, T. Lung Interstitial Macrophages: Past, Present, and Future. J. Immunol. Res., 2018, 2018, 5160794.
[http://dx.doi.org/10.1155/2018/5160794] [PMID: 29854841]
[21]
Jubrail, J.; Africano-Gomez, K.; Herit, F.; Mularski, A.; Bourdoncle, P.; Oberg, L.; Israelsson, E.; Burgel, P.R.; Mayer, G.; Cunoosamy, D.M.; Kurian, N.; Niedergang, F. Arpin is critical for phagocytosis in macrophages and is targeted by human rhinovirus. EMBO Rep., 2020, 21(1), e47963.
[http://dx.doi.org/10.15252/embr.201947963] [PMID: 31721415]
[22]
Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 2005, 5(12), 953-964.
[http://dx.doi.org/10.1038/nri1733] [PMID: 16322748]
[23]
Liu, J.; Liu, Y.; Xiang, P.; Pu, L.; Xiong, H.; Li, C.; Zhang, M.; Tan, J.; Xu, Y.; Song, R.; Song, M.; Wang, L.; Zhang, W.; Han, B.; Yang, L.; Wang, X.; Zhou, G.; Zhang, T.; Li, B.; Wang, Y.; Chen, Z.; Wang, X. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J. Transl. Med., 2020, 18(1), 206.
[http://dx.doi.org/10.1186/s12967-020-02374-0] [PMID: 32434518]
[24]
Didion, S.P.; Kinzenbaw, D.A.; Schrader, L.I.; Chu, Y.; Faraci, F.M. Endogenous interleukin-10 inhibits angiotensin II-induced vascular dysfunction. Hypertension, 2009, 54(3), 619-624.
[http://dx.doi.org/10.1161/hypertensionaha.109.137158] [PMID: 19620507]
[25]
Inchingolo, F.; Martelli, F.S.; Gargiulo Isacco, C.; Borsani, E.; Cantore, S.; Corcioli, F.; Boddi, A.; Nguyễn, K.C.D.; De Vito, D.; Aityan, S.K.; Pham, V.H.; Dipalma, G.; Ballini, A. Chronic periodontitis and immunity, towards the implementation of a personalized medicine: a translational research on gene single nucleotide polymorphisms (snps) linked to chronic oral dysbiosis in 96 caucasian patients. Biomedicines, 2020, 8(5), 115.
[http://dx.doi.org/10.3390/biomedicines8050115] [PMID: 32397555]
[26]
Gunnett, C.A.; Berg, D.J.; Faraci, F.M.; Feuerstein, G. Vascular effects of lipopolysaccharide are enhanced in interleukin-10-deficient mice. Stroke, 1999, 30(10), 2191-2195.
[http://dx.doi.org/10.1161/01.STR.30.10.2191] [PMID: 10512928]
[27]
Keidar, S.; Gamliel-Lazarovich, A.; Kaplan, M.; Pavlotzky, E.; Hamoud, S.; Hayek, T.; Karry, R.; Abassi, Z. Mineralocorticoid receptor blocker increases angiotensin-converting enzyme 2 activity in congestive heart failure patients. Circ. Res., 2005, 97(9), 946-953.
[http://dx.doi.org/10.1161/01.RES.0000187500.24964.7A] [PMID: 16179584]
[28]
Steen, E.H.; Wang, X.; Balaji, S.; Butte, M.J.; Bollyky, P.L.; Keswani, S.G. The role of the anti-inflammatory cytokine interleukin-10 in tissue fibrosis. Adv. Wound Care (New Rochelle), 2020, 9(4), 184-198.
[http://dx.doi.org/10.1089/wound.2019.1032] [PMID: 32117582]
[29]
Koay, H.F.; Fulford, T.S.; Godfrey, D.I. An unconventional view of COVID-19 T cell immunity. J. Exp. Med., 2020, 217(12), e20201727.
[http://dx.doi.org/10.1084/jem.20201727] [PMID: 33147321]
[30]
Baghbani, T.; Nikzad, H.; Azadbakht, J.; Izadpanah, F.; Haddad Kashani, H. Dual and mutual interaction between microbiota and viral infections: a possible treat for COVID-19. Microb. Cell Fact., 2020, 19(1), 217.
[http://dx.doi.org/10.1186/s12934-020-01483-1] [PMID: 33243230]
[31]
Shahbazi, R.; Yasavoli-Sharahi, H.; Alsadi, N.; Ismail, N.; Matar, C. Probiotics in treatment of viral respiratory infections and neuroinflammatory disorders. Molecules, 2020, 25(21), 4891.
[http://dx.doi.org/10.3390/molecules25214891] [PMID: 33105830]

© 2024 Bentham Science Publishers | Privacy Policy