Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Review Article

Microglial Store-operated Calcium Signaling in Health and in Alzheimer’s Disease

Author(s): James G. McLarnon*

Volume 17, Issue 12, 2020

Page: [1057 - 1064] Pages: 8

DOI: 10.2174/1567205018666210119143817

Price: $65

Abstract

The dysregulation of calcium signaling mechanisms in neurons has been considered a contributing factor to the pathogenesis evident in early-onset Alzheimer’s Disease (AD). However, considerably less is known concerning the possible impairment of Ca2+ mobilization in resident immune cell microglia. This review considers findings which suggest that a prominent pathway for non-excitable microglial cells, store-operated calcium entry (SOCE), is altered in the sporadic form of AD. The patterns of Ca2+ mobilization are first discussed with platelet-activating factor (PAF) stimulation of SOCE in adult, fetal and immortalized cell-line, human microglia in the healthy brain. In all cases, PAF was found to induce a rapid transient depletion of Ca2+ from endoplasmic reticulum (ER) stores, followed by a sustained entry of Ca2+ (SOCE). A considerably attenuated duration of SOCE is observed with ATP stimulation of human microglia, suggested as due to agonist actions on differential subtype purinergic receptors. Microglia obtained from AD brain tissue, or microglia treated with full-length amyloid-β peptide (Aβ42), show significant reductions in the amplitude of SOCE relative to controls. In addition, AD brain and Aβ42-treated microglia exhibit decreased levels of Ca2+ release from ER stores compared to controls. Changes in properties of SOCE in microglia could lead to altered immune cell response and neurovascular unit dysfunction in the inflamed AD brain.

Keywords: Human microglia, store-operated calcium entry (SOCE), platelet-activating factor (PAF), prolonged SOCE, amyloid- beta (Aβ), Alzheimer's disease (AD).

[1]
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009; 29(13): 3974-80.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[2]
Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. J Neurosci 1999; 19(3): 928-39.
[http://dx.doi.org/10.1523/JNEUROSCI.19-03-00928.1999] [PMID: 9920656]
[3]
McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 1997; 17(7): 2284-94.
[http://dx.doi.org/10.1523/JNEUROSCI.17-07-02284.1997] [PMID: 9065490]
[4]
Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 2003; 23(7): 2665-74.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02665.2003] [PMID: 12684452]
[5]
McLarnon JG, Xu R, Lee YB, Kim SU. Ion channels of human microglia in culture. Neuroscience 1997; 78(4): 1217-28.
[http://dx.doi.org/10.1016/S0306-4522(96)00680-X] [PMID: 9174088]
[6]
Eder C. Ion channels in microglia (brain macrophages). Am J Physiol 1998; 275(2): C327-42.
[http://dx.doi.org/10.1152/ajpcell.1998.275.2.C327] [PMID: 9688586]
[7]
Secondo A, Bagetta G, Amantea D. On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases. Front Mol Neurosci 2018; 11: 87.
[http://dx.doi.org/10.3389/fnmol.2018.00087] [PMID: 29623030]
[8]
Hemonnat AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer’s disease: Well-known targets and new opportunities Front Aging Neurosci 2019; 11: 233.
[http://dx.doi.org/10.3389/fnagi.2019.00233]
[9]
Lewis RS. Store-operated calcium channels: New perspectives on mechanism and function. Cold Spring Harb Perspect Biol 2011; 3(12)a003970
[10]
Putney JW, Steinckwich-Besançon N, Numaga-Tomita T, et al. The functions of store-operated calcium channels. Biochim Biophys Acta Mol Cell Res 2017; 1864(6): 900-6.
[http://dx.doi.org/10.1016/j.bbamcr.2016.11.028] [PMID: 27913208]
[11]
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2018; 68: 88-96.
[http://dx.doi.org/10.1016/j.jbior.2017.11.006] [PMID: 29217255]
[12]
Lewis RS. Store-operated calcium channels: From function to structure and back again. Cold Spring Harb Perspect Biol 2020; 12(5)a035055
[http://dx.doi.org/10.1101/cshperspect.a035055] [PMID: 31570335]
[13]
Prakriya M, Lewis RS. Store-operated calcium channels. Physiol Rev 2015; 95(4): 1383-436.
[http://dx.doi.org/10.1152/physrev.00020.2014] [PMID: 26400989]
[14]
Hogan PG, Rao A. Store-operated calcium entry: Mechanisms and modulation. Biochem Biophys Res Commun 2015; 460(1): 40-9.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.110] [PMID: 25998732]
[15]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[16]
Wang H, Liu S, Tian Y, et al. Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a cuprizone-induced mouse model of demyelination. Front Cell Neurosci 2015; 9: 492.
[http://dx.doi.org/10.3389/fncel.2015.00492] [PMID: 26732345]
[17]
Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 2015; 63(4): 652-63.
[http://dx.doi.org/10.1002/glia.22775] [PMID: 25471906]
[18]
Gilbert DF, Stebbing MJ, Kuenzel K, et al. Store-operated Ca2+ entry (SOCE) and purinergic receptor-mediated Ca2+ homeostasis in murine bv2 microglial cells: Early cellular responses to ATP-mediated microglia activation. Front Mol Neurosci 2016; 9: 111.
[19]
Heo DK, Lim HM, Nam JH, Lee MG, Kim JY. Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. Cell Signal 2015; 27(1): 177-86.
[http://dx.doi.org/10.1016/j.cellsig.2014.11.003] [PMID: 25451082]
[20]
Toescu EC, Möller T, Kettenmann H, Verkhratsky A. Long-term activation of capacitative Ca2+ entry in mouse microglial cells. Neuroscience 1998; 86(3): 925-35.
[http://dx.doi.org/10.1016/S0306-4522(98)00123-7] [PMID: 9692728]
[21]
Mattson MP, Chan SL. Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium 2003; 34(4-5): 385-97.
[http://dx.doi.org/10.1016/S0143-4160(03)00128-3] [PMID: 12909083]
[22]
Bojarski L, Herms J, Kuznicki J. Calcium dysregulation in Alzheimer’s disease. Neurochem Int 2008; 52(4-5): 621-33.
[http://dx.doi.org/10.1016/j.neuint.2007.10.002] [PMID: 18035450]
[23]
Yu JT, Chang RC, Tan L. Calcium dysregulation in Alzheimer’s disease: From mechanisms to therapeutic opportunities. Prog Neurobiol 2009; 89(3): 240-55.
[http://dx.doi.org/10.1016/j.pneurobio.2009.07.009] [PMID: 19664678]
[24]
Pchitskaya E, Popugaeva E, Bezprozvanny I. Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 2018; 70: 87-94.
[http://dx.doi.org/10.1016/j.ceca.2017.06.008] [PMID: 28728834]
[25]
McLarnon JG, Helm J, Goghari V, et al. Anion channels modulate store-operated calcium influx in human microglia. Cell Calcium 2000; 28(4): 261-8.
[http://dx.doi.org/10.1054/ceca.2000.0150] [PMID: 11032781]
[26]
Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T. Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci 1996; 16(11): 3590-600.
[http://dx.doi.org/10.1523/JNEUROSCI.16-11-03590.1996] [PMID: 8642404]
[27]
Wang X, Bae JH, Kim SU, McLarnon JG. Platelet-activating factor induced Ca(2+) signaling in human microglia. Brain Res 1999; 842(1): 159-65.
[http://dx.doi.org/10.1016/S0006-8993(99)01849-1] [PMID: 10526106]
[28]
Sattayaprasert P, Choi HB, Chongthammakun S, McLarnon JG. Platelet-activating factor enhancement of calcium influx and interleukin-6 expression, but not production, in human microglia. J Neuroinflamm 2005; 2(1): 11.
[29]
Hong SH, Choi HB, Kim SU, McLarnon JG. Mitochondrial ligand inhibits store-operated calcium influx and COX-2 production in human microglia. J Neurosci Res 2006; 83(7): 1293-8.
[http://dx.doi.org/10.1002/jnr.20829] [PMID: 16547968]
[30]
Wang X, Kim SU, van Breemen C, McLarnon JG. Activation of purinergic P2X receptors inhibits P2Y-mediated Ca2+ influx in human microglia. Cell Calcium 2000; 27(4): 205-12.
[http://dx.doi.org/10.1054/ceca.2000.0110] [PMID: 10858666]
[31]
Park JH, Kim JN, Jang BC, Im SS, Song DK, Bae JH. Glucosamine suppresses platelet-activating factor-induced activation of microglia through inhibition of store-operated calcium influx. Environ Toxicol Pharmacol 2016; 42: 1-8.
[http://dx.doi.org/10.1016/j.etap.2015.12.014] [PMID: 26745504]
[32]
Yi HA, Yi SD, Jang BC, et al. Inhibitory effects of glucosamine on lipopolysaccharide-induced activation in microglial cells. Clin Exp Pharmacol Physiol 2005; 32(12): 1097-103.
[http://dx.doi.org/10.1111/j.1440-1681.2005.04305.x] [PMID: 16445576]
[33]
Stansley B, Post J, Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer’s disease. J Neuroinflamm 2012; 9: 115.www.jneuroinflamm.com/contents/9/1/1152012
[34]
McLarnon JG, Choi HB, Lue LF, Walker DG, Kim SU. Perturbations in calcium-mediated signal transduction in microglia from Alzheimer’s disease patients. J Neurosci Res 2005; 81(3): 426-35.
[http://dx.doi.org/10.1002/jnr.20487] [PMID: 15948178]
[35]
Ronco V, Grolla AA, Glasnov TN, et al. Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 2014; 55(4): 219-29.
[http://dx.doi.org/10.1016/j.ceca.2014.02.016] [PMID: 24656753]
[36]
Greotti E, Capitanio P, Wong A, Pozzan T, Pizzo P, Pendin D. Familial Alzheimer’s disease-linked presenilin mutants and intracellular Ca2+ handling: A single-organelle, FRET-based analysis. Cell Calcium 2019; 79: 44-56.
[http://dx.doi.org/10.1016/j.ceca.2019.02.005] [PMID: 30822648]
[37]
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[38]
Jairaman A, Prakriya M. Molecular pharmacology of store-operated CRAC channels. Channels (Austin) 2013; 7(5): 402-14.
[http://dx.doi.org/10.4161/chan.25292] [PMID: 23807116]
[39]
McLarnon JG. Purinergic mediated changes in Ca2+ mobilization and functional responses in microglia: effects of low levels of ATP. J Neurosci Res 2005; 81(3): 349-56.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy