Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Highlighting Aglycone-dependent Glycosylation Aspects in Caryophyllaceae Saponins by a Simplex Simulation Approach

Author(s): Asma Hammami, Muhammad Farman and Nabil Semmar*

Volume 21, Issue 7, 2021

Published on: 14 January, 2021

Page: [612 - 627] Pages: 16

DOI: 10.2174/1568026621666210114153216

Price: $65

Abstract

Background: Saponin metabolism shows high structural variability due to the diversity of aglycones and glycosylations (Gly). Although they represent a potential source of drug design, their metabolism remains misunderstood yet due to insufficient investments in analytical methods.

Aims: Bibliographic structural data offer a wide field for extensive statistical analysis, highlighting mechanistic orders governing metabolic diversity. This work presents an original simulation method based on simplex rule for highlighting regulatory mechanisms of metabolism from categorical structural data.

Methods: Simulation was applied on a set of 231 saponins of the Caryophyllaceae plant family initially affiliated to four aglycone types: gypsogenin (Gyp), quillaic acid (QA), gypsogenic acid (GA), and 16-OH-gypsogenic acid (16-OH-GA). Molecules were initially characterized by relative glycosylation levels of different carbons. Simplex approach was applied by combining saponins of the four aglycone groups using a complete set of N gradual weightings between structural groups. In silico combinations were applied by randomly sampling representative saponins from the four groups conforming to their weights given by mixture design. Gly profiles of sampled saponins were averaged to calculate a barycentric molecular profile for each mixture. With N mixtures, N barycentric molecules were iteratively calculated by bootstrap, leading to smoothed data from which Gly trends between carbons were highlighted.

Results: Sequential, competing and cooperative Gly trends were highlighted according to the types of aglycones, attached saccharides and positions of substituted carbons. Such various conditional Gly trends seemed to be linked to multiple factors, including steric effects, regio-selectivity, enzymatic specificity and enzymatic promiscuity. These simulated results could be helpfully useful in chemical synthesis and drug design.

Conclusion: These simulated results could usefully help for chemical syntheses and drug design.

Keywords: Computational chemistry, Mixture design, Metabolism, Regioselectivity, Enzymatic competitions, Chemical substitutions.

Graphical Abstract

[1]
Cheikh Ali, S.; Farman, M.; Lacaille-Dubois, M.A.; Semmar, N. Structural organization of saponins in Caryophyllaceae. Phytochem. Rev., 2019, 18(2), 405-441.
[http://dx.doi.org/10.1007/s11101-019-09600-8]
[2]
Böttger, S.; Melzig, M.F. Triterpenoid saponins of the Caryophyllaceae and Illecebraceae family. Phytochem. Lett., 2011, 4(2), 59-68.
[http://dx.doi.org/10.1016/j.phytol.2010.08.003]
[3]
Acebes, B.; Díaz-Lanza, A.M.; Bernabé, M. A saponin from the roots of Gypsophila bermejoi. Phytochemistry, 1998, 49(7), 2077-2079.
[http://dx.doi.org/10.1016/S0031-9422(98)00404-X] [PMID: 9883593]
[4]
Acebes, B.; Bernabé, M.; Díaz-Lanza, A.M.; Bartolomé, C. Two new sulfated saponins from the roots of Gypsophila bermejoi. J. Nat. Prod., 1998, 61(12), 1557-1559.
[http://dx.doi.org/10.1021/np9705221] [PMID: 9868165]
[5]
Arslan, I.; Celik, A.; Melzig, M.F. Nebulosides A-B, novel triterpene saponins from under-ground parts of Gypsophila arrostii Guss. var. nebulosa. Bioorg. Med. Chem., 2013, 21(5), 1279-1283.
[http://dx.doi.org/10.1016/j.bmc.2012.12.036] [PMID: 23352756]
[6]
Baeva, R.T.; Karryev, M.O.; Amanmuradov, K.; Abubakirov, N.K. Glycosides of Vaccaria segetalis. Khim Prir Soedin, 1974, 2, 258.
[7]
Bai, H.; Zhong, Y.; Xie, Y.Y.; Wang, Y.S.; Liu, L.; Zhou, L.; Wang, J.; Mu, Y.L.; Zuo, C.X. A major triterpenoid saponin from Gypsophila oldhamiana. Chem. Biodivers., 2007, 4(5), 955-960.
[http://dx.doi.org/10.1002/cbdv.200790085] [PMID: 17511010]
[8]
Balsevich, J.J.; Ramirez-Erosa, I.; Hickie, R.A.; Dunlop, D.M.; Bishop, G.G.; Deibert, L.K. Antiproliferative activity of Saponaria vaccaria constituents and related compounds. Fitoterapia, 2012, 83(1), 170-181.
[http://dx.doi.org/10.1016/j.fitote.2011.10.010] [PMID: 22056663]
[9]
Bouguet-Bonnet, S.; Rochd, M.; Mutzenhardt, P.; Henry, M. Total assignment of 1H and 13C NMR spectra of three triterpene saponins from roots of Silene vulgaris (Moench) Garcke. Magn. Reson. Chem., 2002, 40(9), 618-621.
[http://dx.doi.org/10.1002/mrc.1069]
[10]
Bukharov, V.G.; Shcherbak, S.P.; Beshchekova, A.P. Triterpene glycosides of Dianthus deltoides. Khim Prir Soedin, 1971, 1, 33-38.
[11]
Chen, Q.; Luo, J.G.; Kong, L.Y. Triterpenoid saponins from Gypsophila altissima L. Chem. Pharm. Bull. (Tokyo), 2010, 58(3), 412-414.
[http://dx.doi.org/10.1248/cpb.58.412] [PMID: 20190453]
[12]
Chen, Q.; Luo, J.G.; Kong, L.Y. New triterpenoid saponins from the roots of Gypsophila perfoliata Linn. Carbohydr. Res., 2011, 346(14), 2206-2212.
[http://dx.doi.org/10.1016/j.carres.2011.07.027] [PMID: 21861989]
[13]
De Tommasi, N.; Piacente, S.; Gacs-Baitz, E.; De Simone, F.; Pizza, C.; Aquino, R. Triterpenoid saponins from Spergularia ramosa. J. Nat. Prod., 1998, 61(3), 323-327.
[http://dx.doi.org/10.1021/np970398l] [PMID: 9544562]
[14]
Deng, X.T.; Liu, X.X.; Zhu, D.; Wang, Q. A new triterpenoid saponin from Psammosilene tunicoides. Chin. J. Nat. Med., 2009, 7(2), 101-104.
[http://dx.doi.org/10.3724/SP.J.1009.2009.00101]
[15]
Elbandy, M.; Miyamoto, T.; Lacaille-Dubois, M.A. New triterpenoidal saponins from Gypsophila repens. Helv. Chim. Acta, 2007, 90(2), 260-270.
[http://dx.doi.org/10.1002/hlca.200790029]
[16]
Elgamal, M.H.A.; Soliman, H.S.M.; Karawya, M.S.; Mikhova, B.; Duddeck, H. Isolation of triterpene saponins from Gypsophila capillaris. Phytochemistry, 1995, 38(6), 1481-1485.
[http://dx.doi.org/10.1016/0031-9422(94)00900-E] [PMID: 7786478]
[17]
Frechet, D.; Christ, B.; du Sorbier, B.M.; Fischer, H.; Vuilhorgne, M. Four triterpenoid saponins from dried roots of Gypsophila species. Phytochemistry, 1991, 30(3), 927-931.
[http://dx.doi.org/10.1016/0031-9422(91)85281-4] [PMID: 1367588]
[18]
Fu, H.; Koike, K.; Li, W.; Nikaido, T.; Lin, W.; Guo, D. Silenorubicosides A-D, triterpenoid saponins from Silene rubicunda. J. Nat. Prod., 2005, 68(5), 754-758.
[http://dx.doi.org/10.1021/np049586j] [PMID: 15921423]
[19]
Gaidi, G.; Miyamoto, T.; Rustaiyan, A.; Laurens, V.; Lacaille-Dubois, M.A. Two new biologically active triterpene saponins from Acanthophyllum squarrosum. J. Nat. Prod., 2000, 63(11), 1497-1502.
[http://dx.doi.org/10.1021/np000212+] [PMID: 11087591]
[20]
Gaidi, G.; Miyamoto, T.; Rustaiyan, A.; Lacaille-Dubois, M.A. Three new acylated triterpene saponins from Acanthophyllum squarrosum. J. Nat. Prod., 2001, 64(7), 920-924.
[http://dx.doi.org/10.1021/np010002c] [PMID: 11473424]
[21]
Gaidi, G.; Lacaille-Dubois, M.A. Three new saponins of Arenaria juncea. J. Soc. Biol., 2001, 195(4), 463-464.
[http://dx.doi.org/10.1051/jbio/2001195040463]
[22]
Gaidi, G.; Miyamoto, T.; Lacaille-Dubois, M.A. Junceosides A-C, new triterpene saponins from Arenaria juncea. J. Nat. Prod., 2001, 64(12), 1533-1537.
[http://dx.doi.org/10.1021/np010353r] [PMID: 11754605]
[23]
Gaidi, G.; Miyamoto, T.; Laurens, V.; Lacaille-Dubois, M.A. New acylated triterpene saponins from Silene fortunei that modulate lymphocyte proliferation. J. Nat. Prod., 2002, 65(11), 1568-1572.
[http://dx.doi.org/10.1021/np020105a] [PMID: 12444678]
[24]
Gaidi, G.; Miyamoto, T.; Ramezani, M.; Lacaille-Dubois, M.A. Glandulosides A-D, triterpene saponins from Acanthophyllum glandulosum. J. Nat. Prod., 2004, 67(7), 1114-1118.
[http://dx.doi.org/10.1021/np040001v] [PMID: 15270563]
[25]
Gaidi, G.; Miyamoto, T.; Lacaille-Dubois, M.A. An unusual new sulfated triterpene saponin from Arenaria juncea. Pharmazie, 2005, 60(8), 635-637.
[PMID: 16124413]
[26]
Gevrenova, R.; Voutquenne-Nazabadioko, L.; Harakat, D.; Prost, E.; Henry, M. Complete 1H- and 13C NMR assignments of saponins from roots of Gypsophila trichotoma Wend. Magn. Reson. Chem., 2006, 44(7), 686-691.
[http://dx.doi.org/10.1002/mrc.1827] [PMID: 16685746]
[27]
Glensk, M.; Wray, V.; Nimtz, M.; Schöpke, T. Silenosides A-C, triterpenoid saponins from Silene vulgaris. J. Nat. Prod., 1999, 62(5), 717-721.
[http://dx.doi.org/10.1021/np980505r] [PMID: 10346953]
[28]
Haddad, M.; Miyamoto, T.; Ramezani, M.; Lacaille-Dubois, M.A. New triterpene saponins from Acanthophyllum pachystegium. Helv. Chim. Acta, 2004, 87(1), 73-81.
[http://dx.doi.org/10.1002/hlca.200490019]
[29]
Horo, I.; Masullo, M.; Falco, A.; Gökhan Şenol, S.; Piacente, S.; Alankuş-Çalişkan, Ö. New triterpene saponins from Phryna ortegioides. Phytochem. Lett., 2015, 14, 39-44.
[http://dx.doi.org/10.1016/j.phytol.2015.08.017]
[30]
Jia, Z.; Koike, K.; Kudo, M.; Li, H.; Nikaido, T. Triterpenoid saponins and sapogenins from Vaccaria segetalis. Phytochemistry, 1998, 48(3), 529-536.
[http://dx.doi.org/10.1016/S0031-9422(97)01128-X] [PMID: 9654779]
[31]
Jia, Z.; Koike, K.; Nikaido, T. Saponarioside C, the first α-D-galactose containing triterpenoid saponin, and five related compounds from Saponaria officinalis. J. Nat. Prod., 1999, 62(3), 449-453.
[http://dx.doi.org/10.1021/np980434w] [PMID: 10096856]
[32]
Zhang, J.; Cao, W.; Tian, J.; Yue, R.; Li, L.; Guo, B.; Shan, L.; Yu, B.; Zhang, W. Evaluation of novel saponins from Psammosilene tunicoides and their analogs as immunomodulators. Int. Immunopharmacol., 2012, 14(1), 21-26.
[http://dx.doi.org/10.1016/j.intimp.2012.06.006] [PMID: 22771363]
[33]
Kanehira, Y.; Kawakami, S.; Sugimoto, S.; Matsunami, K.; Otsuka, H. Dianthosaponins G-I, triterpene saponins, an anthranilic acid amide glucoside and a flavonoid glycoside from the aerial parts of Dianthus japonicus and their cytotoxicity. J. Nat. Med., 2016, 70(4), 816-824.
[http://dx.doi.org/10.1007/s11418-016-1019-8] [PMID: 27351981]
[34]
Khatuntseva, E.A.; Men’shov, V.M.; Shashkov, A.S.; Tsvetkov, Y.E.; Stepanenko, R.N.; Vlasenko, R.Y.; Shults, E.E.; Tolstikov, G.A.; Tolstikova, T.G.; Baev, D.S.; Kaledin, V.A.; Popova, N.A.; Nikolin, V.P.; Laktionov, P.P.; Cherepanova, A.V.; Kulakovskaya, T.V.; Kulakovskaya, E.V.; Nifantiev, N.E. Triterpenoid saponins from the roots of Acanthophyllum gypsophiloides Regel. Beilstein J. Org. Chem., 2012, 8, 763-775.
[http://dx.doi.org/10.3762/bjoc.8.87] [PMID: 23015825]
[35]
Koike, K.; Li, H.; Jia, Z.; Muraoka, H.; Fukui, S.; Inoue, M.; Ohmoto, T. Triterpenoid saponins from Dianthus chinensis. Tetrahedron, 1994, 50(45), 12811-12820.
[http://dx.doi.org/10.1016/S0040-4020(01)81202-3]
[36]
Koike, K.; Jia, Z.; Nikaido, T. Triterpenoid saponins from Vaccaria segetalis. Phytochemistry, 1998, 47(7), 1343-1349.
[http://dx.doi.org/10.1016/S0031-9422(97)00707-3] [PMID: 9611829]
[37]
Koike, K.; Jia, Z.; Nikaido, T. New triterpenoid saponins and sapogenins from Saponaria officinalis. J. Nat. Prod., 1999, 62(12), 1655-1659.
[http://dx.doi.org/10.1021/np990311r] [PMID: 10654413]
[38]
Krasteva, I.; Jenett-Siems, K.; Kaloga, M.; Nikolov, S. 3- O -Sulfo-triterpenoid Saponins from Gypsophila trichotoma Wend. Z. Naturforsch. B, 2009, 64b, 319-322.
[http://dx.doi.org/10.1515/znb-2009-0311]
[39]
Lacaille-Dubois, M.A.; Hanquet, B.; Rustaiyan, A.; Wagner, H.; Squarroside, A. Squarroside A, a biologically active triterpene saponin from Acanthophyllum squarrosum. Phytochemistry, 1993, 34(2), 489-495.
[http://dx.doi.org/10.1016/0031-9422(93)80036-R] [PMID: 7764142]
[40]
Lacaille-Dubois, M.A.; Hanquet, B.; Cui, Z.H.; Lou, Z.C.; Wagner, H. Acylated triterpene saponins from Silene jenisseensis. Phytochemistry, 1995, 40(2), 509-514.
[http://dx.doi.org/10.1016/0031-9422(95)00222-S] [PMID: 7546560]
[41]
Lacaille-Dubois, M.A.; Hanquet, B.; Cui, Z.H.; Lou, Z.C.; Wagner, H. Jennisseensosides C and D, biologically active acylated triterpene saponins from Silene jenisseensis. Phytochemistry, 1997, 45(5), 985-990.
[http://dx.doi.org/10.1016/S0031-9422(97)00087-3] [PMID: 9264608]
[42]
Lacaille-Dubois, M.A.; Hanquet, B.; Cui, Z.H.; Lou, Z.C.; Wagner, H. A new biologically active acylated triterpene saponin from Silene fortunei. J. Nat. Prod., 1999, 62(1), 133-136.
[http://dx.doi.org/10.1021/np980172y] [PMID: 9917300]
[43]
Larhsini, M.; Marston, A.; Hostettmann, K. Triterpenoid saponins from the roots of Silene cucubalus. Fitoterapia, 2003, 74(3), 237-241.
[http://dx.doi.org/10.1016/S0367-326X(03)00031-5] [PMID: 12727487]
[44]
Lu, Y.; Van, D.; Deibert, L.; Bishop, G.; Balsevich, J. Antiproliferative quillaic acid and gypsogenin saponins from Saponaria officinalis L. roots. Phytochemistry, 2015, 113, 108-120.
[http://dx.doi.org/10.1016/j.phytochem.2014.11.021] [PMID: 25534953]
[45]
Luo, J.G.; Kong, L.Y. A pair of new nortriterpene saponin epimers from the roots of Gypsophila oldhamiana. Helv. Chim. Acta, 2006, 89(5), 947-353.
[http://dx.doi.org/10.1002/hlca.200690098]
[46]
Luo, J.G.; Kong, L.Y.; Takaya, Y.; Niwa, M. Two new monodesmosidic triterpene saponins from Gypsophila oldhamiana. Chem. Pharm. Bull. (Tokyo), 2006, 54(8), 1200-1202.
[http://dx.doi.org/10.1248/cpb.54.1200] [PMID: 16880670]
[47]
Luo, J.G.; Ma, L.; Kong, L.Y. New triterpenoid saponins with strong α-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Bioorg. Med. Chem., 2008, 16(6), 2912-2920.
[http://dx.doi.org/10.1016/j.bmc.2007.12.053] [PMID: 18194870]
[48]
Ma, J.; He, F.H.; Deng, J.Z.; Ye, W.C.; Zhao, S.X.; Wu, H.M. Triterpenoid saponins from Vaccaria segetalis. Chin. J. Chem., 2001, 19(6), 606-611.
[http://dx.doi.org/10.1002/cjoc.20010190612]
[49]
Ma, L.; Gu, Y.C.; Luo, J.G.; Wang, J.S.; Huang, X.F.; Kong, L.Y. Triterpenoid saponins from Dianthus versicolor. J. Nat. Prod., 2009, 72(4), 640-644.
[http://dx.doi.org/10.1021/np800589a] [PMID: 19290648]
[50]
Moniuszko-Szajwaj, B.; Masullo, M.; Kowalczyk, M.; Pecio, L.; Szumacher-Strabel, M.; Cieslak, A.; Piacente, S.; Oleszek, W.; Stochmal, A. Highly polar triterpenoid saponins from the roots of Saponaria officinalis L. Helv. Chim. Acta, 2016, 99(5), 347-354.
[http://dx.doi.org/10.1002/hlca.201500224]
[51]
Mutlu, K.; Sarikahya, N.B.; Yasa, I.; Kirmizigul, S. Dianthus erinaceus var. erinaceus , extraction; isolation; characterization and antimicrobial activity investigation of novel saponins. Phytochem. Lett., 2016, 16, 219-224.
[http://dx.doi.org/10.1016/j.phytol.2016.04.020]
[52]
Nakano, T.; Sugimoto, S.; Matsunami, K.; Otsuka, H. Dianthosaponins A-F, triterpene saponins, flavonoid glycoside, aromatic amide glucoside and γ-pyrone glucoside from Dianthus japonicus. Chem. Pharm. Bull. (Tokyo), 2011, 59(9), 1141-1148.
[http://dx.doi.org/10.1248/cpb.59.1141] [PMID: 21881258]
[53]
Nie, W.; Luo, J.G.; Kong, L.Y. New triterpenoid saponins from the roots of Gypsophila pacifica Kom. Carbohydr. Res., 2010, 345(1), 68-73.
[http://dx.doi.org/10.1016/j.carres.2009.08.015] [PMID: 19932471]
[54]
Pertuit, D.; Avunduk, S.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Paululat, T.; Delemasure, S.; Dutartre, P.; Lacaille-Dubois, M.A. Triterpenoid saponins from the roots of two Gypsophila species. Phytochemistry, 2014, 102, 182-188.
[http://dx.doi.org/10.1016/j.phytochem.2014.02.018] [PMID: 24725976]
[55]
Pertuit, D.; Lotfabad, T.B.; Mitaine-Offer, A.C.; Miyamoto, T.; Tanaka, C.; Lacaille-Dubois, M.A. Two new triterpene saponins from Acanthophyllum laxiusculum. Helv. Chim. Acta, 2015, 98(5), 611-617.
[http://dx.doi.org/10.1002/hlca.201400253]
[56]
Pu, X.; Zhou, J. Studies on the saponins from Psammosilene tunicoides. Yunnan Zhi Wu Yan Jiu, 1989, 11(2), 198-202.
[57]
Putieva, Zh.M.; Mzhel’skaya, L.G.; Gorovits, T.T.; Kondratenko, E.S.; Abubakirov, N.K. Triterpene glycosides of Acanthophyllum gypsophiloides III. Structure of the O-glycosidic carbohydrate chain of acanthophyllosides B and C. Khim. Prir. Soedin, 1975, 2, 177.
[http://dx.doi.org/10.1007/BF00570665]
[58]
Sang, S.; Lao, A.; Leng, Y.; Gu, Z.; Chen, Z.; Uzawa, J.; Fujimoto, Y. Segetoside F a new triterpenoid saponin with inhibition of luteal cell from the seeds of Vaccaria segetalis. Tetrahedron, 2000, 41(48), 9205-9207.
[http://dx.doi.org/10.1016/S0040-4039(00)01710-X]
[59]
Siepmann, C.; Bader, G.; Hiller, K.; Wray, V.; Domke, T.; Nimtz, M. New saponins from the seeds of Agrostemma githago var. githago. Planta Med., 1998, 64(2), 159-164.
[http://dx.doi.org/10.1055/s-2006-957395] [PMID: 9525108]
[60]
Soliman, H.S.M.; Elgamal, M.H.; Simon, A.; Horvath, G.; Duddeck, H.; Duddeck, H. T th G. A new gypsogenin saponin from arenaria filicaulis. J. Nat. Prod., 1999, 62(6), 885-888.
[http://dx.doi.org/10.1021/np9803676] [PMID: 10395509]
[61]
Takahashi, N.; Li, W.; Koike, K. Oleanane-type triterpenoid saponins from Silene armeria. Phytochemistry, 2016, 129, 77-85.
[http://dx.doi.org/10.1016/j.phytochem.2016.07.011] [PMID: 27460531]
[62]
Timité, G.; Mitaine-Offer, A.C.; Miyamoto, T.; Ramezani, M.; Rustaiyan, A.; Mirjolet, J.F.; Duchamp, O.; Lacaille-Dubois, M.A. Structure elucidation of new oleanane-type glycosides from three species of Acanthophyllum. Magn. Reson. Chem., 2010, 48(5), 370-374.
[http://dx.doi.org/10.1002/mrc.2577] [PMID: 20209583]
[63]
Voutquenne-Nazabadioko, L.; Gevrenova, R.; Borie, N.; Harakat, D.; Sayagh, C.; Weng, A.; Thakur, M.; Zaharieva, M.; Henry, M. Triterpenoid saponins from the roots of Gypsophila trichotoma Wender. Phytochemistry, 2013, 90, 114-127.
[http://dx.doi.org/10.1016/j.phytochem.2013.03.001] [PMID: 23561300]
[64]
Weng, A.; Jenett-Siems, K.; Schmieder, P.; Bachran, D.; Bachran, C.; Görick, C.; Thakur, M.; Fuchs, H.; Melzig, M.F. A convenient method for saponin isolation in tumour therapy. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(7-8), 713-718.
[http://dx.doi.org/10.1016/j.jchromb.2010.01.026] [PMID: 20144565]
[65]
Xu, W.; Wu, J.M.; Zhu, Z.; Sha, Y.; Fang, J.; Li, Y.S. Pentacyclic triterpenoid saponins from Silene viscidula. Helv. Chim. Acta, 2010, 93(10), 2007-2014.
[http://dx.doi.org/10.1002/hlca.201000016]
[66]
Yao, S.; Ma, L.; Luo, J.G.; Wang, J.S.; Kong, L.Y. New triterpenoid saponins from the roots of Gypsophila paniculata L. Helv. Chim. Acta, 2010, 93(2), 361-374.
[http://dx.doi.org/10.1002/hlca.200900194]
[67]
Yao, S.; Ma, L.; Luo, J.G.; Wang, J.S.; Kong, L.Y. Triterpenoid saponins from the roots of Gypsophila paniculata. Chin. J. Nat. Med., 2010, 8(1), 28-33.
[http://dx.doi.org/10.3724/SP.J.1009.2010.00028]
[68]
Yao, S.; Luo, J.G.; Ma, L.; Kong, L.Y. Two new triterpenoid saponins from the roots of Gypsophila paniculata with potent α-glucosidase inhibition activity. Chin. J. Nat. Med., 2011, 9(6), 401-405.
[69]
Oshima, Y.; Ohsawa, T.; Oikawa, K.; Konno, C.; Hikino, H. Structures of dianosides A and B; analgesic principles of Dianthus superbus var. longicalycinus Herbs. Planta Med., 1984, 50(1), 40-43.
[http://dx.doi.org/10.1055/s-2007-969617] [PMID: 17340247]
[70]
Yotova, M.; Krasteva, I.; Jenett-Siems, K.; Zdraveva, P.; Nikolov, S. Triterpenoids in Gypsophila trichotoma Wend. Phytochem. Lett., 2012, 5, 752-755.
[http://dx.doi.org/10.1016/j.phytol.2012.08.006]
[71]
Zheng, Q.; Li, W.; Han, L.; Koike, K. Pancreatic lipase-inhibiting triterpenoid saponins from Gypsophila oldhamiana. Chem. Pharm. Bull. (Tokyo), 2007, 55(4), 646-650.
[http://dx.doi.org/10.1248/cpb.55.646] [PMID: 17409564]
[72]
Zhong, H.M.; Ni, W.; Hua, Y.; Chen, Y.Z.; Chen, C.X. A new triterpenoid saponin from Psammosilene tunicoides. Yunnan Zhi Wu Yan Jiu, 2002, 24(6), 781-786.
[73]
Zhong, H.M.; Hua, Y.; Ni, W.; Zhou, J.; Chen, C.X. Two new triterpenoid saponins from Psammosilene tunicoides. Yunnan Zhi Wu Yan Jiu, 2003, 25(3), 361-365.
[74]
Sarraj-Laabidi, A.; Messai, H.; Hammami-Semmar, A.H.; Semmar, N. Chemometric analysis of inter- and intra-molecular diversification factors by a machine learning simplex approach. A review and research on Astragalus saponins. Curr. Top. Med. Chem., 2017, 17(25), 2820-2848.
[http://dx.doi.org/10.2174/1568026617666170719165552] [PMID: 28730959]
[75]
Scheffé, H. Experiments with mixtures. J. R. Stat. Soc. B, 1958, 20, 344-360.
[http://dx.doi.org/10.1111/j.2517-6161.1958.tb00299.x]
[76]
Scheffé, H. The simplex-centroid design for experiments with mixtures. J. R. Stat. Soc. Series B Stat. Methodol., 1963, 235-263.
[77]
Cornell, J.A. Experiments with mixtures, designs; models and the analysis of mixture data, 2nd ed;(John Willey & Son: Hoboken,1990)
[78]
Cornell, J.A. A retrospective view of mixture experiments. Qual. Eng., 2011, 23, 315-331.
[http://dx.doi.org/10.1080/08982112.2011.602283]
[79]
Meesapyodsuk, D.; Balsevich, J.; Reed, D.W.; Covello, P.S. Saponin biosynthesis in Saponaria vaccaria . cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiol., 2007, 143(2), 959-969.
[http://dx.doi.org/10.1104/pp.106.088484] [PMID: 17172290]
[80]
Hansen, K.S.; Kristensen, C.; Tattersall, D.B.; Jones, P.R.; Olsen, C.E.; Bak, S.; Møller, B.L. The in vitro substrate regiospecificity of recombinant UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry, 2003, 64(1), 143-151.
[http://dx.doi.org/10.1016/S0031-9422(03)00261-9] [PMID: 12946413]
[81]
Kramer, C.M.; Prata, R.T.N.; Willits, M.G.; De Luca, V.; Steffens, J.C.; Graser, G. Cloning and regiospecificity studies of two flavonoid glucosyltransferases from Allium cepa. Phytochemistry, 2003, 64(6), 1069-1076.
[http://dx.doi.org/10.1016/S0031-9422(03)00507-7] [PMID: 14568073]
[82]
Vogt, T.; Jones, P. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci., 2000, 5(9), 380-386.
[http://dx.doi.org/10.1016/S1360-1385(00)01720-9] [PMID: 10973093]
[83]
Tiwari, P.; Sangwan, R.S.; Sangwan, N.S. Plant secondary metabolism linked glycosyltransferases: an update on expanding knowledge and scopes. Biotechnol. Adv., 2016, 34(5), 714-739.
[http://dx.doi.org/10.1016/j.biotechadv.2016.03.006] [PMID: 27131396]
[84]
Moses, T.; Pollier, J.; Thevelein, J.M.; Goossens, A. Bioengineering of plant (tri)terpenoids: from metabolic engineering of plants to synthetic biology in vivo and in vitro. New Phytol., 2013, 200(1), 27-43.
[http://dx.doi.org/10.1111/nph.12325] [PMID: 23668256]
[85]
Haralampidis, K.; Trojanowska, M.; Osbourn, A.E. Advances in Biotechnological Engineering & Biotechnology Springer: Berlin, 2002, 75, 31-49. pp
[86]
Williams, G.J.; Zhang, C.; Thorson, J.S. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat. Chem. Biol., 2007, 3(10), 657-662.
[http://dx.doi.org/10.1038/nchembio.2007.28] [PMID: 17828251]
[87]
Banerjee, A.; Hamberger, B. P450s controlling metabolic bifurcations in plant terpene specialized metabolism. Phytochem. Rev., 2018, 17(1), 81-111.
[http://dx.doi.org/10.1007/s11101-017-9530-4] [PMID: 29563859]
[88]
Huang, Y.; Li, D.; Wang, J.; Cai, Y.; Dai, Z.; Jiang, D.; Liu, C. GuUGT, a glycosyltransferase from Glycyrrhiza uralensis, exhibits glycyrrhetinic acid 3- and 30-O-glycosylation. R. Soc. Open Sci., 2019, 6(10), 191121.
[http://dx.doi.org/10.1098/rsos.191121] [PMID: 31824719]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy