Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Review on Structural Trends and Chemotaxonomical Aspects of Pharmacologically Evaluated Flavonoids

Author(s): Sana Zouaoui, Muhammad Farman and Nabil Semmar*

Volume 21, Issue 7, 2021

Published on: 13 January, 2021

Page: [628 - 648] Pages: 21

DOI: 10.2174/1568026621666210113165007

Price: $65

Abstract

Introduction: This work provides statistical analyses of bibliographic data on pharmacologically evaluated flavonoids from different plant families. By opposition to structural elucidations benefitting from full data aspects, pharmacological evaluations are concerned with partial investigations resulting in sparse information.

Methods: The limited data availability was overcome by extensive consideration of several small sets of pharmacologically evaluated flavonoids in several plant taxa, alternatively to the traditional intensive analysis of big dataset of a given metabolic family in a given plant taxon. Statistical analyses were carried out using correspondence analysis, cluster analysis, box plots and fisher exact test to highlight structure-structure, structure-plant and structure-activity trends.

Results: Different aglycone types showed opposite trends between hydroxylation (flavonols, anthocyanidins, flavanols), and methoxylation (isoflavones, isoflavanes, neoflavones). Moreover, different carbons showed differential substitution levels in different aglycones: C3 in flavonols, C6, C8 in flavones, flavonols, C2’ in flavanones, C6’ in isoflavanes. Plant families were well differentiated by different relative occurrences of aglycones: flavones in Lamiaceae, flavanones in Rutaceae, neoflavones in Rubiaceae, flavonols in Asteraceae, isoflavones in Fabaceae. Relatively more hydroxylated flavonoids occurred in Asteraceae, Lamiaceae and Fabaceae vs. more methoxylated ones in Rutaceae and Rubiaceae. Concerning structure-activity trends, flavanols and isoflavones were relatively more concerned with anti-diabetic and anti-inflammatory activities, respectively, vs. balanced distribution of flavones. Anti-inflammatory activity showed significant association with substitution position of same chemical groups (OH, OCH3), whereas anti-diabetic activity was revealed to be mainly influenced by the type of chemical groups (positive effect of OH and glycosyls).

Conclusion: These results call for regular updates and further investigations.

Keywords: Aglycone effect, Structural differentiation, Plant distribution, Anti-inflammatory activity, Anti-diabetic activity, Structure-activity trends.

Graphical Abstract

[1]
Rodriguez-Mateos, A.; Vauzour, D.; Krueger, C.G.; Shanmuganayagam, D.; Reed, J.; Calani, L.; Mena, P.; Del Rio, D.; Crozier, A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch. Toxicol., 2014, 88(10), 1803-1853.
[http://dx.doi.org/10.1007/s00204-014-1330-7] [PMID: 25182418]
[2]
Peukert, M.; Weise, S.; Röder, M.S.; Matthies, I.E. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley. BMC Genet., 2013, 14(97), 97.
[http://dx.doi.org/10.1186/1471-2156-14-97] [PMID: 24088365]
[3]
Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci., 2012, 3(222), 222.
[http://dx.doi.org/10.3389/fpls.2012.00222] [PMID: 23060891]
[4]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[5]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci, 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[6]
Lago, J.H.G.; Toledo-Arruda, A.C.; Mernak, M.; Barrosa, K.H.; Martins, M.A.; Tibério, I.F.L.C.; Prado, C.M. Structure-activity association of flavonoids in lung diseases. Molecules, 2014, 19(3), 3570-3595.
[http://dx.doi.org/10.3390/molecules19033570] [PMID: 24662074]
[7]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[8]
Semmar, N.; Hammami-Semmar, A. Roles of secondary metabolites in protection and distribution of terrestrial plants under climatic stresses. In: Plant Biodiversity; Ansari, A.A.; Gill, S.S.; Abbas, Z.K.; Naeem, M., Eds.; Roles of secondary metabolites in protection and distribution of terrestrial plants under climatic stresses In: In: Plant Biodiversity;; Ansari, A.A.; Gill, S.S.; Abbas, Z.K.; Naeem, M., Eds.; , 2017; pp. 170-194. Ansari, A.A.; Gill, S.S.; Abbas, Z.K.; Naeem, M., Eds.; Cabi: Wallingford
[9]
Semmar, N.; Nouira, S.; Farman, M. Variability and ecological significance of secondary metabolites in terrestrial biosystems. In: Handbook of Nature Conservation; Aronoff, J.B., Ed.; Nova Science Publishers: New York, 2009; pp. 1-90.
[10]
Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the flavonoid c-glycosides and health benefits. Crit. Rev. Food Sci. Nutr., 2015, 56(Sup1), S29-S45.
[11]
Murti, Y.; Sharma, S. Flavonoid: a pharmacologically significant scaffold. World J. Pharm. Pharm. Sci., 2017, 6(5), 488-504.
[http://dx.doi.org/10.20959/wjpps20175-9143]
[12]
Semmar, N.; Hammami-Semmar, A. Pharmacokinetic variability of dietary phenolic acids and flavonoids in relation to chemical and biological factors. In: In: Handbook on Flavonoids; Kazua, Y.; Yuudai, K., Eds.; Nova Science Publishers: New York, 2012; pp. 143-196.
[13]
Gonzalez-Paramas, A.M.; Santos-Buelga, C.; Duenas, M.; Gonzalez-Manzano, S. Analysis of flavonoids in foods and biological samples. Mini Rev. Med. Chem., 2011, 11(14), 1239-1255.
[PMID: 22070683]
[14]
Galleano, M.; Calabro, V.; Prince, P.D.; Litterio, M.C.; Piotrkowski, B.; Vazquez-Prieto, M.A.; Miatello, R.M.; Oteiza, P.I.; Fraga, C.G. Flavonoids and metabolic syndrome. Ann. N. Y. Acad. Sci., 2012, 1259, 87-94.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06511.x] [PMID: 22758640]
[15]
Morton, M.S.; Turkes, A.; Denis, L.; Griffiths, K. Can dietary factors influence prostatic disease? BJU Int., 1999, 84(5), 549-554.
[http://dx.doi.org/10.1046/j.1464-410x.1999.00270.x] [PMID: 10510094]
[16]
Boersma, B.J.; Barnes, S.; Kirk, M.; Wang, C.C.; Smith, M.; Kim, H.; Xu, J.; Patel, R.; Darley-Usmar, V.M. Soy isoflavonoids and cancer metabolism at the target site. Mutat. Res., 2001, 480-481, 121-127.
[http://dx.doi.org/10.1016/S0027-5107(01)00175-0] [PMID: 11506805]
[17]
Agrawal, A.D. Pharmacological activities of flavonoids: a review. Int. J. Pharm. Sci. Nanotechnol., 2011, 4(2), 1394-1398.
[http://dx.doi.org/10.37285/ijpsn.2011.4.2.3]
[18]
Beretz, A.; Cazenave, J.P. Old and new natural products as the source of modern antithrombotic drugs. Planta Med., 1991, 57(7), S68-S72.
[http://dx.doi.org/10.1055/s-2006-960232] [PMID: 1956960]
[19]
Sandhar, H.K.; Kumar, B.; Prasher, S.; Tiwari, P.; Salhan, M.; Sharma, P. A Review of Phytochemistry and Pharmacology of Flavonoids. Intl. Pharma. Sci., 2011, 1(1), 25-41.
[20]
Liu, R.; Zhang, H.; Yuan, M.; Zhou, J.; Tu, Q.; Liu, J.J.; Wang, J. Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules, 2013, 18(9), 11496-11511.
[http://dx.doi.org/10.3390/molecules180911496] [PMID: 24048283]
[21]
Anand David, A.V.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn. Rev., 2016, 10(20), 84-89.
[http://dx.doi.org/10.4103/0973-7847.194044] [PMID: 28082789]
[22]
Marunaka, Y.; Marunaka, R.; Sun, H.; Yamamoto, T.; Kanamura, N.; Inui, T.; Taruno, A. Actions of quercetin, a polyphenol, on blood pressure. Molecules, 2017, 22(2), 1-12.
[http://dx.doi.org/10.3390/molecules22020209] [PMID: 28146071]
[23]
Ishizawa, K.; Yoshizumi, M.; Kawai, Y.; Terao, J.; Kihira, Y.; Ikeda, Y.; Tomita, S.; Minakuchi, K.; Tsuchiya, K.; Tamaki, T. Pharmacology in health food: metabolism of quercetin in vivo and its protective effect against arteriosclerosis. J. Pharmacol. Sci., 2011, 115(4), 466-470.
[http://dx.doi.org/10.1254/jphs.10R38FM] [PMID: 21436601]
[24]
Comalada, M.; Camuesco, D.; Sierra, S.; Ballester, I.; Xaus, J.; Gálvez, J.; Zarzuelo, A. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur. J. Immunol., 2005, 35(2), 584-592.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[25]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[26]
Sun, H.; Niisato, N.; Nishio, K.; Hamilton, K.L.; Marunaka, Y. Distinct action of flavonoids, myricetin and quercetin, on epithelial Cl⁻ secretion: useful tools as regulators of Cl⁻ secretion. BioMed Res. Int., 2014, 2014, 902735.
[http://dx.doi.org/10.1155/2014/902735] [PMID: 24818160]
[27]
López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem., 2009, 9(1), 31-59.
[http://dx.doi.org/10.2174/138955709787001712] [PMID: 19149659]
[28]
Crascì, L.; Cardile, V.; Longhitano, G.; Nanfitò, F.; Panico, A. Anti-degenerative effect of Apigenin, Luteolin and Quercetin on human keratinocyte and chondrocyte cultures: SAR evaluation. Drug Res. (Stuttg.), 2018, 68(3), 132-138.
[http://dx.doi.org/10.1055/s-0043-120662] [PMID: 29108086]
[29]
Mani, R.; Natesan, V. Chrysin: sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[30]
Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A.; Iahtisham-Ul-Haq, ; IqraYasmin, ; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; Plygun, S.; Heydari, M. Chrysin: pharmacological and therapeutic properties. Life Sci., 2019, 235, 116797.
[http://dx.doi.org/10.1016/j.lfs.2019.116797] [PMID: 31472146]
[31]
Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem., 2014, 86, 103-112.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.011] [PMID: 25147152]
[32]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[33]
Rebuglio Vellosa, J.C.; Regasini, L.O.; Maissar Khalil, N.; da Silva Bolzani, V.; Khalil, O.A.K.; Manente, F.A.; Netto, H.P.; de Faria Oliveira, O.M.M. Antioxidant and cytotoxic studies for kaempferol, quercetin and isoquercitrin. Eclét. Quím., 2011, 36(2), 7-20.
[http://dx.doi.org/10.1590/S0100-46702011000200001]
[34]
Shaik, A.; Killari, K.N.; Panda, J. A review on anthocyanins: a promising role of phytochemistry and pharmacology. Int. Res. J. Pharma., 2018, 9(1), 1-9.
[35]
Rana, A.C.; Gulliya, B. Chemistry and pharmacology of flavonoids- a review. Indian J. Pharma. Edu.Res., 2019, 53(1), 8-20.
[http://dx.doi.org/10.5530/ijper.53.1.3]
[36]
Sridevi Sangeetha, K.S.; Umamaheswari, S.; Uma Maheswara Reddy, C.; Narayana Kalkura, S. Flavonoid: Therapeutic potential of natural pharmacological agents. Int. J. Pharm. Sci. Res., 2016, 7(10), 3924-3930.
[37]
Emim, J.A.; Oliveira, A.B.; Lapa, A.J. Pharmacological evaluation of the anti-inflammatory activity of a citrus bioflavonoid, hesperidin, and the isoflavonoids, duartin and claussequinone, in rats and mice. J. Pharm. Pharmacol., 1994, 46(2), 118-122.
[http://dx.doi.org/10.1111/j.2042-7158.1994.tb03753.x] [PMID: 8021799]
[38]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), 1-18.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[39]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[40]
Asmi, K.S.; Lakshmi, T.; Balusamy, S.R.; Parameswari, R. Therapeutic aspects of taxifolin – an update. J. Adv. Pharm. Educ. Res., 2017, 7(3), 187-189.
[41]
Suthar, A.C.; Banavalikar, M.M.; Biyani, M.K. Pharmacological activities of Genistein, an isoflavone from soy (Glycine max): part I anti-cancer activity. Indian J. Exp. Biol., 2001, 39(6), 511-519.
[PMID: 12562011]
[42]
Atiya, F.; Ram, S. The chemistry and pharmacology of genistein. Nat. Prod. J., 2016, 6(1), 3-12.
[43]
Sun, M.Y.; Yeb, Y.; Xiao, L.; Rahman, K.; Xia, W.; Zhang, H. Daidzein: a review of pharmacological effects. Afr. J. Tradit. Complement. Altern. Med., 2016, 13(3), 117-132.
[http://dx.doi.org/10.4314/ajtcam.v13i3.15]
[44]
Bansal, S.; Vyas, S.; Bhattacharya, S.; Sharma, M. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat. Prod. Rep., 2013, 30(11), 1438-1454.
[http://dx.doi.org/10.1039/c3np70038k] [PMID: 24056761]
[45]
Suzuki, M.; Tabuchi, M.; Ikeda, M.; Umegaki, K.; Tomita, T. Protective effects of green tea catechins on cerebral ischemic damage. Med. Sci. Monit., 2004, 10(6), BR166-BR174.
[PMID: 15173662]
[46]
Granja, A.; Frias, I.; Neves, A.R.; Pinheiro, M.; Reis, S. Therapeutic potential of epigallocatechin gallate nanodelivery systems. BioMed Res. Int., 2017, 2017, 5813793.
[http://dx.doi.org/10.1155/2017/5813793] [PMID: 28791306]
[47]
Singh, N.A.; Mandal, A.K.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr. J., 2016, 15(1), 60.
[http://dx.doi.org/10.1186/s12937-016-0179-4] [PMID: 27268025]
[48]
Novakovic, A.; Vranic, A.; Jankovic, G.; Stojanovic, I.; Milojevic, P.; Ugresic, N.; Kanjuh, V.; Yang, Q.; Guo-Wei, H. Cardioprotective effect of (-) epicatechin. Atherosclerosis, 2014, 235(2)
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.05.300]
[49]
Rozza, A.L.; Hiruma-Lima, C.A.; Tanimoto, A.; Pellizzon, C.H. Morphologic and pharmacological investigations in the epicatechin gastroprotective effect. Evid. Based Complement. Alternat. Med., 2012, 2012, 708156.
[http://dx.doi.org/10.1155/2012/708156] [PMID: 22666296]
[50]
Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[51]
Yilduoglu-An, N.; Melih Altan, V.; Altmkurt, O.; Oztiir, Y. Pharmacological effects of rutin. Phytother. Res., 1991, 5(1), 19-23.
[http://dx.doi.org/10.1002/ptr.2650050106]
[52]
Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res., 2000, 113(3), 287-299.
[http://dx.doi.org/10.1007/PL00013940]
[53]
Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat. Prod. Res., 2011, 25(5), 469-495.
[http://dx.doi.org/10.1080/14786419.2010.482054] [PMID: 21391112]
[54]
Cirmi, S.; Ferlazzo, N.; Lombardo, G.E.; Ventura-Spagnolo, E.; Gangemi, S.; Calapai, G.; Navarra, M. Neurodegenerative diseases: might citrus flavonoids play a protective role? Molecules, 2016, 21(10), 1312.
[http://dx.doi.org/10.3390/molecules21101312] [PMID: 27706034]
[55]
Mirossay, L.; Varinská, L.; Mojžiš, J. Antiangiogenic effect of flavonoids and chalcones: an update. Int. J. Mol. Sci., 2017, 19(1), 27.
[http://dx.doi.org/10.3390/ijms19010027] [PMID: 29271940]
[56]
Greenacre, M.J. Correspondence analysis in practice; Academic Press: London, 1993.
[57]
Semmar, N. Computational Metabolomics; Nova Science Publishers: New York, 2011.
[58]
Gordon, A.D. Classification; CRC LLC: Boca Raton, 1999.
[http://dx.doi.org/10.1201/9780367805302]
[59]
Arabie, P.; De Soete, G.; Arabie, P.; Hubert, L.J.; De Soete, G. Clustering and Classification; World Scientific Pub. Co. Inc.: New Jersey, 1996.
[http://dx.doi.org/10.1142/1930]
[60]
Thioulouse, J.; Chessel, D.; Doledec, S.; Ilivier, J.M. ADE-4: a multivariate analysis and graphical display software. ADE statistical software. Stat. Comput., 1997, 7, 75-83.
[http://dx.doi.org/10.1023/A:1018513530268]
[61]
Zar, J.H. Biostatistical Analysis; Prentice Hall: New Jersey, 1999.
[62]
Semmar, N. Native Statistics for Natural Sciences; Nova Science Publishers: New York, 2013.
[63]
SAS. JMP 8 Statistical Software. SAS Campus Drive; SAS Institute Inc: Cary, 2008.
[64]
Andersen, O.M.; Markham, K.R. Flavonoids: Chemistry, Biochemistry and Applications, CRC; Taylor & Francis: Boca Raton, 2006.
[65]
Matteini, P.; Agati, G.; Pinelli, P. Modes of complexation of rutin with the flavonoid reagent diphenylborinic acid 2-aminoethyl ester. Monatsh. Chem., 2011, 142(9), 885-893.
[http://dx.doi.org/10.1007/s00706-011-0545-z]
[66]
Semmar, N. Metabotype concept: flexibility, usefulness and meaning in different biological populations. In: Metabolomics; Roessner, U., Ed.; Intech, Croatia, 2012; pp. 131-166.
[http://dx.doi.org/10.5772/33303]
[67]
Ko, K.P. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev., 2014, 15(17), 7001-7010.
[http://dx.doi.org/10.7314/APJCP.2014.15.17.7001] [PMID: 25227781]
[68]
Semmar, N. Roles of secondary metabolites in protection and distribution of terrestrial plants under climatic stresses In: In: Plant Biodiversity Ansari, A.A.; Gill, S.S.; Abbas, Z.K.; Naeem, M., Eds.; Cabi: Wallingford; , 2017; , pp. 170-194.
[69]
Berim, A.; Gang, D.R. Methoxylated flavones: occurrence, importance, biosynthesis. Phytochem. Rev., 2015, 15(3), 363-390.
[http://dx.doi.org/10.1007/s11101-015-9426-0]
[70]
Wang, R.; Chen, R.; Li, J.; Liu, X.; Xie, K.; Chen, D.; Yin, Y.; Tao, X.; Xie, D.; Zou, J.; Yang, L.; Dai, J. Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from Morus alba and Cudrania tricuspidata. J. Biol. Chem., 2014, 289(52), 35815-35825.
[http://dx.doi.org/10.1074/jbc.M114.608265] [PMID: 25361766]
[71]
Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci., 2004, 96(3), 229-245.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[72]
Moroney, M.A.; Alcaraz, M.J.; Forder, R.A.; Carey, F.; Hoult, J.R. Selectivity of neutrophil 5-lipoxygenase and cyclo-oxygenase inhibition by an anti-inflammatory flavonoid glycoside and related aglycone flavonoids. J. Pharm. Pharmacol., 1988, 40(11), 787-792.
[http://dx.doi.org/10.1111/j.2042-7158.1988.tb05173.x] [PMID: 2907559]
[73]
Ikarashi, N.; Toda, T.; Okaniwa, T.; Ito, K.; Ochiai, W.; Sugiyama, K. Anti-obesity and anti-diabetic effects of acacia polyphenol in obese diabetic kkay mice fed high-fat diet. Evid. Based Complement. Alternat. Med., 2011, 2011, 952031.
[http://dx.doi.org/10.1093/ecam/nep241] [PMID: 21799697]
[74]
Yang, Y.; Lian, G.; Yu, B. Naturally occurring polyphenolic glucosidase inhibitors. Isr. J. Chem., 2015, 55(3-4), 268-284.
[http://dx.doi.org/10.1002/ijch.201400134]
[75]
Singh, M.; Kaur, M.; Silakari, O. Flavones: an important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[76]
Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of α-glucosidase and α-amylase by flavonoids. J. Nutr. Sci. Vitaminol. (Tokyo), 2006, 52(2), 149-153.
[http://dx.doi.org/10.3177/jnsv.52.149] [PMID: 16802696]
[77]
Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv., 2014, 32(6), 1145-1156.
[http://dx.doi.org/10.1016/j.biotechadv.2014.04.006] [PMID: 24780153]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy