Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Importance of BODIPY-based Chemosensors for Cations and Anions in Bio-imaging Applications

Author(s): Ahmed Nuri Kursunlu*, Elif Bastug and Ersin Guler

Volume 18, Issue 2, 2022

Published on: 15 December, 2020

Page: [163 - 175] Pages: 13

DOI: 10.2174/1573411017666201215105055

Price: $65

Abstract

Background: Chemosensor compounds are useful for sensitive, selective detection of cations and anions with fluorophore groups in an attempt to develop sufficient selectivity of the sensors. Although familiar fluorescent sensors utilize inter-molecular interactions with the cations and anions, an extraordinary endeavor was executed in the preparation of fluorescent-based sensor compounds. 4,4-difluoro-4- bora-3a,4a-diaza-s-indacene (BODIPY) and its derivatives were first used as an agent in the imaging of biomolecules due to their interesting structures, complexation, and fluorogenic properties. Among the fluorescent chemosensors used for cations and anions, BODIPY-based probes stand out, owing to the excellent properties such as sharp emission profile, high stability, etc. In this review, we emphasize the BODIPY-based chemosensor compounds, which have been used to image cations and anions in living cells because of their biocompatibility and spectroscopic properties.

Methods: Research and online contents related to chemosensor online activity are reviewed. The advances, sensing mechanisms and design strategies of the fluorophore, exploiting selective detection of some cations and anions with BODIPY-based chemosensors, are explained. It could be claimed that the use of BODIPY-based chemosensors is very important for cations and anions in bio-imaging applications.

Results: Molecular sensors or chemosensors are molecules that show a change that can be detected when affected by the analyte. They are capable of producing a measurable signal when they are selective for a particular molecule. Molecular and ion recognition is important in biological systems such as enzymes, genes, environment, and chemical fields. Due to the toxic properties of many heavy metal ions, it is of great importance to identify these metals due to their harmful effects on living metabolism and the pollution they create in the environment. This process can be performed with analytical methods based on atomic absorption and emission. The fluorescence methods among chemosensor systems have many advantages such as sensitivity, selectivity, low price, simplicity of using the instrument and direct determination in solutions. The fluorescence studies can be applied at nanomolar concentrations.

Conclusion: During a few decades, a lot of BODIPY-based chemosensors for the detection of cations and anions have been investigated in bio-imaging applications. For the BODIPY-based fluorescent chemosensors, the BODIPY derivatives were prepared by different ligand groups for the illumination of the photophysical and photochemical properties. The synthesized BODIPYbased chemosensors have remarkable photophysical properties, such as a high quantum yield, strong molar absorption coefficient, etc. Moreover, these chemosensors were successfully implemented on living organisms for the detection of analytes.

Keywords: BODIPY, bio-imaging, chemosensor, cation, anion, Fluorescence.

Graphical Abstract

[1]
Zhang, Y.R.; Chen, X.P. Jing-Shao; Zhang, J.Y.; Yuan, Q.; Miao, J.Y.; Zhao, B.X. A ratiometric fluorescent probe for sensing HOCl based on a coumarin-rhodamine dyad. Chem. Commun. (Camb.), 2014, 50(91), 14241-14244.
[http://dx.doi.org/10.1039/C4CC05976J] [PMID: 25283359]
[2]
Kim, M.; Ko, S-K.; Kim, H.; Shin, I.; Tae, J. Rhodamine cyclic hydrazide as a fluorescent probe for the detection of hydroxyl radicals. Chem. Commun. (Camb.), 2013, 49(72), 7959-7961.
[http://dx.doi.org/10.1039/c3cc44627a] [PMID: 23903522]
[3]
Asano, M.; Doi, M.; Baba, K.; Taniguchi, M.; Shibano, M.; Tanaka, S.; Sakaguchi, M.; Takaoka, M.; Hirata, M.; Yanagihara, R.; Nakahara, R.; Hayashi, Y.; Yamaguchi, T.; Matsumura, H.; Fujita, Y. Bio-imaging of hydroxyl radicals in plant cells using the fluorescent molecular probe rhodamine B hydrazide, without any pretreatment. J. Biosci. Bioeng., 2014, 118(1), 98-100.
[http://dx.doi.org/10.1016/j.jbiosc.2013.12.015] [PMID: 24485745]
[4]
Jun, Y.W.; Sarkar, S.; Singha, S.; Reo, Y.J.; Kim, H.R.; Kim, J-J.; Chang, Y-T.; Ahn, K.H. A two-photon fluorescent probe for ratiometric imaging of endogenous hypochlorous acid in live cells and tissues. Chem. Commun. (Camb.), 2017, 53(78), 10800-10803.
[http://dx.doi.org/10.1039/C7CC05834A] [PMID: 28920978]
[5]
Zou, X.; Liu, Y.; Zhu, X.; Chen, M.; Yao, L.; Feng, W.; Li, F. An Nd3+-sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale, 2015, 7(9), 4105-4113.
[http://dx.doi.org/10.1039/C4NR06407K] [PMID: 25666904]
[6]
Xu, K.; Wang, L.; Qiang, M.; Wang, L.; Li, P.; Tang, B. A selective near-infrared fluorescent probe for singlet oxygen in living cells. Chem. Commun. (Camb.), 2011, 47(26), 7386-7388.
[http://dx.doi.org/10.1039/c1cc12473k] [PMID: 21625714]
[7]
Wanichacheva, N.; Kumsorn, P.; Sangsuwan, R.; Kamkaew, A.; Lee, V.S.; Grudpan, K. A new fluorescent sensor bearing three dansyl fluorophores for highly sensitive and selective detection of mercury(II) ions. Tetrahedron Lett., 2011, 52, 6133-6136.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.033]
[8]
Cao, M.; Jiang, L.; Hu, F.; Zhang, Y.; Yang, W.C.; Liu, S.H.; Yin, J. A dansyl-based fluorescent probe for selectively detecting Cu2+ and imaging in living cells. RSC Advances, 2015, 5, 23666-23670.
[http://dx.doi.org/10.1039/C5RA00740B]
[9]
Parola, A.J.; Lima, J.C.; Pina, F.; Pina, J.; Melo, J.S.d.; Soriano, C.; García-España, E.; Aucejo, R.; Alarcoń, J. Synthesisand photophysical properties of dansyl-based polyamine ligands and their Zn(II) complexes. Inorg. Chim. Acta, 2007, 360, 1200-1208.
[http://dx.doi.org/10.1016/j.ica.2006.11.006]
[10]
Wang, P.; Zhou, D.; Chen, B. High selective and sensitive detection of Zn(II) using tetrapeptide-based dansyl fluorescent chemosensor and its application in cell imaging. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 204, 735-742.
[http://dx.doi.org/10.1016/j.saa.2018.07.001] [PMID: 29990879]
[11]
LV. J.; Chen, Y.; Wang, F.; Wei, T.; Zhang, Z; Qiang, J.; Chen, X.; A mitochondria-targeted fluorescent probe based on fluorescein derivative for detection of hypochlorite in living cells. Dyes Pigments, 2018, 148, 353-358.
[http://dx.doi.org/10.1016/j.dyepig.2017.09.037]
[12]
Gonçalves, A.C.; Pilla, V.; Oliveira, E.; Santos, S.M.; Capelo, J.L.; Dos Santos, A.A.; Lodeiro, C. The interaction of Hg(2+) and trivalent ions with two new fluorescein bio-inspired dual colorimetric/fluorimetric probes. Dalton Trans., 2016, 45(23), 9513-9522.
[http://dx.doi.org/10.1039/C6DT01180B] [PMID: 27193690]
[13]
Li, T.R.; Yang, Z.Y.; Li, Y.; Liu, Z.C.; Qi, G.F.; Wang, B.D. A novel fluorescein derivative as a colorimetric chemosensor for detecting copper(II) ion. Dyes Pigments, 2011, 88, 103-108.
[http://dx.doi.org/10.1016/j.dyepig.2010.05.008]
[14]
Wang, B.; Chen, D.; Kambam, S.; Wang, F.; Wang, Y.; Zhang, W.; Yin, J.; Chen, H.; Chen, X. A highly specific fluorescent probe for hypochlorite based on fluorescein derivative and its endogenous imaging in living cells. Dyes Pigments, 2015, 120, 22-29.
[http://dx.doi.org/10.1016/j.dyepig.2015.03.022]
[15]
Loudet, A.; Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev., 2007, 107(11), 4891-4932.
[http://dx.doi.org/10.1021/cr078381n] [PMID: 17924696]
[16]
Boens, N.; Leen, V.; Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev., 2012, 41(3), 1130-1172.
[http://dx.doi.org/10.1039/C1CS15132K] [PMID: 21796324]
[17]
Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev., 2015, 44(14), 4953-4972.
[http://dx.doi.org/10.1039/C5CS00030K] [PMID: 25801415]
[18]
Sukato, R.; Sangpetch, N.; Palaga, T.; Jantra, S.; Vchirawongkwin, V.; Jongwohan, C.; Sukwattanasinitt, M.; Wacharasindhu, S. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging. J. Hazard. Mater., 2016, 314, 277-285.
[http://dx.doi.org/10.1016/j.jhazmat.2016.04.001] [PMID: 27136733]
[19]
Kolemen, S.; Akkaya, E.U. Reaction-based BODIPY probes for selective bio-imaging. Coord. Chem. Rev., 2018, 354, 121-134.
[http://dx.doi.org/10.1016/j.ccr.2017.06.021]
[20]
Wang, X.; Zhou, L.; Qiang, F.; Wang, F.; Wang, R.; Zhao, C. Development of a BODIPY-based ratiometric fluorescent probe for hypochlorous acid and its application in living cells. Anal. Chim. Acta, 2016, 911, 114-120.
[http://dx.doi.org/10.1016/j.aca.2016.01.022] [PMID: 26893093]
[21]
Hu, J.J.; Wong, N-K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D. HKOCl-2 series of green BODIPY-based fluorescent probes for hypochlorous acid detection and imaging in live cells. Org. Lett., 2014, 16(13), 3544-3547.
[http://dx.doi.org/10.1021/ol501496n] [PMID: 24950390]
[22]
Wu, G.; Zeng, F.; Wu, S. A water-soluble and specific BODIPY-based fluorescent probe for hypochlorite detection and cell imaging. Anal. Methods, 2013, 5, 5589-5596.
[http://dx.doi.org/10.1039/c3ay41268g]
[23]
Umezawa, K.; Nakamura, Y.; Makino, H.; Citterio, D.; Suzuki, K. Bright, color-tunable fluorescent dyes in the visible-near-infrared region. J. Am. Chem. Soc., 2008, 130(5), 1550-1551.
[http://dx.doi.org/10.1021/ja077756j] [PMID: 18193873]
[24]
Erten-El, S.; Yilmaz, D.M.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E.U. A panchromatic boradiazaindacene (BODIPY) sensitizer for dye-sensitized solar cells. Org. Lett., 2008, 101, 53299-53302.
[25]
Coskun, A.; Akkaya, E.U. Ion sensing coupled to resonance energy transfer: a highly selective and sensitive ratiometric fluorescent chemosensor for Ag(I) by a modular approach. J. Am. Chem. Soc., 2005, 127(30), 10464-10465.
[http://dx.doi.org/10.1021/ja052574f] [PMID: 16045314]
[26]
Singh-Rachford, T.N.; Haefele, A.; Ziessel, R.; Castellano, F.N. Boron dipyrromethene chromophores: next generation triplet acceptors/annihilators for low power upconversion schemes. J. Am. Chem. Soc., 2008, 130(48), 16164-16165.
[http://dx.doi.org/10.1021/ja807056a] [PMID: 18998677]
[27]
Manjare, S.T.; Kim, J.; Lee, Y.; Churchill, D.G. Facile meso-BODIPY annulation and selective sensing of hypochlorite in water. Org. Lett., 2014, 16(2), 520-523.
[http://dx.doi.org/10.1021/ol403405n] [PMID: 24369849]
[28]
Soni, D.; Gangada, S.; Duvva, N.; Roy, T.K.; Nimesh, S.; Arya, G.; Giribabu, L.; Chitta, R. Hypochlorite-promoted inhibition of photoinduced electron transfer in phenothiazine–borondipyrromethene donor–acceptor dyad: a cost-effective and metal-free “turn-on” fluorescent chemosensor for hypochlorite. New J. Chem., 2017, 41, 5322-5333.
[http://dx.doi.org/10.1039/C7NJ00516D]
[29]
Kim, J.; Kim, Y. A water-soluble sulfonate-BODIPY based fluorescent probe for selective detection of HOCl/OCl- in aqueous media. Analyst (Lond.), 2014, 139(12), 2986-2989.
[http://dx.doi.org/10.1039/C4AN00466C] [PMID: 24816680]
[30]
Kamkaew, A.; Burgess, K. Double-targeting using a TrkC ligand conjugated to dipyrrometheneboron difluoride (BODIPY) based photodynamic therapy (PDT) agent. J. Med. Chem., 2013, 56(19), 7608-7614.
[http://dx.doi.org/10.1021/jm4012142] [PMID: 24063347]
[31]
Turksoy, A.; Yildiz, D.; Akkaya, E.U. Photosensitization and controlled photosensitization with BODIPY dyes. Coord. Chem. Rev., 2019, 15(379), 47-64.
[32]
(a)Valeur, B.; Leray, I. Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev., 2000, 205, 3-40.
[http://dx.doi.org/10.1016/S0010-8545(00)00246-0]
(b)Abbas, S.; Din, I.D.; Raheel, A.; Din, A.T. Cyclometalated iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Appl. Organomet. Chem., 2020, 34, 5413.
[http://dx.doi.org/10.1002/aoc.5413]
(c)Agren, S.; Chaabene, M.; Allouche, A.; Chaâbane, R.B.; Lahcinie, M.; Baouab, M.H.V. Blue highly fluorescent boranil derived from anil ligand: Synthesis, characterization, experimental and theoretical evaluation of solvent effect on structures and photophysical properties. Appl. Organomet. Chem., 2020, 34, 5764.
[http://dx.doi.org/10.1002/aoc.5764]
[33]
(a)Lee, J.Y.; Kim, S.K.; Jung, J.H.; Kim, J.S. Bifunctional fluorescent calix[4]arene chemosensor for both a cation and an anion. J. Org. Chem., 2005, 70(4), 1463-1466.
[http://dx.doi.org/10.1021/jo048228i] [PMID: 15704986]
(b)Gu, D.; Yang, W.; Wang, F.; Li, M.; Liu, L.; Li, H.; Pan, Q.A metal–organic gel-based fluorescent chemosensor for selective Al3+ detection. Appl. Organomet. Chem., 2019, 33, 5179.
[http://dx.doi.org/10.1002/aoc.5179]
(c)Tang, Q.; Sun, Y.; Li, H-Y.; Wu, J-Q.; Liang, Y-N.; Zhang, Z. Hexanuclear 3d−4f metal–organic cages assembled from a carboxylic acid‐functionalized tris‐triazamacrocycle for highly selective fluorescent sensing of picric acid. Appl. Organomet. Chem., 2019, 33, 4814.
[http://dx.doi.org/10.1002/aoc.4814]
[34]
Czarnik, A.W. Fluorescent Chemosensors for Ion and Molecule Recognition. American Chemical Society Symposium Series, Washington, DC1993, p. 358.
[http://dx.doi.org/10.1021/bk-1993-0538]
[35]
Kim, S.H.; Kim, H.J.; Yoon, J.; Kim, J.S. Calixarenes in the Nanoworld; Fluorescent Chemosensors, 2007, pp. 311-333.
[36]
He, T.; Lin, C.; Gu, Z.; Xu, L.; Yang, A.; Liu, Y.; Fang, H.; Qiu, H.; Zhang, J.; Yin, S. Sensing behavior and logic operation of a colorimetric fluorescence sensor for Hg(2+)/Cu(2+) ions. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 167, 66-71.
[http://dx.doi.org/10.1016/j.saa.2016.05.032] [PMID: 27239948]
[37]
Dong, J.X.; Song, X.F.; Shi, Y.; Gao, Z.F.; Li, B.L.; Li, N.B.; Luo, H.Q. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols. Biosens. Bioelectron., 2016, 81, 473-479.
[http://dx.doi.org/10.1016/j.bios.2016.03.017] [PMID: 27015151]
[38]
Niu, Q.; Wu, X.; Zhang, S.; Li, T.; Cui, Y.; Li, X. A highly selective and sensitive fluorescent sensor for the rapid detection of Hg2+ based on phenylamine-oligothiophene derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 143-146.
[http://dx.doi.org/10.1016/j.saa.2015.08.019] [PMID: 26298681]
[39]
Uppa, Y.; Kulchat, S.; Ngamdee, K.; Pradublai, K.; Tuntulani, T.; Ngeontae, T. Silver ion modulated CdS quantum dots for highly selective detection of trace Hg2+. J. Lumin., 2016, 178, 437-445.
[http://dx.doi.org/10.1016/j.jlumin.2016.06.001]
[40]
Martínez, R.; Espinosa, A.; Tárraga, A.; Molina, P. New Hg2+ and Cu2+ selective chromo- and fluoroionophore based on a bichromophoric azine. Org. Lett., 2005, 7(26), 5869-5872.
[http://dx.doi.org/10.1021/ol052508i] [PMID: 16354087]
[41]
Alfonso, M.; Espinosa, A.; Tárraga, A.; Molina, P. A simple but effective dual redox and fluorescent ion pair receptor based on a ferrocene-imidazopyrene dyad. Org. Lett., 2011, 13(8), 2078-2081.
[http://dx.doi.org/10.1021/ol2004935] [PMID: 21410168]
[42]
Satapathy, R.; Wu, Y.H.; Lin, H.C. Novel thieno-imidazole based probe for colorimetric detection of Hg2+ and fluorescence turn-on response of Zn2+. Org. Lett., 2012, 14(10), 2564-2567.
[http://dx.doi.org/10.1021/ol300867e] [PMID: 22571681]
[43]
Wang, E.; Qiao, H.; Zhou, Y.; Pang, L.; Yu, F.; Zhang, J.; Ma, T. A novel “turn-on” fluorogenic probe for sensing hypochlorous acid based on BODIPY. RSC Advances, 2015, 5, 73040-73045.
[http://dx.doi.org/10.1039/C5RA14118D]
[44]
Wang, Y.; Xia, J.; Han, J.; Bao, X.; Li, Y.; Tang, X.; Ni, L.; Wang, L.; Gao, M. A fast-responsive fluorescent probe based on BODIPY dye for sensitive detection of hypochlorite and its application in real water samples. Talanta, 2016, 161, 847-853.
[http://dx.doi.org/10.1016/j.talanta.2016.09.025] [PMID: 27769492]
[45]
Baslak, C.; Kursunlu, A.N. A naked-eye fluorescent sensor for copper(ii) ions based on a naphthalene conjugate Bodipy dye. Photochem. Photobiol. Sci., 2018, 17(8), 1091-1097.
[http://dx.doi.org/10.1039/C8PP00137E] [PMID: 29947409]
[46]
Kursunlu, A.N.; Ozmen, M.; Guler, E. Novel magnetite nanoparticle based on BODIPY as fluorescent hybrid material for Ag(I) detection in aqueous medium. Talanta, 2016, 153, 191-196.
[http://dx.doi.org/10.1016/j.talanta.2016.03.029] [PMID: 27130108]
[47]
Kursunlu, A.N.; Oguz, M.; Yilmaz, M. On/off rhodamine-BODIPY-based fluorimetric/colorimetric sensor for detection of mercury (II) in half-aqueous medium. IEEE Sens. J., 2018, 19, 2009-2015.
[http://dx.doi.org/10.1109/JSEN.2018.2886383]
[48]
Bayrakcı, M.; Kursunlu, A.N.; Güler, E.; Ertul, Ş. A new calix[4]azacrown ether based boradiazaindacene (Bodipy): selective fluorescence changes towards trivalent lanthanide ions. Dyes Pigments, 2013, 99, 268-274.
[http://dx.doi.org/10.1016/j.dyepig.2013.05.025]
[49]
Kursunlu, A.N.; Guler, E.; Ucan, H.I.; Boyle, R.W. A novel Bodipy-Dipyrrin fluorescent probe: synthesis and recognition behaviour towards Fe (II) and Zn (II). Dyes Pigments, 2012, 94, 496-502.
[http://dx.doi.org/10.1016/j.dyepig.2012.02.006]
[50]
Kursunlu, A.N.; Deveci, P.; Guler, E. Synthesis and spectroscopic-electrochemical properties of novel ratiometric Hg (II) chemosensor containing Bodipy and the N-phenylaza-15-crown-5 moiety. J. Lumin., 2013, 136, 430-436.
[http://dx.doi.org/10.1016/j.jlumin.2012.12.020] [PMID: 24496245]
[51]
Kursunlu, A.N.; Koc, Z.E.; Obalı, A.Y.; Güler, E. A symmetric and selective fluorescent Cu (II) sensor based on bodipy and s-triazine. J. Lumin., 2014, 149, 215-220.
[http://dx.doi.org/10.1016/j.jlumin.2014.01.019]
[52]
Kursunlu, A.N. Synthesis and photophysical properties of modifiable single, dual, and triple-boron dipyrromethene (Bodipy) complexes. Tetrahedron Lett., 2015, 56, 1873-1877.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.097]
[53]
Kursunlu, A.N.; Guler, E. The sensitivity and selectivity properties of a fluorescence sensor based on quinoline-Bodipy. J. Lumin., 2014, 145, 608-614.
[http://dx.doi.org/10.1016/j.jlumin.2013.08.030]
[54]
Bilgiç, A.; Çimen, A. A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr (VI) metal ions in the aqueous medium. J. Mol. Liq., 2020, 312, 113-398.
[http://dx.doi.org/10.1016/j.molliq.2020.113398]
[55]
Bilgiç, A.; Çimen, A. Two Novel BODIPY-Functional Magnetite Fluorescent Nano-Sensors for Detecting of Cr(VI) Ions in Aqueous Solutions. J. Fluoresc., 2020, 30(4), 867-881.
[http://dx.doi.org/10.1007/s10895-020-02559-2] [PMID: 32494934]
[56]
(a)Gul, A.; Oguz, M.; Kursunlu, A.N.; Yilmaz, M. A novel colorimetric/fluorometric dual-channel sensor based on phenolphthalein and Bodipy for Sn (II) and Al (III) ions in half-aqueous medium and its applications in bioimaging. Dyes Pigments, 2020, 176, 108-221.
[http://dx.doi.org/10.1016/j.dyepig.2020.108221]
(b)Saqib, S.; Zaman, W.; Ullah, F.; Majeed, I.; Ayaz, A.; Munis, M.F.H. Organometallic assembling of chitosan‐Iron oxide nanoparticles with their antifungal evaluation against Rhizopus oryzae. Appl. Organomet. Chem., 2019, 33, 5190.
[http://dx.doi.org/10.1002/aoc.5190]
[57]
Chengduan, Y.; Deyan, G.; Xudong, W.; Anam, I.; Min, D.; Yali, G.; Xiaoliang, T.; Weisheng, L.; Wenwu, Q. A new highly copper-selective fluorescence enhancement chemosensor based on BODIPY excitable with visible light and its imaging in living cells. Sens. Actuators B Chem., 2016, 224, 110-117.
[http://dx.doi.org/10.1016/j.snb.2015.10.037]
[58]
Huanren, C.; Ying, Q. Intramolecular fluorescence resonance energy transfer in a novel PDI-BODIPY dendritic structure: Synthesis, Hg2+ sensor and living cell imaging. Sensors Actuat. B, 2015, 219, 57-64.
[http://dx.doi.org/10.1016/j.snb.2015.04.086]
[59]
Xiaolong, Z.; Chao, G.; Na, L.; Fayu, L.; Shuhui, H.; Jianzhen, L.; Xiaolin, G.; Na, Y. BODIPY based fluorescent turn-on sensor for highly selective detection of HNO and the application in living cells. Tetrahedron Lett., 2019, 60, 1452-1456.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.049]
[60]
Shuai, X.; Jinjin, S.; Jianbo, W.; Hailong, W.; Mingxi, F.; Hongwei, Z.; Marina, T. Ratiometric fluorescent and colorimetric BODIPY-based sensor for zinc ions in solution and living cells. Sens. Actuators B Chem., 2018, 258, 1279-1286.
[http://dx.doi.org/10.1016/j.snb.2017.11.129]
[61]
Kumari, S.K.; Ashish, K.; Sumit, K.H.; Swapan, D. Recognition of Al3+ through the off-on mechanism as a proficient driving force for the hydrolysis of BODIPY conjugated Schiff base and its application in bio-imaging. Inorg. Chim. Acta, 2019, 498, 119-157.
[62]
Gong, D.; Zhu, X.; Tian, Y.; Han, S.C.; Deng, M.; Iqbal, A.; Liu, W.; Qin, W.; Guo, H. A Phenylselenium-Substituted BODIPY Fluorescent Turn-off Probe for Fluorescence Imaging of Hydrogen Sulfide in Living Cells. Anal. Chem., 2017, 89(3), 1801-1807.
[http://dx.doi.org/10.1021/acs.analchem.6b04114] [PMID: 28208279]
[63]
Suthikorn, J.; Patcharavadee, B.; Ponsiree, J.; Pornchai, R.; Tanapat, P.; Paitoon, R.; Mongkol, S.; Sumrit, W. “Turn on” orange fluorescent probe based on styryl-BODIPY for detection of hypochlorite and its application in live cell imaging. Dyes Pigments, 2019, 162, 189-195.
[http://dx.doi.org/10.1016/j.dyepig.2018.10.007]
[64]
Jiabin, Q.; Shengjie, J.; Hongyu, G.; Fafu, Y. An AIE and FRET-based BODIPY sensor with large Stoke shift: Novel pH probe exhibiting application in CO32- detection and living cell imaging. Dyes Pigments, 2018, 157, 351-358.
[http://dx.doi.org/10.1016/j.dyepig.2018.05.013]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy